1
|
Okeke KI, Ahamefule CS, Nnabuife OO, Orabueze IN, Iroegbu CU, Egbe KA, Ike AC. Antiseptics: An expeditious third force in the prevention and management of coronavirus diseases. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100293. [PMID: 39497935 PMCID: PMC11532748 DOI: 10.1016/j.crmicr.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Notably, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19) have all had significant negative impact on global health and economy. COVID-19 alone, has resulted to millions of deaths with new cases and mortality still being reported in its various waves. The development and use of vaccines have not stopped the transmission of SARS coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, even among vaccinated individuals. The use of vaccines and curative drugs should be supplemented with adoption of simple hygiene preventive measures in the fight against the spread of the virus, especially for healthcare workers. Several virucidal topical antiseptics, such as povidone-iodine (PVP-I), citrox, cyclodextrins among others, have been demonstrated to be efficacious in the inactivation of SARS-CoV-2 and other coronaviruses in both in vitro and in vivo studies. The strategic application of these virucidal formulations could provide the additional impetus needed to effectively control the spread of the virus. We have here presented a simple dimension towards curtailing the dissemination of COVID-19, and other coronaviruses, through the application of effective oral, nasal and eye antiseptics among patients and medical personnel. We have further discussed the mechanism of action of some of these commonly available virucidal solutions while also highlighting some essential controversies in their use.
Collapse
Affiliation(s)
- Kizito I. Okeke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Chukwuemeka Samson Ahamefule
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Obianuju O. Nnabuife
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Ibuchukwu N. Orabueze
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Christian U. Iroegbu
- Department of Microbiology, Cross River University of Technology, Calabar, Cross River State, Nigeria
| | - Kingsley A. Egbe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Anthony C. Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| |
Collapse
|
2
|
Kwon EJ, Mashelkar KK, Seo J, Shin YZ, Sung K, Jang SC, Cheon SW, Lee H, Lee HW, Kim G, Han BW, Lee SK, Jeong LS, Cha HJ. In Silico Discovery of 5'-Modified 7-Deoxy-7-ethynyl-4'-thioadenosine as a HASPIN Inhibitor and Its Synergistic Anticancer Effect with the PLK1 Inhibitor. ACS CENTRAL SCIENCE 2023; 9:1140-1149. [PMID: 37396870 PMCID: PMC10311661 DOI: 10.1021/acscentsci.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Indexed: 07/04/2023]
Abstract
Despite genetic perturbations resulting in embryo lethality for most mitotic kinases, loss of the histone H3 mitotic kinase HASPIN reveals no adverse effect in mice models, establishing HASPIN as a promising target for anticancer therapy. However, developing a HASPIN inhibitor from conventional pharmacophores poses a technical challenge as this atypical kinase shares slight similarities with eukaryotic protein kinases. Chemically modifying a cytotoxic 4'-thioadenosine analogue through high genotoxicity yielded several novel nongenotoxic kinase inhibitors. In silico apporoaches utilizing transcriptomic and chemical similarities with known compounds and KINOMEscan profiles unveiled the HASPIN inhibitor LJ4827. LJ4827's specificity and potency as a HASPIN inhibitor were verified through in vitro kinase assay and X-ray crystallography. HASPIN inhibition by LJ4827 reduced histone H3 phosphorylation and impeded Aurora B recruitment in cancer cell centromeres but not in noncancer cells. Through transcriptome analysis of lung cancer patients, PLK1 was determined as a druggable synergistic partner to complement HASPIN inhibition. Chemical or genetic PLK1 perturbation with LJ4827 effectuated pronounced lung cancer cytotoxicity in vitro and in vivo. Therefore, LJ4827 is a novel anticancer therapeutic for selectively impeding cancer mitosis through potent HASPIN inhibition, and simultaneous HASPIN and PLK1 interference is a promising therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Eun-Ji Kwon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Juhee Seo
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-Ze Shin
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kisu Sung
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products
Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Won Cheon
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haeseung Lee
- College
of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
- Research
Institute for Drug Development, Pusan National
University, Busan 46241, Republic
of Korea
| | - Hyuk Woo Lee
- Future
Medicine Company, Limited, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Gyudong Kim
- College
of Pharmacy, and Research Institute of Drug Development, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Byung Woo Han
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Pharmaceutical Sciences, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Sang Kook Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products
Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Pharmaceutical Sciences, Seoul
National University, Seoul 08826, Republic
of Korea
- Future
Medicine Company, Limited, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Hyuk-Jin Cha
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Pharmaceutical Sciences, Seoul
