1
|
Pohl J, Verheyden G, Held JPO, Luft AR, Easthope Awai C, Veerbeek JM. Construct validity and responsiveness of clinical upper limb measures and sensor-based arm use within the first year after stroke: a longitudinal cohort study. J Neuroeng Rehabil 2025; 22:14. [PMID: 39881332 PMCID: PMC11776245 DOI: 10.1186/s12984-024-01512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Construct validity and responsiveness of upper limb outcome measures are essential to interpret motor recovery poststroke. Evaluating the associations between clinical upper limb measures and sensor-based arm use (AU) fosters a coherent understanding of motor recovery. Defining sensor-based AU metrics for intentional upper limb movements could be crucial in mitigating bias from walking-related activities. Here, we investigate the measurement properties of a comprehensive set of clinical measures and sensor-based AU metrics when gait and non-functional upper limb movements are excluded. METHODS In this prospective, longitudinal cohort study, individuals with motor impairment were measured at days 3 ± 2 (D3), 10 ± 2 (D10), 28 ± 4 (D28), 90 ± 7 (D90), and 365 ± 14 (D365) after their first stroke. Using clinical measures, upper limb motor function (Fugl-Meyer Assessment), capacity (Action Research Arm Test, Box & Block Test), and perceived performance (14-item Motor Activity Log) were assessed. Additionally, individuals wore five movement sensors (trunk, wrists, and ankles) for three days. Thirteen AU metrics were computed based on functional movements during non-walking periods. Construct validity across clinical measures and AU metrics was determined by Spearman's rank correlations for each time point. Criterion responsiveness was examined by correlating patient-reported Global Rating of Perceived Change (GRPC) scores and observed change in upper limb measures and AU metrics. Optimal cut-off values for minimal important change (MIC) were estimated by ROC curve analysis. RESULTS Ninety-three individuals participated. At D3 and D10, correlations between clinical measures and AU metrics showed variability (range rs: 0.44-0.90). All following time points showed moderate-to-high positive correlations between clinical measures and affected AU metrics (range rs: 0.57-0.88). Unilateral nonaffected AU duration was negatively correlated with clinical measures (range rs: -0.48 to -0.77). Responsiveness across outcomes was highest between D10-D28 within moderate to strong relations between GRPC and clinical measures (rs: range 0.60-0.73), whereas relations were weaker for AU metrics (range rs: 0.28-0.43) Eight MIC values were estimated for clinical measures and nine for AU metrics, showing moderate to good accuracy (66-87%). CONCLUSIONS We present reference data on the construct validity and responsiveness of clinical upper limb measures and specified sensor-based AU metrics within the first year after stroke. The MIC values can be used as a benchmark for clinical stroke rehabilitation. TRIAL REGISTRATION This trial was registered on clinicaltrials.gov; registration number NCT03522519.
Collapse
Affiliation(s)
- Johannes Pohl
- Lake Lucerne Institute, Data Analytics and Rehabilitation Technology (DART), Vitznau, Switzerland.
- Department of Rehabilitation Sciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium.
- Department of Neurology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
- Cefir | Center for interdisciplinary research, Vitznau, Switzerland.
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven Brain Institute, Leuven, Belgium
| | | | - Andreas Ruediger Luft
- Lake Lucerne Institute, Data Analytics and Rehabilitation Technology (DART), Vitznau, Switzerland
- Cereneo, Center for Neurology and Rehabilitation, Vitznau, Switzerland
| | - Chris Easthope Awai
- Lake Lucerne Institute, Data Analytics and Rehabilitation Technology (DART), Vitznau, Switzerland
- Cefir | Center for interdisciplinary research, Vitznau, Switzerland
| | - Janne Marieke Veerbeek
- Luzerner Kantonsspital, University, Teaching and Research Hospital, University of Lucerne, Lucerne, Switzerland
| |
Collapse
|
2
|
Kim J, Rider JV, Zinselmeier A, Chiu YF, Peterson D, Longhurst JK. Dual-task gait has prognostic value for cognitive decline in Parkinson's disease. J Clin Neurosci 2024; 126:101-107. [PMID: 38865942 DOI: 10.1016/j.jocn.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Cognitive decline frequently occurs in individuals with Parkinson's disease (PD), but the clinical methods to predict the onset of cognitive changes are limited. Given preliminary evidence of the link between gait and cognition, the purpose of this study was to determine if dual task (DT) gait was related to declines in cognition over two years in PD. METHODS A retrospective two-year longitudinal study of 48 individuals with PD using data from the Parkinson's Progression Markers Initiative of the Michael J. Fox Foundation. The following data were extracted at baseline: spatiotemporal gait (during single and DT), demographics (age, sex), PD disease duration (time since diagnosis), motor function (Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS)), and cognition (Montreal Cognitive Assessment (MoCA)), with MoCA scores also extracted after two years. RESULTS A binomial logistic regression was conducted, with all covariates (above) in block 1 and DT effect (DTE) of gait characteristics in block 2 entered in a stepwise fashion. The final model was statistically significant (χ2(6) = 23.20, p < 0.001) and correctly classified 78.7 % of participants by cognitive status after two years. Only DTE of arm swing asymmetry (ASA) (p = 0.030) was included in block 2 such that a 1 % decline in DTE resulted in 1.6 % increased odds of cognitive decline. CONCLUSIONS Individuals with greater change in arm swing asymmetry from single to DT gait may be more likely to experience a decline in cognition within two years. These results suggested that reduced automaticity or poor utilization of attentional resources may be indicative of subtle changes in cognition and indicate that DT paradigms may hold promise as a marker of future cognitive decline.
