1
|
Karapli-Petritsopoulou A, Heckelmann JJ, Becker D, Anderson NJ, Frisch D. Altered Phenotypic Responses of Asexual Arctic Daphnia After 10 Years of Rapid Climate Change. GLOBAL CHANGE BIOLOGY 2025; 31:e70119. [PMID: 40099534 PMCID: PMC11915199 DOI: 10.1111/gcb.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Understanding the fates of organisms and ecosystems under global change requires consideration of the organisms' rapid adaptation potential. In the Arctic, the recent temperature increase strongly impacts freshwater ecosystems which are important sentinels for climate change. However, a mechanistic understanding of the adaptive capacity of their key zooplankton grazers, among them polyploid, obligate parthenogenetic Daphnia, is lacking. Theory suggests low adaptation potential of asexual animals, yet examples exist of asexuals persisting through marked environmental changes. Here, we studied asexual Daphnia pulicaria from a meromictic lake in South-West Greenland. Its oxycline hosts purple sulfur bacteria (PSB), a potential food source for Daphnia. We tested two key phenotypic traits: (1) thermal tolerance as a response to rapid regional warming and (2) hypoxia tolerance tied to grazing of PSB in the hypoxic/anoxic transition zone. To assess Daphnia's adaptive capacity, we resurrected Daphnia from dormant eggs representing a historical subpopulation from 2011, sampled modern subpopulation representatives in 2022, and measured phenotypic variation of thermal (time to immobilization-Timm) and hypoxia tolerance (respiration rate and critical oxygen limit-Pcrit) in clonal lineages of both subpopulations. Whole genome sequencing of the tested clonal lineages identified three closely related genetic clusters, one with clones from both subpopulations and two unique to each subpopulation. We observed significantly lower Timm and a trend for higher Pcrit and respiration rates in the modern subpopulation, indicating a lower tolerance to both high temperature and hypoxia in comparison with the historical subpopulation. As these two traits share common physiological mechanisms, the observed phenotypic divergence might be driven by a relaxed selection pressure on hypoxia tolerance linked to variation in PSB abundance. Our results, while contrary to our expectation of higher thermal tolerance in the modern subpopulation, provide evidence for phenotypic change within a decade in this asexual Daphnia population.
Collapse
Affiliation(s)
- Athina Karapli-Petritsopoulou
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jasmin Josephine Heckelmann
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | | | - N John Anderson
- Department of Geography and Environment, Loughborough University, Loughborough, UK
| | - Dagmar Frisch
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
2
|
Dong Y, Van de Maele M, De Meester L, Verheyen J, Stoks R. Pollution offsets the rapid evolution of increased heat tolerance in a natural population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173070. [PMID: 38734087 DOI: 10.1016/j.scitotenv.2024.173070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.
Collapse
Affiliation(s)
- Ying Dong
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Marlies Van de Maele
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Luc De Meester
- Freshwater Ecology, Evolution and Biodiversity Conservation, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universitat Berlin, Berlin, Germany
| | - Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Debériotstraat 32, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Lynch M, Wei W, Ye Z, Pfrender M. The genome-wide signature of short-term temporal selection. Proc Natl Acad Sci U S A 2024; 121:e2307107121. [PMID: 38959040 PMCID: PMC11252749 DOI: 10.1073/pnas.2307107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Despite evolutionary biology's obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean Daphnia pulex. The genome sequences of [Formula: see text]800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ85287
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ85287
| | - Zhiqiang Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Michael Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
4
|
Brans KI, Vad CF, Horváth Z, Santy L, Cuypers K, Ptacnik R, De Meester L. Regional and fine-scale local adaptation in salinity tolerance in Daphnia inhabiting contrasting clusters of inland saline waters. Proc Biol Sci 2024; 291:20231917. [PMID: 38320606 PMCID: PMC10846942 DOI: 10.1098/rspb.2023.1917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Understanding the spatial scales at which organisms can adapt to strong natural and human-induced environmental gradients is important. Salinization is a key threat to biodiversity, ecosystem functioning and the provision of ecosystem services of freshwater systems. Clusters of naturally saline habitats represent ideal test cases to study the extent and scale of local adaptation to salinization. We studied local adaptation of the water flea Daphnia magna, a key component of pond food webs, to salinity in two contrasting landscapes-a dense cluster of sodic bomb crater ponds and a larger-scale cluster of soda pans. We show regional differentiation in salinity tolerance reflecting the higher salinity levels of soda pans versus bomb crater ponds. We found local adaptation to differences in salinity levels at the scale of tens of metres among bomb crater pond populations but not among geographically more distant soda pan populations. More saline bomb crater ponds showed an upward shift of the minimum salt tolerance observed across clones and a consequent gradual loss of less tolerant clones in a nested pattern. Our results show evolutionary adaptation to salinity gradients at different spatial scales, including fine-tuned local adaptation in neighbouring habitat patches in a natural landscape.