National University, Seoul 08826, Republic
of Korea
| |
Collapse
|
3
|
Fierascu I, Ditu LM, Sutan AN, Drăghiceanu OA, Fierascu RC, Avramescu SM, Lungulescu EM, Nicula N, Soare LC. Influence of gamma irradiation on the biological properties of Asplenium scolopendrium L. hydroalcoholic extracts. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Ghannoum S, Antos K, Leoncio Netto W, Gomes C, Köhn-Luque A, Farhan H. CellMAPtracer: A User-Friendly Tracking Tool for Long-Term Migratory and Proliferating Cells Associated with FUCCI Systems. Cells 2021; 10:cells10020469. [PMID: 33671785 PMCID: PMC7927118 DOI: 10.3390/cells10020469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 01/23/2023] Open
Abstract
Cell migration is a fundamental biological process of key importance in health and disease. Advances in imaging techniques have paved the way to monitor cell motility. An ever-growing collection of computational tools to track cells has improved our ability to analyze moving cells. One renowned goal in the field is to provide tools that track cell movement as comprehensively and automatically as possible. However, fully automated tracking over long intervals of time is challenged by dividing cells, thus calling for a combination of automated and supervised tracking. Furthermore, after the emergence of various experimental tools to monitor cell-cycle phases, it is of relevance to integrate the monitoring of cell-cycle phases and motility. We developed CellMAPtracer, a multiplatform tracking system that achieves that goal. It can be operated as a conventional, automated tracking tool of single cells in numerous imaging applications. However, CellMAPtracer also allows adjusting tracked cells in a semiautomated supervised fashion, thereby improving the accuracy and facilitating the long-term tracking of migratory and dividing cells. CellMAPtracer is available with a user-friendly graphical interface and does not require any coding or programming skills. CellMAPtracer is compatible with two- and three-color fluorescent ubiquitination-based cell-cycle indicator (FUCCI) systems and allows the user to accurately monitor various migration parameters throughout the cell cycle, thus having great potential to facilitate new discoveries in cell biology.
Collapse
Affiliation(s)
- Salim Ghannoum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
- Correspondence: (S.G.); (K.A.); Tel.: +46-76-577-0129 (S.G.)
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, 90736 Umeå, Sweden
- Correspondence: (S.G.); (K.A.); Tel.: +46-76-577-0129 (S.G.)
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (W.L.N.); (A.K.-L.)
| | - Cecil Gomes
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (W.L.N.); (A.K.-L.)
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway;
- Institute of Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Go YH, Kim J, Jeong HC, Kim SM, Kim YJ, Park SJ, Moon SH, Cha HJ. Luteolin Induces Selective Cell Death of Human Pluripotent Stem Cells. Biomedicines 2020; 8:biomedicines8110453. [PMID: 33121085 PMCID: PMC7692041 DOI: 10.3390/biomedicines8110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 11/16/2022] Open
Abstract
Despite recent advances in clinical stem cell therapy applications based on human pluripotent stem cells (hPSCs), potential teratoma formation due to the presence of residual undifferentiated hPSCs remains a serious risk factor that challenges widespread clinical application. To overcome this risk, a variety of approaches have been developed to eliminate the remaining undifferentiated hPSCs via selective cell death induction. Our study seeks to identify natural flavonoids that are more potent than quercetin (QC), to selectively induce hPSC death. Upon screening in-house flavonoids, luteolin (LUT) is found to be more potent than QC to eliminate hPSCs in a p53-dependent manner, but not hPSC-derived smooth muscle cells or perivascular progenitor cells. Particularly, treating human embryonic stem cell (hESC)-derived cardiomyocytes with LUT efficiently eliminates the residual hESCs and only results in marginal effects on cardiomyocyte (CM) functions, as determined by calcium influx. Considering the technical limitations of isolating CMs due to a lack of exclusive surface markers at the end of differentiation, LUT treatment is a promising approach to minimize teratoma formation risk.
Collapse
Affiliation(s)
- Young-Hyun Go
- Department of Life Science, Sogang University, Seoul 04107, Korea; (Y.-H.G.); (H.-C.J.)
| | - Jumee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.K.); (S.-M.K.); (Y.-J.K.)
| | - Ho-Chang Jeong
- Department of Life Science, Sogang University, Seoul 04107, Korea; (Y.-H.G.); (H.-C.J.)
| | - Seong-Min Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.K.); (S.-M.K.); (Y.-J.K.)
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.K.); (S.-M.K.); (Y.-J.K.)
| | - Soon-Jung Park
- Stem Cell Research Institute, T&R Biofab Co., Ltd., Siheung 15073, Korea; (S.-J.P.); (S.-H.M.)
| | - Sung-Hwan Moon
- Stem Cell Research Institute, T&R Biofab Co., Ltd., Siheung 15073, Korea; (S.-J.P.); (S.-H.M.)
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.K.); (S.-M.K.); (Y.-J.K.)
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-7825; Fax: +82-2-880-9122
| |
Collapse
|
6
|
Bae H, Go YH, Kwon T, Sung BJ, Cha HJ. A Theoretical Model for the Cell Cycle and Drug Induced Cell Cycle Arrest of FUCCI Systems with Cell-to-Cell Variation during Mitosis. Pharm Res 2019; 36:57. [DOI: 10.1007/s11095-019-2570-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
|