Collapse
Affiliation(s)
- Jemma Kim
- Department of Physical Therapy, University of Delaware, 540 South College Avenue Suite 210 Newark, 19713, DE, USA; Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Street, St. Louis 63103, MO, USA.
| | - John V Rider
- School of Occupational Therapy, Touro University Nevada, 874 American Pacific Drive, Henderson 89014, Nevada, USA.
| | - Anne Zinselmeier
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Street, St. Louis 63103, MO, USA.
| | - Yi-Fang Chiu
- Department of Speech, Language, and Hearing Sciences, Saint Louis University, 3750 Lindell Blvd., St. Louis 63103, MO, USA.
| | - Daniel Peterson
- College of Health Solutions, Arizona State University, 550 N 3rd Street Suite 501, Phoenix, Tempe 85004, AZ, USA.
| | - Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline Street, Suite 1011, St. Louis 63103, MO, USA.
| |
Collapse
|
3
|
Li Z, Zhu J, Liu J, Shi M, Liu P, Guo J, Hu Z, Liu S, Yang D. Using dual-task gait to recognize Alzheimer's disease and mild cognitive impairment: a cross-sectional study. Front Hum Neurosci 2023; 17:1284805. [PMID: 38188506 PMCID: PMC10770261 DOI: 10.3389/fnhum.2023.1284805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Gait is a potential diagnostic tool for detecting mild cognitive impairment (MCI) and Alzheimer's disease (AD). Nevertheless, little attention has been paid to arm movements during walking, and there is currently no consensus on gait asymmetry. Therefore, in this study, we aimed to determine whether arm motion and gait asymmetry could be utilized for identifying MCI and AD. Methods In total, 102 middle-aged and elderly individuals were included in the final analysis and were assigned to the following three groups: AD (n = 27), MCI (n = 35), and a normal control group (n = 40). Gait and cognitive assessments were conducted for all participants. Gait detection included a single-task gait with free-speed walking and a dual-task gait with adding a cognitive task of successive minus seven to walking. Original gait parameters were collected using a wearable device featuring the MATRIX system 2.0. Gait parameters were shortened to several main gait domains through factor analysis using principal component extraction with varimax rotation. Subsequently, the extracted gait domains were used to differentiate the three groups, and the area under the receiver operating characteristic curve was calculated. Results Factor analysis of single-task gait identified five independent gait domains: rhythm symmetry, rhythm, pace asymmetry, arm motion, and variability. Factor analysis of the dual-task gait identified four gait domains: rhythm, variability, symmetry, and arm motion. During single-task walking, pace asymmetry was negatively correlated with MoCA scores and could distinguish between the AD group and the other two groups. Arm motion was not associated with MoCA scores, and did not exhibit adequate discrimination in either task. Conclusion Currently, there is no reliable evidence suggesting that arm motion can be used to recognize AD or MCI. Gait asymmetry can serve as a potential gait marker for the auxiliary diagnosis of AD but not for MCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dongdong Yang
- Department of Neurology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Jabri S, Carender W, Wiens J, Sienko KH. Automatic ML-based vestibular gait classification: examining the effects of IMU placement and gait task selection. J Neuroeng Rehabil 2022; 19:132. [PMID: 36456966 PMCID: PMC9713134 DOI: 10.1186/s12984-022-01099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Vestibular deficits can impair an individual's ability to maintain postural and/or gaze stability. Characterizing gait abnormalities among individuals affected by vestibular deficits could help identify patients at high risk of falling and inform rehabilitation programs. Commonly used gait assessment tools rely on simple measures such as timing and visual observations of path deviations by clinicians. These simple measures may not capture subtle changes in gait kinematics. Therefore, we investigated the use of wearable inertial measurement units (IMUs) and machine learning (ML) approaches to automatically discriminate between gait patterns of individuals with vestibular deficits and age-matched controls. The goal of this study was to examine the effects of IMU placement and gait task selection on the performance of automatic vestibular gait classifiers. METHODS Thirty study participants (15 with vestibular deficits and 15 age-matched controls) participated in a single-session gait study during which they performed seven gait tasks while donning a full-body set of IMUs. Classification performance was reported in terms of area under the receiver operating characteristic curve (AUROC) scores for Random Forest models trained on data from each IMU placement for each gait task. RESULTS Several models were able to classify vestibular gait better than random (AUROC > 0.5), but their performance varied according to IMU placement and gait task selection. Results indicated that a single IMU placed on the left arm when walking with eyes closed resulted in the highest AUROC score for a single IMU (AUROC = 0.88 [0.84, 0.89]). Feature permutation results indicated that participants with vestibular deficits reduced their arm swing compared to age-matched controls while they walked with eyes closed. CONCLUSIONS These findings highlighted differences in upper extremity kinematics during walking with eyes closed that were characteristic of vestibular deficits and showed evidence of the discriminative ability of IMU-based automated screening for vestibular deficits. Further research should explore the mechanisms driving arm swing differences in the vestibular population.