Collapse
Affiliation(s)
- Kristien I. Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000 Leuven, Belgium
- Vrije Universiteit Brussel, Etterbeek Brussels, B-1050 Elsene, Belgium
| | - Csaba F. Vad
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000 Leuven, Belgium
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest H-1113, Hungary
| | - Zsófia Horváth
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000 Leuven, Belgium
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest H-1113, Hungary
| | - Luca Santy
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000 Leuven, Belgium
| | - Kiani Cuypers
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000 Leuven, Belgium
| | - Robert Ptacnik
- WasserCluster Lunz, Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, A-3293 Lunz am See, Austria
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, B-3000 Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), D-12587 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
5
|
Lynch M, Wei W, Ye Z, Pfrender M. The Genome-wide Signature of Short-term Temporal Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538790. [PMID: 37162919 PMCID: PMC10168312 DOI: 10.1101/2023.04.28.538790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite evolutionary biology's obsession with natural selection, few studies have evaluated multi-generational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a nine-year population-genomic survey of the microcrustacean Daphnia pulex. The genome-sequences of > 800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals), the preponderance of weak negative selection operating on minor alleles, and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the development of new theoretical expressions for the interpretation of population-genomic data.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Zhiqiang Ye
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Michael Pfrender
- Department of Biological Sciences, Notre Dame University, Notre Dame, IN 46556
| |
Collapse
|
6
|
de Oliveira Hoffmann¹ PH, Adolfo² A, Piu² AG, Vendramin² D, Martins² L, Weber¹ V, Maltchik¹ L, Stenert C. Invertebrate Richness and Hatching Decrease with Sediment Depth in Neotropical Intermittent Ponds. WETLANDS (WILMINGTON, N.C.) 2023; 43:24. [PMID: 36936606 PMCID: PMC10010224 DOI: 10.1007/s13157-023-01675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 06/14/2023]
Abstract
Some groups of invertebrates from intermittent wetlands produce dormant stages in response to environmental fluctuations. Dormancy is a strategy to survive such fluctuations and to persist in extreme aquatic habitats, such as temporary habitats. We investigated the hatching responses of invertebrate dormant stages across different depths of sediment in intermittent ponds. Our hypotheses were: (1) the richness and abundance of invertebrate hatchlings decrease as the depth of the sediment column increases, and (2) the composition of invertebrate hatchlings varies over the wetland sediment depth. Four intermittent ponds were sampled in southern Brazil. One sediment column of 30 cm depth was collected in each pond and stratified into 1 cm thick slices for analysis of the dormant stages. A total of 1,931 hatchlings distributed among 31 taxa were collected from the sediment columns over the experiment. The total richness and abundance of hatchlings (after bdelloid taxa exclusion) were negatively related with the sediment depth. The composition of aquatic invertebrates varied among the different strata over the sediment depth. As intermittent wetlands are ecosystems extremely susceptible to climate variations, the results help to understand the resilience of aquatic resistant communities from different sediment strata after drought events. Supplementary Information The online version contains supplementary material available at 10.1007/s13157-023-01675-6.
