1
|
Sun B, Zhang Y, Yu P, Dong L, Wang J, Xing N, Qu J, Gao L, Liu D, Zhang S, Xie C, Wu W, Pang Q, Li A. The stress-associated small heat shock protein affects stem cell proliferation, differentiation, and tissue-specific transcriptional networks during regeneration in Dugesia japonica. Biochem Biophys Res Commun 2025; 764:151824. [PMID: 40253908 DOI: 10.1016/j.bbrc.2025.151824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Small heat shock proteins (sHSPs) represent a highly conserved family of molecular chaperones primarily known for their roles in protein homeostasis and stress responses. However, their involvement in regulating stem cell dynamics and tissue regeneration remains insufficiently characterized, particularly in planarians, a model organism renowned for its extraordinary regenerative capacity. In planarians, regeneration is driven by pluripotent stem cells, referred to as neoblasts, which are the only proliferative cells responsible for tissue repair and homeostasis. In this study, we identified a novel sHSP, DjsHSP, in Dugesia japonica and investigated its functional role in regeneration. Using RNA interference (RNAi), we demonstrated that DjsHSP knockdown significantly delayed regeneration of the blastema, intestine, eyes, and neural tissue. Mechanistically, DjsHSP knockdown disrupted neoblasts dynamics, leading to abnormal proliferation and impaired differentiation. This was associated with altered expression of lineage-specific transcription factors critical for triploblastic tissue differentiation. Furthermore, the knockdown of DjsHSP downregulated key transcription factors regulating organ-specific regeneration, contributing to defective tissue regeneration. These findings suggest that DjsHSP affects stem cell fate and organ regeneration by maintaining the balance between stem cell proliferation and differentiation and modulating tissue-specific transcriptional networks. Our study provides new insights into the molecular mechanisms underlying planarian regeneration, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Bingrui Sun
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Ying Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Ping Yu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Liping Dong
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Jinlei Wang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Jicheng Qu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Shujing Zhang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Changjian Xie
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China.
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, PR China.
| |
Collapse
|
2
|
Zheng H, Li L, Wang D, Zhang S, Li W, Cheng M, Ge C, Chen J, Qiang Y, Chen F, Yu Y. FoxO is required for neoblast differentiation during planarian regeneration. Int J Biol Macromol 2025; 288:138729. [PMID: 39672403 DOI: 10.1016/j.ijbiomac.2024.138729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Stem cells are of great importance in the maintenance and regeneration of tissues, with Forkhead box O (FoxO) proteins emerging as pivotal regulators of their functions. However, the precise impact of FoxO proteins on stem cell behavior within regenerative environments remains ambiguous. Planarians, renowned for their abundance of adult stem cells (neoblasts), serve as an excellent model for investigating the dynamics of stem cells during regeneration. In this study, we identified DjfoxO, a conserved foxO gene in the planarian Dugesia japonica, and demonstrated its expression in neoblasts, with elevated levels detected in the regenerative blastema during the regeneration process. Using a FoxO inhibitor (AS1842856) together with RNA interference techniques, we demonstrated that inhibition of FoxO signaling in planarians hinders the regeneration of missing tissues, including the central nervous system, eyespots, anterior intestinal branches, and pharynx. It is noteworthy that the knockdown of DjfoxO does not significantly affect the mitotic activity of neoblasts. Conversely, it impedes the production of lineage-specific progenitors, potentially via modulation of the Erk pathway. These findings elucidate the instructive function of FoxO signaling in regulating stem cell differentiation and provide valuable insights into its potential for improving stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Linfeng Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Du Wang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Shengchao Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Wenhui Li
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Cui Ge
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jiayi Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yanmei Qiang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Medlock-Lanier T, Clay KB, Roberts-Galbraith RH. Planarian LDB and SSDP proteins scaffold transcriptional complexes for regeneration and patterning. Dev Biol 2024; 515:67-78. [PMID: 38968988 PMCID: PMC11361279 DOI: 10.1016/j.ydbio.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Sequence-specific transcription factors often function as components of large regulatory complexes. LIM-domain binding protein (LDB) and single-stranded DNA-binding protein (SSDP) function as core scaffolds of transcriptional complexes in animals and plants. Little is known about potential partners and functions for LDB/SSDP complexes in the context of tissue regeneration. In this work, we find that planarian LDB1 and SSDP2 promote tissue regeneration, with a particular function in anterior regeneration and mediolateral polarity reestablishment. We find that LDB1 and SSDP2 interact with one another and with characterized planarian LIM-HD proteins Arrowhead, Islet1, and Lhx1/5-1. We also show that SSDP2 and LDB1 function with islet1 in polarity reestablishment and with lhx1/5-1 in serotonergic neuron maturation. Finally, we find new roles for LDB1 and SSDP2 in regulating gene expression in the planarian intestine and parenchyma; these functions are likely LIM-HD-independent. Together, our work provides insight into LDB/SSDP complexes in a highly regenerative organism. Further, our work provides a strong starting point for identifying and characterizing potential binding partners of LDB1 and SSDP2 and for exploring roles for these proteins in diverse aspects of planarian physiology.
Collapse
Affiliation(s)
| | - Kendall B Clay
- Neuroscience Program, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
4
|
Molina MD, Abduljabbar D, Guixeras A, Fraguas S, Cebrià F. LIM-HD transcription factors control axial patterning and specify distinct neuronal and intestinal cell identities in planarians. Open Biol 2023; 13:230327. [PMID: 38086422 PMCID: PMC10715919 DOI: 10.1098/rsob.230327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Adult planarians can regenerate the gut, eyes and even a functional brain. Proper identity and patterning of the newly formed structures require signals that guide and commit their adult stem cells. During embryogenesis, LIM-homeodomain (LIM-HD) transcription factors act in a combinatorial 'LIM code' to control cell fate determination and differentiation. However, our understanding about the role these genes play during regeneration and homeostasis is limited. Here, we report the full repertoire of LIM-HD genes in Schmidtea mediterranea. We found that lim homeobox (lhx) genes appear expressed in complementary patterns along the cephalic ganglia and digestive system of the planarian, with some of them being co-expressed in the same cell types. We have identified that Smed-islet1, -lhx1/5-1, -lhx2/9-3, -lhx6/8, -lmx1a/b-2 and -lmx1a/b-3 are essential to pattern and size the planarian brain as well as for correct regeneration of specific subpopulations of dopaminergic, serotonergic, GABAergic and cholinergic neurons, while Smed-lhx1/5.2 and -lhx2/9.2 are required for the proper expression of intestinal cell type markers, specifically the goblet subtype. LIM-HD are also involved in controlling axonal pathfinding (lhx6/8), axial patterning (islet1, lhx1/5-1, lmx1a/b-3), head/body proportions (islet2) and stem cell proliferation (lhx3/4, lhx2/9-3, lmx1a/b-2, lmx1a/b-3). Altogether, our results suggest that planarians might present a combinatorial LIM code that controls axial patterning and axonal growing and specifies distinct neuronal and intestinal cell identities.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Dema Abduljabbar
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Anna Guixeras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|