Collapse
Affiliation(s)
- Safa Jabri
- grid.214458.e0000000086837370Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Wendy Carender
- grid.412590.b0000 0000 9081 2336Department of Otolaryngology, Michigan Medicine, Ann Arbor, MI 48109 USA
| | - Jenna Wiens
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Kathleen H. Sienko
- grid.214458.e0000000086837370Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
5
|
Clemente-Suárez VJ, Villafaina S, García-Calvo T, Fuentes-García JP. Impact of HIIT Sessions with and without Cognitive Load on Cortical Arousal, Accuracy and Perceived Exertion in Amateur Tennis Players. Healthcare (Basel) 2022; 10:767. [PMID: 35627904 PMCID: PMC9142095 DOI: 10.3390/healthcare10050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of the present study was to investigate the effects of high-intensity interval training (HIIT) exercises, with and without cognitive load, on the accuracy, critical flicker fusion threshold (CFFT), and rating of perceived exertion (RPE) on recreational tennis players. A total of 32 players of tennis at recreational level (25 men and 7 women) were enrolled in this cross-sectional the study. Participants had to perform, randomly, two HIIT sessions. In one of them, cognitive load was induced by conducting an incongruent Stroop during rests. After training accuracy of tennis serve, CFFT, and RPE were measured. Results showed that accuracy after baseline and HIIT without cognitive load were significantly higher than after HIIT with cognitive load. RPE significantly increased (p-value < 0.001) after HIIT sessions in both, with and without cognitive load. However, significant differences were not observed between the two sessions in the RPE (p-value = 0.405). Furthermore, differences were not obtained in the CFFT neither within nor between sessions (p-value > 0.05). Therefore, HIIT with and without cognitive load increased the RPE in recreational tennis players. Furthermore, HIIT sessions with cognitive load significant altered tennis serve accuracy.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Santos Villafaina
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (T.G.-C.); (J.P.F.-G.)
- Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, 7004-516 Évora, Portugal
| | - Tomás García-Calvo
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (T.G.-C.); (J.P.F.-G.)
| | - Juan Pedro Fuentes-García
- Faculty of Sport Sciences, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain; (T.G.-C.); (J.P.F.-G.)
| |
Collapse
|
6
|
Druelle F, Özçelebi J, Marchal F, Berillon G. Development of bipedal walking in olive baboons, Papio anubis: A kinematic analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 177:719-734. [PMID: 36787778 DOI: 10.1002/ajpa.24454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/24/2021] [Accepted: 11/07/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Although extant nonhuman primates are not habitual bipeds, they are able to walk bipedally from an early age. In humans, children improve their walking skills through developmental processes and learning experience. In nonhuman primates, infants do not routinely experience bipedalism and their musculoskeletal system gradually specializes for other locomotor modes. The aim of this study is to explore the development of occasional bipedal walking in olive baboon and to test whether the postural adjustments change with age. MATERIALS AND METHODS We collected kinematics and spatiotemporal parameters of bipedal gait in an ontogenetic sample of 24 baboons. Data were collected at the primatology station of the CNRS (France) and a total of 47 bipedal strides were extracted for the present analysis. RESULTS Adults and adolescents walk bipedally in the same way, and the average kinematic pattern is similar across the age-classes. Infants walk bipedally with longer duty factor, they present larger movement amplitude of the thigh and the amplitude of the knee joint decreases with speed. In contrast, older baboons increase the amplitude of the knee and ankle joints with speed. DISCUSSION In a non-adapted biped, the postural adjustments of bipedal walking vary with age. In infant baboons, the balance requirements are likely to be higher and these are solved by adopting a "blocking strategy". In older baboons, the postural adjustments are focused on the lower limb and the movements increase with speed. These results may echo, in some respects, the developmental sequence of the intersegmental coordination described in the ontogeny of human locomotion.
Collapse
Affiliation(s)
- François Druelle
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,Functional Morphology Laboratory, University of Antwerp, Antwerp, Belgium.,UAR 846, Primatology Station-Celphedia, CNRS, Rousset, France
| | - Jonathan Özçelebi
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,UMR 7268 (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), CNRS-Faculté de Médecine, Marseille, France
| | - François Marchal
- UMR 7268 (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), CNRS-Faculté de Médecine, Marseille, France
| | - Gilles Berillon
- UMR 7194 (Histoire Naturelle de l'Homme Préhistorique), CNRS-Muséum National d'Histoire Naturelle-UPVD, Paris, France.,UAR 846, Primatology Station-Celphedia, CNRS, Rousset, France
| |
Collapse
|
7
|
Zörner B, Hostettler P, Meyer C, Killeen T, Gut P, Linnebank M, Weller M, Straumann D, Filli L. Prognosis of walking function in multiple sclerosis supported by gait pattern analysis. Mult Scler Relat Disord 2022; 63:103802. [DOI: 10.1016/j.msard.2022.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
8
|
Wunderlich A, Vogel O, Šömen MM, Peskar M, Fricke M, Gramann K, Protzak J, Marusic U, Wollesen B. Dual-Task Performance in Hearing-Impaired Older Adults-Study Protocol for a Cross-Sectional Mobile Brain/Body Imaging Study. Front Aging Neurosci 2021; 13:773287. [PMID: 34867299 PMCID: PMC8633949 DOI: 10.3389/fnagi.2021.773287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Hearing impairments are associated with reduced walking performance under Dual-task (DT) conditions. Little is known about the neural representation of DT performance while walking in this target group compared to healthy controls or younger adults. Therefore, utilizing the Mobile Brain/Body Imaging approach (MoBI), we aim at gaining deeper insights into the brain dynamics underlying the interaction of cognitive and motor processes during different DT conditions (visual and auditory) controlling for age and the potential performance decrements of older adults with hearing impairments. Methods: The cross-sectional study integrates a multifactorial mixed-measure design. Between-subject factors grouping the sample will be age (younger vs. older adults) and hearing impairment (mild vs. not hearing impaired). The within-subject factors will be the task complexity (single- vs. DT) and cognitive task modality (visual vs. auditory). Stimuli of the cognitive task will vary according to the stimulus modality (visual vs. auditory), presentation side (left vs. right), and presentation-response compatibility (ipsilateral vs. contralateral). Analyses of DT costs and underlying neuronal correlates focus either on gait or cognitive performance. Based on an a priori sample size calculation 96 (48 healthy and 48 mildly hearing impaired) community-dwelling older adults (50–70 years) and 48 younger adults (20–30 years) will be recruited. Gait parameters of speed and rhythm will be captured. EEG activity will be recorded using 64 active electrodes. Discussion: The study evaluates cognitive-motor interference (CMI) in groups of young and older adults as well as older adults with hearing impairment. The underlying processes of the interaction between motor and cognitive tasks will be identified at a behavioral and neurophysiological level comparing an auditory or a visual secondary task. We assume that performance differences are linked to different cognitive-motor processes, i.e., stimulus input, resource allocation, and movement execution. Moreover, for the different DT conditions (auditory vs. visual) we assume performance decrements within the auditory condition, especially for older, hearing-impaired adults. Findings will provide evidence of general mechanisms of CMI (ST vs. DT walking) as well as task-specific effects in dual-task performance while over ground walking.