Collapse
Affiliation(s)
- Pedro Henrique de Oliveira Hoffmann¹
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| | - Andressa Adolfo²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Allana Gonçalves Piu²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Daiane Vendramin²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Lidiane Martins²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Vinicius Weber¹
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| | - Leonardo Maltchik¹
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| | - Cristina Stenert
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| |
Collapse
|
7
|
Pais‐Costa AJ, Lievens EJP, Redón S, Sánchez MI, Jabbour‐Zahab R, Joncour P, Van Hoa N, Van Stappen G, Lenormand T. Phenotypic but no genetic adaptation in zooplankton 24 years after an abrupt +10°C climate change. Evol Lett 2022; 6:284-294. [PMID: 35937473 PMCID: PMC9346084 DOI: 10.1002/evl3.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
The climate is currently warming fast, threatening biodiversity all over the globe. Populations often adapt rapidly to environmental change, but for climate warming very little evidence is available. Here, we investigate the pattern of adaptation to an extreme +10°C climate change in the wild, following the introduction of brine shrimp Artemia franciscana from San Francisco Bay, USA, to Vinh Chau saltern in Vietnam. We use a resurrection ecology approach, hatching diapause eggs from the ancestral population and the introduced population after 13 and 24 years (∼54 and ∼100 generations, respectively). In a series of coordinated experiments, we determined whether the introduced Artemia show increased tolerance to higher temperatures, and the extent to which genetic adaptation, developmental plasticity, transgenerational effects, and local microbiome differences contributed to this tolerance. We find that introduced brine shrimp do show increased phenotypic tolerance to warming. Yet strikingly, these changes do not have a detectable additive genetic component, are not caused by mitochondrial genetic variation, and do not seem to be caused by epigenetic marks set by adult parents exposed to warming. Further, we do not find any developmental plasticity that would help cope with warming, nor any protective effect of heat‐tolerant local microbiota. The evolved thermal tolerance might therefore be entirely due to transgenerational (great)grandparental effects, possibly epigenetic marks set by parents who were exposed to high temperatures as juveniles. This study is a striking example of “missing heritability,” where a large adaptive phenotypic change is not accompanied by additive genetic effects.
Collapse
Affiliation(s)
- Antónia Juliana Pais‐Costa
- CEFE, CNRS, Univ Montpellier Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier 34293 France
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology University of Coimbra Coimbra 3004‐517 Portugal
| | - Eva J. P. Lievens
- CEFE, CNRS, Univ Montpellier Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier 34293 France
- Aquatic Ecology and Evolution, Department of Biology University of Konstanz Konstanz 78464 Germany
| | - Stella Redón
- CEFE, CNRS, Univ Montpellier Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier 34293 France
- Department of Wetland Ecology Estación Biológica de Doñana‐CSIC Sevilla 41092 Spain
| | - Marta I. Sánchez
- Department of Wetland Ecology Estación Biológica de Doñana‐CSIC Sevilla 41092 Spain
- Departamento de Biología Vegetal y Ecología, Facultad de Biología Universidad de Sevilla Sevilla 41012 Spain
| | - Roula Jabbour‐Zahab
- CEFE, CNRS, Univ Montpellier Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier 34293 France
| | - Pauline Joncour
- CNRS, Université de Rennes 1, ECOBIO (écosystème, biodiversité, évolution) ‐ UMR 6553 Rennes 35042 France
| | - Nguyen Van Hoa
- Department of Coastal Aquaculture College of Aquaculture and Fisheries Can Tho University Can Tho Vietnam
| | - Gilbert Van Stappen
- Laboratory of Aquaculture and Artemia Reference Center Ghent University Gent B‐9000 Belgium
| | - Thomas Lenormand
- CEFE, CNRS, Univ Montpellier Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier 34293 France
| |
Collapse
|
8
|
