1
|
Sun X, He J, Li Y, Chu Z, Zhu L, Zhang H, Wu X. Nucleostemin interacts with SMAD3 promoting tumor metastasis. Exp Cell Res 2025; 444:114362. [PMID: 39662660 DOI: 10.1016/j.yexcr.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
SMAD3 plays a crucial role in TGF-β, regulating various normal developmental mechanisms and disease pathogenesis. Here, we report that SMAD3 directly interacts with Nucleostemin (NS), leading to nuclear translocation and affecting SMAD3 activity after TGF-β1 stimulation. Moreover, NS acts as a competitor, preventing PPM1A from recognizing and dephosphorylating SMAD3. Experimental investigations have demonstrated that NS significantly enhances cellular migration and invasion by promoting the EMT mechanism in vitro. NS knockdown notably suppresses tumor metastasis in the lungs and liver in vivo. Importantly, NS expression is significantly elevated in numerous human malignancies, correlating with a poorer prognosis. The collective evidence from these studies suggests that NS exhibits oncogenic characteristics, supporting further exploration of NS as a potential target for tumor treatment.
Collapse
Affiliation(s)
- Xuling Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China.
| | - Jiageng He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Yujiang Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Zhiqiang Chu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Lei Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, PR China
| | - Xiangwei Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832000, PR China
| |
Collapse
|
2
|
Guo S, Cong B, Zhu L, Zhang Y, Yang Y, Qi X, Wang X, Xiao L, Long C, Xu Y, Sheng X. Whole transcriptome sequencing of testis and epididymis reveals genes associated with sperm development in roosters. BMC Genomics 2024; 25:1029. [PMID: 39497056 PMCID: PMC11533344 DOI: 10.1186/s12864-024-10836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development. RESULTS In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from "Jing Hong No.1" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility. CONCLUSIONS Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.
Collapse
Affiliation(s)
- Shihao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Bailin Cong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Liyang Zhu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Yang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yaxi Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
3
|
Li Y, Dong B. Exploring liquid-liquid phase separation-related diagnostic biomarkers in osteoarthritis based on machine learning algorithms and experiment. Immunobiology 2024; 229:152825. [PMID: 38997894 DOI: 10.1016/j.imbio.2024.152825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/05/2024] [Accepted: 06/08/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration and joint inflammation. Liquid-liquid phase separation (LLPS), a biophysical process involved in cellular organization, has recently gained attention in OA research. However, the relationship between LLPS and OA remains poorly understood. METHODS We analyzed gene expression data from the GSE48556 dataset to identify LLPS-related genes associated with OA. Differential expression analysis, enrichment analyses, and machine learning algorithms were employed to explore the functional significance of LLPS-related genes in OA and then construct a diagnostic model for OA. In addition, IL-1β as a pro-inflammatory factor to establish an in vitro OA model, and the protein expression levels of OA biomarkers were detected by western blot. RESULTS A total of 145 LLPS-related genes were screened in OA samples. Enrichment analyses revealed these genes were mainly enriched in mRNA metabolic processes, cytoplasmic granules, and insulin resistance. Four characteristic genes for OA were selected by using machine learning algorithms, including ADRB2, H3F3B, GNL3L, and PELO. These genes showed satisfactory diagnostic values. Furthermore, there were association between these biomarkers and immune cells, including T cells CD8 and monocytes. In vitro experiments showed that IL-1β stimulation significantly inhibited the cell viability of chondrocytes and enhanced the levels of pro-inflammatory factors, that could mimic the inflammatory state of OA. The expression levels of GNL3L and H3F3B proteins in IL-1β group were obviously lower than those in control group, while levels of ADRB2 and PELO were higher, which was consistent with the results of bioinformatics analysis. CONCLUSION Our study identifies LLPS-related genes as potential diagnostic biomarkers for OA. These findings provide insights into the molecular mechanisms underlying OA pathogenesis and offer opportunities for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yue Li
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Bo Dong
- Pain Ward of Rehabilitation Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China.