Collapse
Affiliation(s)
- Anna Wunderlich
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Oliver Vogel
- Human Movement and Training Science, Institute of Human Movement Science, Psychology and Human Movement, University Hamburg, Hamburg, Germany
| | - Maja Maša Šömen
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Manca Peskar
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany.,Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Madeleine Fricke
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Klaus Gramann
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Janna Protzak
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany
| | - Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Bettina Wollesen
- Biological Psychology and Neuroergonomics, Department of Psychology and Ergonomics, Faculty V: Mechanical Engineering and Transport Systems, Technische Universität Berlin, Berlin, Germany.,Human Movement and Training Science, Institute of Human Movement Science, Psychology and Human Movement, University Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Haufe FL, Kober AM, Wolf P, Riener R, Xiloyannis M. Learning to walk with a wearable robot in 880 simple steps: a pilot study on motor adaptation. J Neuroeng Rehabil 2021; 18:157. [PMID: 34724940 PMCID: PMC8561899 DOI: 10.1186/s12984-021-00946-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wearable robots have been shown to improve the efficiency of walking in diverse scenarios. However, it is unclear how much practice is needed to fully adapt to robotic assistance, and which neuromotor processes underly this adaptation. Familiarization strategies for novice users, robotic optimization techniques (e.g. human-in-the-loop), and meaningful comparative assessments depend on this understanding. METHODS To better understand the process of motor adaptation to robotic assistance, we analyzed the energy expenditure, gait kinematics, stride times, and muscle activities of eight naïve unimpaired participants across three 20-min sessions of robot-assisted walking. Experimental outcomes were analyzed with linear mixed effect models and statistical parametric mapping techniques. RESULTS Most of the participants' kinematic and muscular adaptation occurred within the first minute of assisted walking. After ten minutes, or 880 steps, the energetic benefits of assistance were realized (an average of 5.1% (SD 2.4%) reduction in energy expenditure compared to unassisted walking). Motor adaptation was likely driven by the formation of an internal model for feedforward motor control as evidenced by the reduction of burst-like muscle activity at the cyclic end of robotic assistance and an increase in arm-swing asymmetry previously associated with increased cognitive load. CONCLUSION Humans appear to adapt to walking assistance from a wearable robot over 880 steps by forming an internal model for feedforward control. The observed adaptation to the wearable robot is well-described by existing three-stage models that start from a cognitive stage, continue with an associative stage, and end in autonomous task execution. Trial registration Not applicable.
Collapse
Affiliation(s)
- Florian L Haufe
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Alessia M Kober
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Peter Wolf
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Spinal Cord Injury Center, Medical Faculty, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michele Xiloyannis
- Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Effects of Nonelastic Taping and Dual Task on Kinematics and Kinetics of the Ankle Joint. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:8866453. [PMID: 33728036 PMCID: PMC7937460 DOI: 10.1155/2021/8866453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/30/2022]
Abstract
Objectives The purpose of this experimental study was to investigate the effects of nonelastic taping and dual task on ankle kinematics and kinetics in gait analysis of healthy adults. Methods A total of 21 healthy adults completed trials of gait analysis using a Vicon system combining ground walking with different cognitive task conditions (none, modified Stroop color/character naming, and serial-7 subtraction), with or without nonelastic taping. Ankle kinematics and kinetics including speed, ankle plantarflexion and inversion angle, ground reaction force (GRF), and stride time variability (STV) under all conditions of taping (YES or NO) and cognitive task (none, naming, and subtraction) were characterized and analyzed with repeated-measures ANOVA. Results As regards cognitive performance, the serial-7 subtraction performance under walking conditions with and without taping was significantly poorer than simple sitting condition (P < 0.001). For kinematics and kinetics, STV showed statistically significant decrease (P=0.02) when subjects underwent taping application. Vertical GRF was significantly greater under taping than barefoot (P=0.001). Ankle plantarflexion at initial contact (IC) under the dual-task walking was significantly more than under simple walking (P=0.008). Conclusions Applications of nonelastic taping and dual task may lead to the STV, vertical GRF, ankle plantarflexion, and speed alterations because of restricted joint range of motion and changed sensorimotor neural circuit. When healthy adults performed dual-task walking, central neural resources allocation was disturbed, leading to weakened performance in both motor and cognitive tasks.