Sanyal A, Larsson J, van Wirdum F, Andrén T, Moros M, Lönn M, Andrén E. Not dead yet: Diatom resting spores can survive in nature for several millennia. AMERICAN JOURNAL OF BOTANY 2022; 109:67-82. [PMID: 34648178 DOI: 10.1002/ajb2.1780] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Understanding the adaptive capacities of species over long timescales lies in examining the revived recent and millennia-old resting spores buried in sediments. We show for the first time the revival, viability, and germination rate of resting spores of the diatom Chaetoceros deposited in sub-seafloor sediments from three ages (recent: 0 to 80 years; ancient: ~1250 (Medieval Climate Anomaly) and ~6600 (Holocene Thermal Maximum) calendar year before present. METHODS Recent and ancient Chaetoceros spores were revived to examine their viability and germination rate. Light and scanning electron microscopy and Sanger sequencing was done to identify the species. RESULTS We show that ~6600 cal. year BP old Chaetoceros resting spores are still viable and that the vegetative reproduction in recent and ancient resting spores varies. The time taken to germinate is three hours to 2 to 3 days in both recent and ancient spores, but the germination rate of the spores decreased with increasing age. The germination rate of the recent spores was ~41% while that of the ancient spores were ~31% and ~12% for the ~1250 and ~6600 cal. year BP old resting spores, respectively. Based on the morphology of the germinated vegetative cells we identified the species as Chaetoceros muelleri var. subsalsum. Sanger sequences of nuclear and chloroplast markers identified the species as Chaetoceros muelleri. CONCLUSIONS We identify a unique model system, Chaetoceros muelleri var. subsalsum and show that recent and ancient resting spores of the species buried in sediments in the Baltic Sea can be revived and used for long-term evolutionary studies.
Collapse
Affiliation(s)
- Anushree Sanyal
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-14189 Huddinge, Stockholm, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75651 Uppsala, Sweden
| | - Josefine Larsson
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-14189 Huddinge, Stockholm, Sweden
| | - Falkje van Wirdum
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-14189 Huddinge, Stockholm, Sweden
| | - Thomas Andrén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-14189 Huddinge, Stockholm, Sweden
| | - Matthias Moros
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, DE-18119 Rostock, Germany
| | - Mikael Lönn
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-14189 Huddinge, Stockholm, Sweden
| | - Elinor Andrén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-14189 Huddinge, Stockholm, Sweden
| |
Collapse
|
9
|
Nowakowski K, Sługocki Ł. Short-term heat shock perturbation affects populations of Daphnia magna and Eurytemora carolleeae: a warning to the water thermal pollution. Sci Rep 2021; 11:16909. [PMID: 34413446 PMCID: PMC8377013 DOI: 10.1038/s41598-021-96464-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Thermal pollution leads to short-term heat shock in aquatic invertebrates; however, the modulation of tolerance and life history of these invertebrates by thermal stress varies among regions, phenology, species, and their acclimation. To assess the effect of thermal shock, we conducted experiments on Daphnia magna and Eurytemora carolleeae at 25 °C, 30 °C, 35 °C, and 40 °C (in relation to 20 °C) in a different exposure time of the stressor (10, 30, and 60 min). The results showed that short-term heat shock leads to increased mortality and reduced fertility of the studied planktonic crustaceans. D. magna was more resistant to thermal shock than E. carolleeae according to all variants of exposure based on the calculated LT50 values for 24, 48, and 72 h. Thermal shock decreased the potential of the Daphnia population in terms of the total number of births, however, with regard to individual reproductive abilities, the non-lethal heat shock did not reduce the birth rate. Although Eurytemora is more sensitive to thermal shock than Daphnia, the type of parental care in Eurytemora might be more favorable for offspring survival following thermal shock than in Daphnia. In Eurytemora, despite maternal deaths, a relatively high number of newborns who survived high temperatures were observed. The obtained results can help to understand the ecological processes occurring due to anthropogenic thermal pollution.
