1
|
Japri NF, Majid ZA, Ghoshal SK, Danial WH, See HH, Othman MZ. On the versatility of graphene-cellulose composites: An overview and bibliometric assessment. Carbohydr Polym 2024; 337:121969. [PMID: 38710542 DOI: 10.1016/j.carbpol.2024.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 05/08/2024]
Abstract
Practical benefits of graphene-cellulose composites (GCC) are categorical. Diverse salient features like thermal and electrical conductivity, mechanical strength, and durability make GCC advantageous for widespread applications. Despite extensive studies the basic understanding of various fundamental aspects of this novel complex remains deficient. Based on this fact, a critical overview and bibliometric analysis involving the overall prospects of GCC was made wherein a total of 1245 research articles from the Scopus database published during the year 2002 to 2020 were used. For the bibliometric assessment, various criteria including the publication outputs, co-authorships, affiliated countries, and co-occurrences of the authors' keywords were explored. Environmental amiability, sustainability, economy, and energy efficiency of GCC were emphasized. In addition, the recent trends, upcoming challenges, and applied interests of GCC were highlighted. The findings revealed that the studies on GCC related to the energy storage, adsorption, sensing, and printing are ever-increasing, indicating the global research drifts on GCC. The bibliometric map analysis displayed that among the researchers from 61 countries/territories, China alone contributed about 50 % of the international publications. It is asserted that the current article may offer taxonomy to navigate into the field of GCC wherein stronger collaboration networks can be established worldwide through integrated research activities desirable for sustainable development.
Collapse
Affiliation(s)
- Nur Faraliana Japri
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - S K Ghoshal
- Physics Department & Laser Center, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | |
Collapse
|
2
|
Thongrueng M, Sudsakorn K, Charoenchaitrakool M, Seubsai A, Panchan N, Devahastin S, Niamnuy C. Synthesis and Characterization of Environmentally Friendly β-Cyclodextrin Cross-Linked Cellulose/Poly(vinyl alcohol) Hydrogels for Adsorption of Malathion. ACS OMEGA 2024; 9:22635-22649. [PMID: 38826516 PMCID: PMC11137713 DOI: 10.1021/acsomega.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The widespread use of malathion enhances agricultural plant productivity by eliminating pests, weeds, and diseases, but it may lead to serious environmental pollution and potential health risks for humans and animals. To mitigate these issues, environmentally friendly hydrogel adsorbents for malathion were synthesized using biodegradable polymers, specifically cellulose, β-cyclodextrin (β-CD), poly(vinyl alcohol) (PVA), and biobased epichlorohydrin as a cross-linker. This study investigated the effects of the cellulose-to-PVA ratio and epichlorohydrin (ECH) content on the properties and malathion adsorption capabilities of β-CD/cellulose/PVA hydrogels. It was found that the gel content of the hydrogels increased with a higher cellulose-to PVA and ECH ratio, whereas the swelling ratio decreased, indicating a denser structure that impedes water permeation. In addition, various parameters affecting the malathion adsorption capacity of the hydrogel, namely, contact time, pH, hydrogel dosage, initial concentration of malathion, and temperature, were studied. The hydrogel prepared with a β-CD/cellulose/PVA ratio of 20:40:40 and 9 mL of ECH exhibited the highest malathion adsorption rate and capacity, which indicated an equilibrium adsorption capacity of 656.41 mg g-1 at an initial malathion concentration of 1000 mg L-1. Fourier transform infrared spectroscopy (FTIR), ζ-potential, and X-ray photoelectron spectroscopy (XPS) and NMR spectroscopy confirmed malathion adsorption within the hydrogel. The adsorption process followed intraparticle diffusion kinetics and corresponded to Freundlich isotherms, indicating multilayer adsorption on heterogeneous substrates within the adsorbent, facilitated by diffusion.