Collapse
|
11
|
Ehrhardt A, Hostettler P, Widmer L, Reuter K, Petersen JA, Straumann D, Filli L. Fall-related functional impairments in patients with neurological gait disorder. Sci Rep 2020; 10:21120. [PMID: 33273488 PMCID: PMC7712911 DOI: 10.1038/s41598-020-77973-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Falls are common in patients with neurological disorders and are a primary cause of injuries. Nonetheless, fall-associated gait characteristics are poorly understood in these patients. Objective, quantitative gait analysis is an important tool to identify the principal fall-related motor characteristics and to advance fall prevention in patients with neurological disorders. Fall incidence was assessed in 60 subjects with different neurological disorders. Patients underwent a comprehensive set of functional assessments including instrumented gait analysis, computerized postural assessments and clinical walking tests. Determinants of falls were assessed by binary logistic regression analysis and receiver operator characteristics (ROC). The best single determinant of fallers was a step length reduction at slow walking speed reaching an accuracy of 67.2% (ROC AUC: 0.669; p = 0.027). The combination of 4 spatio-temporal gait parameters including step length and parameters of variability and asymmetry were able to classify fallers and non-fallers with an accuracy of 81.0% (ROC AUC: 0.882; p < 0.001). These findings suggest significant differences in specific spatio-temporal gait parameters between fallers and non-fallers among neurological patients. Fall-related impairments were mainly identified for spatio-temporal gait characteristics, suggesting that instrumented, objective gait analysis is an important tool to estimate patients' fall risk. Our results highlight pivotal fall-related walking deficits that might be targeted by future rehabilitative interventions that aim at attenuating falls.
Collapse
Affiliation(s)
- Angela Ehrhardt
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Pascal Hostettler
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Lucas Widmer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Katja Reuter
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Dominik Straumann
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Swiss Center for Clinical Movement Analysis (SCMA), Balgrist Campus AG, Zurich, Switzerland
| |
Collapse
|
12
|
Abstract
Continuous motor tasks like walking have the potential to allow a dynamic allocation of processing resources when interrupted by intermittent cognitive tasks. The degree to which a successful interleaving of processing streams of both tasks is possible may depend on the temporal regularity of events. Fifteen subjects participated in an experiment where we systematically manipulated the regularity of stimulus onsets in a 2-back task relative to the step cycle. We tested three conditions where stimulus onset was always synchronous to a defined event in the stride (right heel strike, left heel strike, and midway between two heel strikes) and two conditions where the temporal location of the stimulus shifted from stride to stride. In order to test for potential effects of task difficulty, we also manipulated walking speed. We measured reaction times, accuracy of the reactions and several measures describing motor performance. There was no sign of task interference in these measures when stimuli always appeared at the same relative location within the step cycle. However, we observed prolonged reaction times when the stimulus came up earlier than expected. Surprisingly, in the other non-regular regime, where the stimulus appeared later than expected, reaction times were fastest. We interpret this result in the light of a prescheduled allocation of processing resources that is linked to the cyclic profile of processing requirements of the motor task.
Collapse
|
13
|
Fang X, Jiang Z. Three-dimensional thoracic and pelvic kinematics and arm swing maximum velocity in older adults using inertial sensor system. PeerJ 2020; 8:e9329. [PMID: 32704440 PMCID: PMC7350916 DOI: 10.7717/peerj.9329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/18/2020] [Indexed: 11/21/2022] Open
Abstract
Understanding characteristics of torso motion and arm swing of older adults is important. A comprehensive database of three-dimensional thoracic and pelvic kinematics and arm swing maximum velocity of older adults during overground walking is still lacking. Moreover, the relationships between these variables are not fully understood. Therefore, we investigated age and gender effects of three-dimensional thoracic and pelvic ranges of motion and arm swing maximum velocity in 113 healthy old adults (aged 60–89 years) in a 2-min walk test using APDM Movement Monitoring inertial sensor system by two-way ANOVA, and post hoc Bonferroni correction was applied for multiple comparisons between age groups. A paired t-test was used to study the side preference of arm swing maximum velocity. The relationships between variables were investigated via multiple linear regression models. In general, thoracic and pelvic motions showed reduced amplitude with aging. Gait speed, pelvis coronal plane motion and arm swing maximum velocity significantly declined with age. Only the pelvic sagittal plane motion showed a gender main effect. Coronal plane motions of the thorax and pelvis were closely associated, as were sagittal plane motions. Thoracic coronal plane motion was the significant variable influencing pelvic transverse plane motion and vice versa. Gait speed, pelvic coronal and transverse plane motions and thorax sagittal plane motion were significant independent variables that influenced dominant arm maximum velocity. A larger maximum velocity was seen in the left arm. This investigation is valuable for better understanding of gait phenomena and will contribute to identification of gait dysfunction and development of rehabilitation measures.