Collapse
Affiliation(s)
- Kacper Nowakowski
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712, Szczecin, Poland
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712, Szczecin, Poland. .,Center of Molecular Biology and Biotechnology, University of Szczecin, Wąska 13, 71-715, Szczecin, Poland.
| |
Collapse
|
10
|
Blum MJ, Saunders CJ, McLachlan JS, Summers J, Craft C, Herrick JD. A century-long record of plant evolution reconstructed from a coastal marsh seed bank. Evol Lett 2021; 5:422-431. [PMID: 34367666 PMCID: PMC8327947 DOI: 10.1002/evl3.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
Evidence is mounting that climate-driven shifts in environmental conditions can elicit organismal evolution, yet there are sparingly few long-term records that document the tempo and progression of responses, particularly for plants capable of transforming ecosystems. In this study, we "resurrected" cohorts of a foundational coastal marsh sedge (Schoenoplectus americanus) from a time-stratified seed bank to reconstruct a century-long record of heritable variation in response to salinity exposure. Common-garden experiments revealed that S. americanus exhibits heritable variation in phenotypic traits and biomass-based measures of salinity tolerance. We found that responses to salinity exposure differed among the revived cohorts, with plants from the early 20th century exhibiting greater salinity tolerance than those from the mid to late 20th century. Fluctuations in salinity tolerance could reflect stochastic variation but a congruent record of genotypic variation points to the alternative possibility that the loss and gain in functionality are driven by selection, with comparisons to historical rainfall and paleosalinity records suggesting that selective pressures vary according to shifting estuarine conditions. Because salinity tolerance in S. americanus is tightly coupled to primary productivity and other vital ecosystem attributes, these findings indicate that organismal evolution merits further consideration as a factor shaping coastal marsh responses to climate change.
Collapse
Affiliation(s)
- Michael J. Blum
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee37996
| | - Colin J. Saunders
- Southeast Environmental Research CenterFlorida International UniversityMiamiFlorida33199
| | - Jason S. McLachlan
- Department of Biological SciencesUniversity of Notre DameSouth BendIndiana46556
| | - Jennifer Summers
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee37996
| | - Christopher Craft
- School of Public and Environmental AffairsIndiana UniversityBloomingtonIndiana47405
| | - Jeffrey D. Herrick
- U.S Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNorth Carolina27711
| |
Collapse
|
11
|
Wolkovich EM, Donahue MJ. How phenological tracking shapes species and communities in non-stationary environments. Biol Rev Camb Philos Soc 2021; 96:2810-2827. [PMID: 34288337 DOI: 10.1111/brv.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically - how an organism shifts the timing of major biological events in response to the environment - is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.
Collapse
Affiliation(s)
- E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kān'eohe, HI, 96744, U.S.A
| |
Collapse
|
12
|
Coggins BL, Pearson AC, Yampolsky LY. Does geographic variation in thermal tolerance in Daphnia represent trade-offs or conditional neutrality? J Therm Biol 2021; 98:102934. [PMID: 34016356 DOI: 10.1016/j.jtherbio.2021.102934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/20/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Geographic variation in thermal tolerance in Daphnia seems to represent genetic load at the loci specifically responsible for heat tolerance resulting from conditional neutrality. We see no evidence of trade-offs between fitness-related traits at 25 °C vs. 10 °C or between two algal diets across Daphnia magna clones from a variety of locations representing the opposite ends of the distribution of long-term heat tolerance. Likewise, we found no evidence of within-environment trade-offs between heat tolerance and fitness-related traits in any of the environments. Neither short-term and long-term heat tolerance shows any consistent relationship with lipid fluorescence polarization and lipid peroxidation across clones or environments. Pervasive positive correlations between fitness-related traits indicate differences in genetic load rather than trade-off based local adaptation or thermal specialization. For heat tolerance such differences may be caused by either relaxation of stabilizing selection due to lower exposure to high temperature extremes, i.e., conditional neutrality, or by small effective population size followed by the recent range expansion.