Collapse
Affiliation(s)
- Maneerat Thongrueng
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Kandis Sudsakorn
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Manop Charoenchaitrakool
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
- Research
Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable
Energy and Environment: RNN-CMSEE and Center for Advanced Studies
in Nanotechnology for Chemical, Food and Agricultural Industrials, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Anusorn Seubsai
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
- Research
Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable
Energy and Environment: RNN-CMSEE and Center for Advanced Studies
in Nanotechnology for Chemical, Food and Agricultural Industrials, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Noppadol Panchan
- Faculty
of Engineering and Technology, Mahanakorn
University of Technology, 140 Cheumsamphan Road, Nongchok, Bangkok 10530, Thailand
| | - Sakamon Devahastin
- Advanced
Food Processing Research Laboratory, Department of Food Engineering,
Faculty of Engineering, King Mongkut’s
University of Technology Thonburi, 126 Pracha u-tid Road, Tungkru, Bangkok 10140, Thailand
- The
Academy of Science, The Royal Society of
Thailand, Dusit, Bangkok 10300, Thailand
| | - Chalida Niamnuy
- Department
of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
- Research
Network NANOTEC-Kasetsart on NanoCatalysts and NanoMaterials for Sustainable
Energy and Environment: RNN-CMSEE and Center for Advanced Studies
in Nanotechnology for Chemical, Food and Agricultural Industrials, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Zubair M, Yasir M, Ponnamma D, Mazhar H, Sedlarik V, Hawari AH, Al-Harthi MA, Al-Ejji M. Recent advances in nanocellulose-based two-dimensional nanostructured membranes for sustainable water purification: A review. Carbohydr Polym 2024; 329:121775. [PMID: 38286528 DOI: 10.1016/j.carbpol.2024.121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024]
Abstract
Nanocellulose (NC), a one-dimensional nanomaterial, is considered a sustainable material for water and wastewater purification because of its promising hydrophilic surface and mechanical characteristics. In this regard, nanostructured membranes comprising NC and two-dimensional (2D) nanomaterials emerged as advanced membranes for efficient and sustainable water purification. This article critically reviews the recent progress on NC-2D nanostructured membranes for water and wastewater treatment. The review highlights the main techniques employed to fabricate NC-2D nanostructured membranes. The physicochemical properties, including hydrophilicity, percent porosity, surface roughness, structure, and mechanical and thermal stability, are summarized. The key performance indicators such as permeability, rejection, long operation stability, antifouling, and interaction mechanisms are thoroughly discussed to evaluate the role of NC and 2D nanomaterials. Finally, summary points and future development work are highlighted to overcome the challenges for potential practical applications. This review contributes to the design and development of advanced membranes to solve growing water pollution concerns in a sustainable manner.
Collapse
Affiliation(s)
- Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia.
| | - Muhammad Yasir
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Deepalekshmi Ponnamma
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hassam Mazhar
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída Tomáše Bati 5678, 76001 Zlín, Czech Republic
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mamdouh Ahmed Al-Harthi
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Lal S, Singh P, Singhal A, Kumar S, Singh Gahlot AP, Gandhi N, Kumari P. Advances in metal-organic frameworks for water remediation applications. RSC Adv 2024; 14:3413-3446. [PMID: 38259988 PMCID: PMC10801355 DOI: 10.1039/d3ra07982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Rapid industrialization and agricultural development have resulted in the accumulation of a variety of harmful contaminants in water resources. Thus, various approaches such as adsorption, photocatalytic degradation and methods for sensing water contaminants have been developed to solve the problem of water pollution. Metal-organic frameworks (MOFs) are a class of coordination networks comprising organic-inorganic hybrid porous materials having organic ligands attached to inorganic metal ions/clusters via coordination bonds. MOFs represent an emerging class of materials for application in water remediation owing to their versatile structural and chemical characteristics, such as well-ordered porous structures, large specific surface area, structural diversity, and tunable sites. The present review is focused on recent advances in various MOFs for application in water remediation via the adsorption and photocatalytic degradation of water contaminants. The sensing of water pollutants using MOFs via different approaches, such as luminescence, electrochemical, colorimetric, and surface-enhanced Raman spectroscopic techniques, is also discussed. The high porosity and chemical tunability of MOFs are the main driving forces for their widespread applications, which have huge potential for their commercial use.
Collapse
Affiliation(s)
- Seema Lal
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College Bengaluru Karnataka India
| | - Sanjay Kumar
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | | | - Namita Gandhi
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| |
Collapse
|
5
|
Zdarta A, Kaczorek E. Advances in electrospun materials for the adsorption and separation of environmental pollutants: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 236:116783. [PMID: 37517499 DOI: 10.1016/j.envres.2023.116783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Despite a broad range of new techniques developed, adsorption methods remain one of the technologies of choice for the removal of contaminants. However, significant progress has also been made in these, which finds reflection in a new spectrum of adsorbents that can be used. This comprehensive review discusses properties, advantages, and perspectives on the use of custom-made electrospun adsorbents in the processes of heavy metals, agrochemicals, and microplastic contaminants removal from the environment. It presents the versatility and adaptability of materials that can be used as electrospun fibers matrix, also considering the mechanism and parameters of the sorption process carried out with them. The presented review proves, that due to the use of new, custom-made sorbents, such as electrospun materials, the adsorption processes still possess great application potential and development opportunities to provide an attractive and effective alternative to other remediation techniques.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Greater Poland, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Greater Poland, Poland.