Collapse
Affiliation(s)
- Xin Fang
- School of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, Jiangsu, China
| | - Zhongli Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
Filli L, Schwegler S, Meyer C, Killeen T, Easthope CS, Broicher SD, Curt A, Zörner B, Bolliger M, Jung HH, Petersen JA. Characterizing cognitive-motor impairments in patients with myotonic dystrophy type 1. Neuromuscul Disord 2020; 30:510-520. [PMID: 32527589 DOI: 10.1016/j.nmd.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/21/2023]
Abstract
Myotonic Dystrophy Type 1 (DM1) is the most frequent hereditary, adult-onset muscular dystrophy. Nevertheless, DM1-associated cognitive-motor impairments have not been fully characterized so far. This study aimed at profiling cognitive and locomotor dysfunctions in these patients. In addition, cognitive-motor interactions were assessed using a dual-task paradigm. Comprehensive cognitive-motor impairment profiles were generated for 19 patients with DM1 and 19 healthy subjects by thorough clinical, biomechanical and neuropsychological examinations. Detailed gait analysis was performed using a 3D motion capture system, whereas cognitive function was assessed using a standardized neuropsychological test battery. Patients with DM1 showed impaired functional mobility, gait velocity and endurance. DM1-related gait pathology was mainly characterized by enhanced dynamic instability, gait variability, and restricted ankle dorsiflexion. Patients' cognitive impairments particularly concerned attentional functions. Dual-task conditions induced gait deviations that slightly differed between patients and controls. DM1-associated cognitive impairments correlated with reduced functional mobility and impaired ankle dorsiflexion. Patients with DM1 revealed significant impairments of walking function, balance and cognitive performance. Differential cognitive-motor interference and significant interactions between cognitive and motor dysfunctions point towards a prominent role of cognition in gait performance of patients with DM1.
Collapse
Affiliation(s)
- Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland; Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Selina Schwegler
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Christopher S Easthope
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Sarah D Broicher
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Hans H Jung
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| | - Jens A Petersen
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| |
Collapse
|
15
|
Rodrigues ACDMA, Tinini RCDR, Gatica-Rojas V, Deslandes AC, Pereira EL, de Rezende LF, Maillot P, Cassilhas RC, Monteiro-Junior RS. Motor-cognitive dual-task performance of older women evaluated using Wii Balance Board. Aging Clin Exp Res 2020; 32:907-912. [PMID: 31332739 DOI: 10.1007/s40520-019-01270-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/04/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Single- and dual-tasks are influenced by age-related impaired postural balance. Aim of this study was to analyze the Center of Pressure (CoP) oscillation during static balance in the presence or absence of cognitive task on older women. METHODS Thirty-one healthy older women were assessed in a stand quiet position with open/closed eyes (single-task, OE and CE) and with cognitive task (dual-task, DT) through Wii Balance Board. Sway area, total displacement and CoP oscillation (CO) based on the number of times that CoP traveled through anteroposterior and mediolateral directions. Friedman test was used to compare OE, CE and DT. Dual-task interference percentage was used to quantify the cognitive load on balance whereas Spearman correlation coefficient was used to assess the association of cognitive domains and CO. RESULTS The CO was significantly higher in DT than in single-tasks and participants were unable to maintain their limits of stability in mediolateral direction. The cost of DT interference was 30.5%, which is partially explained by the deviation of attention from postural control to spatial and temporal orientation. CONCLUSION Our findings show that cognitive load during DT impairs balance in mediolateral direction, thus indicating the use of WBB to assess cognitive interference on postural control.
Collapse
Affiliation(s)
- Ana Carolina de Mello Alves Rodrigues
- Postgraduate Program of Health Sciences (PPGCS), State University of Montes Claros, Montes Claros, MG, Brazil
- Department of Physiotherapy, Faculty Santo Agostinho, Montes Claros, MG, Brazil
| | | | - Valeska Gatica-Rojas
- Human Motor Control Laboratory, Department of Human Movement Sciences, Faculty of Health Sciences, Interdisciplinary Excellence Research Program On Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Andréa Camaz Deslandes
- Post-Graduation Program of Psychiatry and Mental Health, Psychiatry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ester Liberato Pereira
- Departament of Physical Education, State University of Montes Claros, Montes Claros, MG, Brazil
| | - Luiz Fernando de Rezende
- Postgraduate Program of Health Sciences (PPGCS), State University of Montes Claros, Montes Claros, MG, Brazil
| | - Pauline Maillot
- Université Paris Descartes, Sorbonne Paris Cité, Laboratoire TEC EA 3625, Paris, France
| | - Ricardo Cardoso Cassilhas
- Department of Physical Education, Federal University of Vales Do Jequitinhonha E Mucuri (UFVJM), Diamantina, MG, Brazil
| | - Renato Sobral Monteiro-Junior
- Postgraduate Program of Health Sciences (PPGCS), State University of Montes Claros, Montes Claros, MG, Brazil.
- Departament of Physical Education, State University of Montes Claros, Montes Claros, MG, Brazil.
| |
Collapse
|
16
|
Kim J, Oh S, Kim J, Kim J. A two-wire body weight support system for interactive treadmill. IEEE Int Conf Rehabil Robot 2019; 2019:349-354. [PMID: 31374654 DOI: 10.1109/icorr.2019.8779549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Body weight support (BWS) system is widely used for patients to help their gait training. However, that existing systems require large workspace and elastic component in actuation makes the systems inappropriate for wide clinical use. The interactive treadmill was reported to be cost/space effectively simulate overground walking, but there was no suitable BWS system for the treadmill. We proposed a new concept of body weight support system for interactive treadmill. For wide clinical use, we applied a two-wire driven mechanism with simple actuator and a custom pelvic-type harness. With three healthy subjects, the performance of the proposed BWS system on unloading force control was evaluated, and the result showed that the feasibility of the proposed BWS system.