| |
Collapse
|
4
|
Yang X, Li X. Oncogenic role of RNA-binding protein GNL2 in glioma: Promotion of tumor development through enhancing protein synthesis. Oncol Lett 2024; 28:307. [PMID: 38779136 PMCID: PMC11110002 DOI: 10.3892/ol.2024.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/27/2024] [Indexed: 05/25/2024] Open
Abstract
RNA-binding proteins (RBPs) are aberrantly expressed in various diseases, including glioma. In the present study, the role and mechanism of RBPs in glioma were investigated. Differentially expressed genes (DEGs) in glioma were screened from public databases and overlapping genes between DEGs and RBPs were selected in a bioinformatics analysis to identify the hub gene. Next, evaluation of expression, survival analysis and cell experiments were performed to examine the impact of the hub gene on glioma. Through bioinformatics analysis, G protein nucleolar 2 (GNL2), programmed cell death 11 (PDCD11) and ribosomal protein S6 (RPS6) were identified as potential biomarkers in glioma prognosis and GNL2 was chosen as the hub gene for further investigation. GNL2 was increased in glioma tissues and related to poor survival outcomes. Cell experiments revealed that GNL2 knockdown inhibited glioma cell growth, migration and invasion. In addition, GNL2 was found to affect the overall protein synthesis of ribosomal protein L11 in glioma cells. In conclusion, GNL2, PDCD11 and RPS6 may serve as potential biomarkers in glioma prognosis. Importantly, GNL2 acts as an oncogene in glioma and it enhances protein synthesis to promote the development of brain glioma.
Collapse
Affiliation(s)
- Xudong Yang
- Department of Neurosurgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215008, P.R. China
| | - Xiangdong Li
- Department of Neurosurgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu 215008, P.R. China
| |
Collapse
|
5
|
Moutafi MK, Bates KM, Aung TN, Milian RG, Xirou V, Vathiotis IA, Gavrielatou N, Angelakis A, Schalper KA, Salichos L, Rimm DL. High-throughput transcriptome profiling indicates ribosomal RNAs to be associated with resistance to immunotherapy in non-small cell lung cancer (NSCLC). J Immunother Cancer 2024; 12:e009039. [PMID: 38857914 PMCID: PMC11168162 DOI: 10.1136/jitc-2024-009039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Despite the impressive outcomes with immune checkpoint inhibitor (ICI) in non-small cell lung cancer (NSCLC), only a minority of the patients show long-term benefits from ICI. In this study, we used retrospective cohorts of ICI treated patients with NSCLC to discover and validate spatially resolved protein markers associated with resistance to programmed cell death protein-1 (PD-1) axis inhibition. METHODS Pretreatment samples from 56 patients with NSCLC treated with ICI were collected and analyzed in a tissue microarray (TMA) format in including four different tumor regions per patient using the GeoMx platform for spatially informed transcriptomics. 34 patients had assessable tissue with tumor compartment in all 4 TMA spots, 22 with leukocyte compartment and 12 with CD68 compartment. The patients' tissue that was not assessable in fourfold redundancy in each compartment was designated as the validation cohort; cytokeratin (CK) (N=22), leukocytes CD45 (N=31), macrophages, CD68 (N=43). The human whole transcriptome, represented by~18,000 individual genes assessed by oligonucleotide-tagged in situ hybridization, was sequenced on the NovaSeq platform to quantify the RNAs present in each region of interest. RESULTS 54,000 gene variables were generated per case, from them 25,740 were analyzed after removing targets with expression lower than a prespecified frequency. Cox proportional-hazards model analysis was performed for overall and progression-free survival (OS, PFS, respectively). After identifying genes significantly associated with limited survival benefit (HR>1)/progression per spot per patient, we used the intersection of them across the four TMA spots per patient. This resulted in a list of 12 genes in the tumor-cell compartment (RPL13A, GNL3, FAM83A, CYBA, ACSL4, SLC25A6, EPAS1, RPL5, APOL1, HSPD1, RPS4Y1, ADI1). RPL13A, GNL3 in tumor-cell compartment were also significantly associated with OS and PFS, respectively, in the validation cohort (CK: HR, 2.48; p=0.02 and HR, 5.33; p=0.04). In CD45 compartment, secreted frizzled-related protein 2, was associated with OS in the discovery cohort but not in the validation cohort. Similarly, in the CD68 compartment ARHGAP and PNN interacting serine and arginine rich protein were significantly associated with PFS and OS, respectively, in the majority but not all four spots per patient. CONCLUSION This work highlights RPL13A and GNL3 as potential indicative biomarkers of resistance to PD-1 axis blockade that might help to improve precision immunotherapy strategies for lung cancer.