| |
Collapse
|
6
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
7
|
Quilez-Molina AI, Barroso-Solares S, Hurtado-García V, Heredia-Guerrero JA, Rodriguez-Mendez ML, Rodríguez-Pérez MÁ, Pinto J. Encapsulation of Copper Nanoparticles in Electrospun Nanofibers for Sustainable Removal of Pesticides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20385-20397. [PMID: 37061951 PMCID: PMC10141258 DOI: 10.1021/acsami.3c00849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The excellent catalytic properties of copper nanoparticles (CuNPs) for the degradation of the highly toxic and recalcitrant chlorpyrifos pesticide are widely known. However, CuNPs generally present low stability caused by their high sensitivity to oxidation, which leads to a change of the catalytic response over time. In the current work, the immobilization of CuNPs into a polycaprolactone (PCL) matrix via electrospinning was demonstrated to be a very effective method to retard air and solvent oxidation and to ensure constant catalytic activity in the long term. CuNPs were successfully anchored into PCL electrospun fibers in the form of Cu2O at different concentrations (from 1.25 wt % to 5 wt % with respect to the PCL), with no signs of loss by leaching out. The PCL mats loaded with 2.5 wt % Cu (PCL-2.5Cu) almost halved the initial concentration of pesticide (40 mg/L) after 96 h. This process was performed in two unprompted and continuous steps that consisted of adsorption, followed by degradation. Interestingly, the degradation process was independent of the light conditions (i.e., not photocatalytic), expanding the application environments (e.g., groundwaters). Moreover, the PCL-2.5Cu composite presents high reusability, retaining the high elimination capability for at least five cycles and eliminating a total of 100 mg/L of chlorpyrifos, without exhibiting any sign of morphological damages.
Collapse
Affiliation(s)
- Ana Isabel Quilez-Molina
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Suset Barroso-Solares
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - Violeta Hurtado-García
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - José Alejandro Heredia-Guerrero
- Instituto
de Hortofruticultura Subtropical y Mediterránea “La
Mayora”, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, Málaga 29010, Spain
| | - María Luz Rodriguez-Mendez
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Group
UVaSens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, Valladolid 47011, Spain
| | - Miguel Ángel Rodríguez-Pérez
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Javier Pinto
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| |
Collapse
|
8
|
Sanoja-López KA, Quiroz-Suárez KA, Dueñas-Rivadeneira AA, Maddela NR, Montenegro MCBSM, Luque R, Rodríguez-Díaz JM. Polymeric membranes functionalized with nanomaterials (MP@NMs): A review of advances in pesticide removal. ENVIRONMENTAL RESEARCH 2023; 217:114776. [PMID: 36403656 DOI: 10.1016/j.envres.2022.114776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The excessive contamination of drinking water sources by pesticides has a pernicious impact on human health and the environment since only 0.1% of pesticides is utilized effectively to control the and the rest is deposited in the environment. Filtration by polymeric membranes has become a promising technique to deal with this problem; however, the scientific community, in the need to find better pesticide retention results, has begun to meddle in the functionalization of polymeric membranes. Given the great variety of membrane, polymer, and nanomaterial synthesis methods present in the market, the possibilities of obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that this technology will represent one of the main pesticide removal strategies in the future. In this direction, this review focused on, - the main characteristics of the nanomaterials and their impact on pristine polymeric membranes; - the removal performance of functionalized membranes; and - the main mechanisms by which membranes can retain pesticides. Based on these insights, the functionalized polymeric membranes can be considered as a promising technology in the removal of pesticides since the removal performance of this technology against pesticide showed a significant increase. Obtaining membranes that adjust to different variables and characteristics related to a certain pesticide are relatively extensive, so it is expected that functionalized membrane technology will represent one of the main pesticide removal strategies in the future.
Collapse
Affiliation(s)
- Kelvin Adrian Sanoja-López
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Kevin Alberto Quiroz-Suárez
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de La Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador.
| |
Collapse
|
9
|
Sharma A, Kumar N, Sillanpää M, Makgwane PR, Kumar S, Kumari K. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Othman SI, Alqhtani HA, Allam AA, Rabie AM, Abdelrahman AA, Salem HM, Abukhadra MR. Insight into the adsorption properties of a β-cyclodextrin/phillipsite organophilic composite for effective removal of toxic organophosphorus pesticides: kinetic and advanced equilibrium studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj03555c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Cyclodextrin/phillipsite was used in the uptake of three pesticides from water achieving Qsat values of 360 mg g−1 (MPn), 321.6 mg g−1 (OM), and 434.5 mg g−1 (AC). The uptake energies suggested endothermic physisorption reactions.