Collapse
|
17
|
Filli L, Meyer C, Killeen T, Lörincz L, Göpfert B, Linnebank M, von Tscharner V, Curt A, Bolliger M, Zörner B. Probing Corticospinal Control During Different Locomotor Tasks Using Detailed Time-Frequency Analysis of Electromyograms. Front Neurol 2019; 10:17. [PMID: 30761064 PMCID: PMC6361808 DOI: 10.3389/fneur.2019.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Locomotion relies on the fine-tuned coordination of different muscles which are controlled by particular neural circuits. Depending on the attendant conditions, walking patterns must be modified to optimally meet the demands of the task. Assessing neuromuscular control during dynamic conditions is methodologically highly challenging and prone to artifacts. Here we aim at assessing corticospinal involvement during different locomotor tasks using non-invasive surface electromyography. Activity in tibialis anterior (TA) and gastrocnemius medialis (GM) muscles was monitored by electromyograms (EMGs) in 27 healthy volunteers (11 female) during regular walking, walking while engaged in simultaneous cognitive dual tasks, walking with partial visual restriction, and skilled, targeted locomotion. Whereas EMG intensity of the TA and GM was considerably altered while walking with partial visual restriction and during targeted locomotion, dual-task walking induced only minor changes in total EMG intensity compared to regular walking. Targeted walking resulted in enhanced EMG intensity of GM in the frequency range associated with Piper rhythm synchronies. Likewise, targeted walking induced enhanced EMG intensity of TA at the Piper rhythm frequency around heelstrike, but not during the swing phase. Our findings indicate task- and phase-dependent modulations of neuromuscular control in distal leg muscles during various locomotor conditions in healthy subjects. Enhanced EMG intensity in the Piper rhythm frequency during targeted walking points toward enforced corticospinal drive during challenging locomotor tasks. These findings indicate that comprehensive time-frequency EMG analysis is able to gauge cortical involvement during different movement programs in a non-invasive manner and might be used as complementary diagnostic tool to assess baseline integrity of the corticospinal tract and to monitor changes in corticospinal drive as induced by neurorehabilitation interventions or during disease progression.
Collapse
Affiliation(s)
- Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Lilla Lörincz
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Beat Göpfert
- Department of Biomedical Engineering, Center for Biomechanics and Biocalorimetry, University of Basel, Basel, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Department of Neurology, Helios-Klinik Hagen-Ambrock, Hagen, Germany
| | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Björn Zörner
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.,Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
18
|
Killeen T, Elshehabi M, Filli L, Hobert MA, Hansen C, Rieger D, Brockmann K, Nussbaum S, Zörner B, Bolliger M, Curt A, Berg D, Maetzler W. Arm swing asymmetry in overground walking. Sci Rep 2018; 8:12803. [PMID: 30143717 PMCID: PMC6109135 DOI: 10.1038/s41598-018-31151-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/13/2018] [Indexed: 01/15/2023] Open
Abstract
Treadmill experiments suggest that left-dominant arm swing is common in healthy walking adults and is modulated by cognitive dual-tasking. Little is known about arm swing asymmetry in overground walking. We report directional (dASI) and non-directional arm swing symmetry indices (ndASI) from 334 adults (mean age 68.6 ± 5.9 y) walking overground at comfortable (NW) and fast (FW) speeds and while completing a serial subtraction task (DT). dASI and ndASI were calculated from sagittal shoulder range of motion data generated by inertial measurement units affixed to the wrist. Most (91%) participants were right-handed. Group mean arm swing amplitude was significantly larger on the left in all walking conditions. During NW, ndASI was 39.5 ± 21.8, with a dASI of 21.9 ± 39.5. Distribution of dASI was bimodal with an approximately 2:1 ratio of left:right-dominant arm swing. There were no differences in ndASI between conditions but dASI was smaller during DT compared to FW (15.2 vs 24.6; p = 0.009). Handedness was unrelated to ndASI, dASI or the change in ASI metrics under DT. Left-dominant arm swing is the norm in healthy human walking irrespective of walking condition or handedness. As disease markers, ndASI and dASI may have different and complementary roles.
Collapse
Affiliation(s)
- Tim Killeen
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland.