Collapse
Affiliation(s)
- B L Coggins
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA; Department of Biological Sciences, University of Notre Dame, IN, 46556, USA
| | - A C Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA
| | - L Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City TN, 37601, USA; University of Basel, Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
13
|
Coggins BL, Anderson CE, Hasan R, Pearson AC, Ekwudo MN, Bidwell JR, Yampolsky LY. Breaking free from thermodynamic constraints: thermal acclimation and metabolic compensation in a freshwater zooplankton species. J Exp Biol 2021; 224:jeb237727. [PMID: 33328286 DOI: 10.1242/jeb.237727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023]
Abstract
Respiration rates of ectothermic organisms are affected by environmental temperatures, and sustainable metabolism at high temperatures sometimes limits heat tolerance. Organisms are hypothesized to exhibit acclimatory metabolic compensation effects, decelerating their metabolic processes below Arrhenius expectations based on temperature alone. We tested the hypothesis that either heritable or plastic heat tolerance differences can be explained by metabolic compensation in the eurythermal freshwater zooplankton crustacean Daphnia magna We measured respiration rates in a ramp-up experiment over a range of assay temperatures (5-37°C) in eight genotypes of D. magna representing a range of previously reported acute heat tolerances and, at a narrower range of temperatures (10-35°C), in D. magna with different acclimation history (either 10 or 25°C). We discovered no difference in temperature-specific respiration rates between heat-tolerant and heat-sensitive genotypes. In contrast, we observed acclimation-specific compensatory differences in respiration rates at both extremes of the temperature range studied. Notably, there was a deceleration of oxygen consumption at higher temperature in 25°C-acclimated D. magna relative to their 10°C-acclimated counterparts, observed in active animals, a pattern corroborated by similar changes in filtering rate and, partly, by changes in mitochondrial membrane potential. A recovery experiment indicated that the reduction of respiration was not caused by irreversible damage during exposure to a sublethal temperature. Response time necessary to acquire the respiratory adjustment to high temperature was lower than for low temperature, indicating that metabolic compensation at lower temperatures requires slower, possibly structural changes.
Collapse
Affiliation(s)
- B L Coggins
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN 46556, USA
| | - C E Anderson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - R Hasan
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - A C Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - M N Ekwudo
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - J R Bidwell
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - L Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| |
Collapse
|
14
|
Chislock MF, Sarnelle O, Jernigan LM, Anderson VR, Abebe A, Wilson AE. Consumer adaptation mediates top-down regulation across a productivity gradient. Oecologia 2019; 190:195-205. [PMID: 30989361 DOI: 10.1007/s00442-019-04401-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Humans have artificially enhanced the productivity of terrestrial and aquatic ecosystems on a global scale by increasing nutrient loading. While the consequences of eutrophication are well known (e.g., harmful algal blooms and toxic cyanobacteria), most studies tend to examine short-term responses relative to the time scales of heritable adaptive change. Thus, the potential role of adaptation by organisms in stabilizing the response of ecological systems to such perturbations is largely unknown. We tested the hypothesis that adaptation by a generalist consumer (Daphnia pulicaria) to toxic prey (cyanobacteria) mediates the response of plankton communities to nutrient enrichment. Overall, the strength of Daphnia's top-down effect on primary producer biomass increased with productivity. However, these effects were contingent on prey traits (e.g., rare vs. common toxic cyanobacteria) and consumer genotype (i.e., tolerant vs sensitive to toxic cyanobacteria). Tolerant Daphnia strongly suppressed toxic cyanobacteria in nutrient-rich ponds, but sensitive Daphnia did not. In contrast, both tolerant and sensitive Daphnia genotypes had comparable effects on producer biomass when toxic cyanobacteria were absent. Our results demonstrate that organismal adaptation is critical for understanding and predicting ecosystem-level consequences of anthropogenic environmental perturbations.
Collapse
Affiliation(s)
- Michael F Chislock
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA.,Department of Environmental Science and Ecology, The College at Brockport, State University of New York, Brockport, NY, 14420, USA
| | - Orlando Sarnelle
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| | - Lauren M Jernigan
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA
| | - Vernon R Anderson
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA
| | - Ash Abebe
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, 203 Swingle Hall, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
15
|
Stillman JH. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology (Bethesda) 2019; 34:86-100. [DOI: 10.1152/physiol.00040.2018] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A consequence of climate change is the increased frequency and severity of extreme heat waves. This is occurring now as most of the warmest summers and most intense heat waves ever recorded have been during the past decade. In this review, I describe the ways in which animals and human populations are likely to respond to increased extreme heat, suggest how to study those responses, and reflect on the importance of those studies for countering the devastating impacts of climate change.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Estuary and Ocean Science Center and Department of Biology, San Francisco State University, San Francisco, California
| |
Collapse
|