Collapse
Affiliation(s)
- Sarah I. Othman
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Haifa A. Alqhtani
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed A. Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Abdelrahman M. Rabie
- Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, 112672, Egypt
| | - Asmaa A. Abdelrahman
- Refining Department, Egyptian Petroleum Research Institute, Nasr city, 112672, Egypt
| | - Heba M. Salem
- Refining Department, Egyptian Petroleum Research Institute, Nasr city, 112672, Egypt
| | - Mostafa R. Abukhadra
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 65211, Egypt
- Materials Technologies and their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
11
|
Sheikhi ZN, Khajeh M, Oveisi AR, Bohlooli M. Functionalization of an iron-porphyrinic metal–organic framework with Bovine serum albumin for effective removal of organophosphate insecticides. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Rana AK, Mishra YK, Gupta VK, Thakur VK. Sustainable materials in the removal of pesticides from contaminated water: Perspective on macro to nanoscale cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149129. [PMID: 34303252 DOI: 10.1016/j.scitotenv.2021.149129] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recently, over utilization of pesticides in agrarian and non- agrarian sectors has resulted in a significant increment in the deposition of their remnants in different segments of the environmental media. The presence of pesticides and transportation of their different metabolites in rivers, ponds, lakes, soils, air, groundwater sources and drinkable water sources has demonstrated a high threat to human wellbeing and the climate. Thus, the removal of pesticides and their metabolites from contaminated water is imperative to lessen the ill effects of pesticides on human beings. In the present article, we have appraised recent advances in pesticides removal utilizing low cost pristine and functionalized cellulose biomass-based derivatives. One of the key focus has been on better understand the destiny of pesticides in the environment as well as their behaviour in the water. In addition, the impact of magnetite cellulose nanocomposites, cellulose derived photo nano-catalyst, cellulose/clay nano composites, CdS/cellulose nanocomposites and activated carbons/biochar on percent removal of pesticides have also been a part of the current review. The impact of different parameters such as adsorbent dosage, pH, time of contact and initials pesticide concentration on adsorption capacity and adsorption kinetics followed during absorption by different cellulosic bio-adsorbents has also been given. The cellulosic biomass is highly efficient in the removal of pesticides and their efficiency further increases upon functionalization or their conversion into activated carbons forms. Nano particles loaded cellulosic materials have in general found to be less efficient than raw, functionalized cellulosic materials and activated carbons. Further, among different nano particles loaded with cellulose-based materials, cellulose/MnO2 photonanocatalyst were noticed to be more effective. So considerable efforts should be given to determine the finest practices that relate to the dissipation of different pesticides from the water.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Agriculture and Business Management Department, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India.
| |
Collapse
|
13
|
Sarwar Z, Tichonovas M, Krugly E, Masione G, Abromaitis V, Martuzevicius D. Graphene oxide loaded fibrous matrixes of polyether block amide (PEBA) elastomer as an adsorbent for removal of cationic dye from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113466. [PMID: 34371223 DOI: 10.1016/j.jenvman.2021.113466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/22/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Novel highly porous nanoparticle materials are increasingly being applied in adsorption processes, but they need to be supported by robust matrixes to maintain their functionality. We present a study of hosting graphene oxide (GO) particles on polyether block amide (PEBA) melt electrospun fibers and applying such composite matrix to the adsorption of the cationic dye (crystal violet) from water. Various amounts of GO (from 0.5 to 2.0%) were mixed into pure PEBA and electrospun by melt electrospinning obtaining micro fibrous matrixes. These were characterized for morphology (SEM), chemical composition (FTIR), crystallinity (XRD), and wetting behavior (WCA). The increasing amount of GO adversely affected fiber diameter (reduced from 13.18 to 4.38 μm), while the hydrophilic properties (Water contact angle decrease from 109 to 76°) and overall dye adsorption was increased. Efficient adsorption has been demonstrated, reaching approximately 100 % removal efficiency using a 2% GO composite matrix at a dose of 40 mg/l and pH of 10. Further increase of GO concentration in polymer is not feasible due to instability in the electrospinning process.
Collapse
Affiliation(s)
- Zahid Sarwar
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania.
| | - Martynas Tichonovas
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Edvinas Krugly
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Goda Masione
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Vytautas Abromaitis
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| | - Dainius Martuzevicius
- Faculty of Chemical Technology, Kaunas University of Technology, Radvilenu pl. 19, Kaunas, Lithuania
| |
Collapse
|