| | - Morad Elshehabi
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, Germany.,Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), Department of Neurodegeneration, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Linard Filli
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Markus A Hobert
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, Germany.,Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), Department of Neurodegeneration, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Clint Hansen
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, Germany
| | - David Rieger
- Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), Department of Neurodegeneration, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Kathrin Brockmann
- Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), Department of Neurodegeneration, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Susanne Nussbaum
- Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), Department of Neurodegeneration, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Björn Zörner
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, Germany.,Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), Department of Neurodegeneration, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, University of Kiel, Kiel, Germany.,Center for Neurology and Hertie Institute for Clinical Brain Research (HIH), Department of Neurodegeneration, University of Tübingen, Tübingen, Germany.,DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| |
Collapse
|
19
|
Gorecka MM, Vasylenko O, Espenes J, Waterloo K, Rodríguez-Aranda C. The impact of age-related hearing loss and lateralized auditory attention on spatiotemporal parameters of gait during dual-tasking among community dwelling older adults. Exp Gerontol 2018; 111:253-262. [PMID: 30056101 DOI: 10.1016/j.exger.2018.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
This investigation assessed the impact of hearing loss and lateralized auditory attention on spatiotemporal parameters of gait during overground dual-tasking by the use of the dichotic listening task. Seventy-eight right-handed, healthy older adults between 60 and 88 years were assigned to a Young-Old (<70 years) or an Old-Old (>71 years) group. Cognitive assessment and pure tone audiometry were conducted. Spatiotemporal parameters of gait quantified by mean (M), and coefficient of variations (CoV) were evaluated with the OptoGait system during 3 dichotic listening conditions: Non-Forced, Forced-Right and Forced-Left. Factorial analyses of variance and covariance were used to assess group differences and the moderating effects of hearing status, respectively. Results demonstrated that three of the gait parameters assessed were affected asymmetrically by the dual-task paradigm after controlling for hearing status. Asymmetries existed on step width, gait speed and variability of stride length. Finally, correlations between gait outcomes and dichotic listening results showed that M and CoVs in gait parameters during right-ear responses were longer compared with left-ear. Left-ear responses were related to increased variability on stride length, which indicates higher difficulty level. Hearing status varying from normal to mild levels of hearing loss modulates spatiotemporal gait outcomes measured during dichotic listening execution. Findings suggest that attending to left side stimuli relates to increased gait variability, while focusing on right-side assures a safe walk. Results demonstrated that attending to right-ear stimuli is an adaptive strategy for older adults that compensates for limited sensorimotor and cognitive resources during walking.
Collapse
Affiliation(s)
| | | | - Jacob Espenes
- Department of Psychology, University of Tromsø, Norway
| | - Knut Waterloo
- Department of Psychology, University of Tromsø, Norway; Department of Neurology, University Hospital North Norway, Tromsø, Norway
| | | |
Collapse
|
20
|
Filli L, Sutter T, Easthope CS, Killeen T, Meyer C, Reuter K, Lörincz L, Bolliger M, Weller M, Curt A, Straumann D, Linnebank M, Zörner B. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep 2018; 8:4984. [PMID: 29563533 PMCID: PMC5862880 DOI: 10.1038/s41598-018-22676-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/27/2018] [Indexed: 01/28/2023] Open
Abstract
Gait dysfunction is a common and relevant symptom in multiple sclerosis (MS). This study aimed to profile gait pathology in gait-impaired patients with MS using comprehensive 3D gait analysis and clinical walking tests. Thirty-seven patients with MS walked on the treadmill at their individual, sustainable speed while 20 healthy control subjects walked at all the different patient's paces, allowing for comparisons independent of walking velocity. Kinematic analysis revealed pronounced restrictions in knee and ankle joint excursion, increased gait variability and asymmetry along with impaired dynamic stability in patients. The most discriminative single gait parameter, differentiating patients from controls with an accuracy of 83.3% (χ2 test; p = 0.0001), was reduced knee range of motion. Based on hierarchical cluster and principal component analysis, three principal pathological gait patterns were identified: a spastic-paretic, an ataxia-like, and an unstable gait. Follow-up assessments after 1 year indicated deterioration of walking function, particularly in patients with spastic-paretic gait patterns. Our findings suggest that impaired knee/ankle control is common in patients with MS. Personalised gait profiles and clustering algorithms may be promising tools for stratifying patients and to inform patient-tailored exercise programs. Responsive, objective outcome measures are important for monitoring disease progression and treatment effects in MS trials.
Collapse
Affiliation(s)
- Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| | - Tabea Sutter
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Christopher S Easthope
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Katja Reuter
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Lilla Lörincz
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Dominik Straumann
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, Helios-Klinik Hagen-Ambrock, /University Witten/Herdecke, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Björn Zörner
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
21
|
Killeen T, Easthope CS, Demkó L, Filli L, Lőrincz L, Linnebank M, Curt A, Zörner B, Bolliger M. Minimum toe clearance: probing the neural control of locomotion. Sci Rep 2017; 7:1922. [PMID: 28507300 PMCID: PMC5432520 DOI: 10.1038/s41598-017-02189-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/19/2017] [Indexed: 12/01/2022] Open
Abstract
Minimum toe clearance (MTC) occurs during a highly dynamic phase of the gait cycle and is associated with the highest risk of unintentional contact with obstacles or the ground. Age, cognitive function, attention and visual feedback affect foot clearance but how these factors interact to influence MTC control is not fully understood. We measured MTC in 121 healthy individuals aged 20–80 under four treadmill walking conditions; normal walking, lower visual field restriction and two Stroop colour/word naming tasks of two difficulty levels. Competition for cognitive and attentional resources from the Stroop task resulted in significantly lower mean MTC in older adults, with the difficult Stroop task associated with a higher frequency of extremely low MTC values and subsequently an increased modelled probability of tripping in this group. While older adults responded to visual restriction by markedly skewing MTC distributions towards higher values, this condition was also associated with frequent, extremely low MTC values. We reveal task-specific, age-dependent patterns of MTC control in healthy adults. Age-related differences are most pronounced during heavy, distracting cognitive load. Analysis of critically-low MTC values during dual-task walking may have utility in the evaluation of locomotor control and fall risk in older adults and patients with motor control deficits.
Collapse
Affiliation(s)
- Tim Killeen
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland.
| | - Christopher S Easthope
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland
| | - László Demkó
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Linard Filli
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Lilla Lőrincz
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, Helios-Klinik Hagen-Ambrock, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|