Collapse
Affiliation(s)
- Myrto K Moutafi
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Katherine M Bates
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Rolando Garcia Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vasiliki Xirou
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Ioannis A Vathiotis
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Niki Gavrielatou
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Athanasios Angelakis
- Epidemiology and Data Science, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Department of Methodology, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leonidas Salichos
- Biomedical Data Science Center Director, Center for Cancer Research, Department of Computational Biology at New York Institute of Technology, New York Institute of Technology, Old Westbury, New York, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Quiroga-Artigas G, Moriel-Carretero M. Storage cell proliferation during somatic growth establishes that tardigrades are not eutelic organisms. Biol Open 2024; 13:bio060299. [PMID: 38411464 PMCID: PMC10924213 DOI: 10.1242/bio.060299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
Tardigrades, microscopic ecdysozoans known for extreme environment resilience, were traditionally believed to maintain a constant cell number after completing embryonic development, a phenomenon termed eutely. However, sporadic reports of dividing cells have raised questions about this assumption. In this study, we explored tardigrade post-embryonic cell proliferation using the model species Hypsibius exemplaris. Comparing hatchlings to adults, we observed an increase in the number of storage cells, responsible for nutrient storage. We monitored cell proliferation via 5-ethynyl-2'-deoxyuridine (EdU) incorporation, revealing large numbers of EdU+ storage cells during growth, which starvation halted. EdU incorporation associated with molting, a vital post-embryonic development process involving cuticle renewal for further growth. Notably, DNA replication inhibition strongly reduced EdU+ cell numbers and caused molting-related fatalities. Our study is the first to demonstrate using molecular approaches that storage cells actively proliferate during tardigrade post-embryonic development, providing a comprehensive insight into replication events throughout their somatic growth. Additionally, our data underscore the significance of proper DNA replication in tardigrade molting and survival. This work definitely establishes that tardigrades are not eutelic, and offers insights into cell cycle regulation, replication stress, and DNA damage management in these remarkable creatures as genetic manipulation techniques emerge within the field.
Collapse
Affiliation(s)
- Gonzalo Quiroga-Artigas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier CEDEX 05, France
| |
Collapse
|
7
|
Lebdy R, Canut M, Patouillard J, Cadoret JC, Letessier A, Ammar J, Basbous J, Urbach S, Miotto B, Constantinou A, Abou Merhi R, Ribeyre C. The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep 2023; 24:e57585. [PMID: 37965896 DOI: 10.15252/embr.202357585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Faithful DNA replication requires specific proteins that protect replication forks and so prevent the formation of DNA lesions that may damage the genome. Identification of new proteins involved in this process is essential to understand how DNA lesions accumulate in cancer cells and how they tolerate them. Here, we show that human GNL3/nucleostemin, a GTP-binding protein localized mostly in the nucleolus and highly expressed in cancer cells, prevents nuclease-dependent resection of nascent DNA in response to replication stress. We demonstrate that inhibiting origin firing reduces resection. This suggests that the heightened replication origin activation observed upon GNL3 depletion largely drives the observed DNA resection probably due to the exhaustion of the available RPA pool. We show that GNL3 and DNA replication initiation factor ORC2 interact in the nucleolus and that the concentration of GNL3 in the nucleolus is required to limit DNA resection. We propose that the control of origin firing by GNL3 through the sequestration of ORC2 in the nucleolus is critical to prevent nascent DNA resection in response to replication stress.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Marine Canut
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Julie Patouillard
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | | | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Josiane Ammar
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Jihane Basbous
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Inserm U1191, Université de Montpellier, Montpellier Cedex 5, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, CNRS, Paris, France
| | - Angelos Constantinou
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Raghida Abou Merhi
- Faculty of Sciences, Genomics and Surveillance Biotherapy (GSBT) Laboratory, R. Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Cyril Ribeyre
- Institut de Génétique Humaine (UMR9002), CNRS, Université de Montpellier, Montpellier Cedex 5, France
| |
Collapse
|