1
|
Volkov VV, Aizenberg J, Perry CC. Red blood cell Raman microscopy: modelling sub-cellular biochemistry. Phys Chem Chem Phys 2025. [PMID: 40421825 DOI: 10.1039/d5cp00172b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
We develop a quantitative Raman microscopy approach to study erythrocyte biochemistry at the sub-cellular level. To model Raman microscopy images, we review theory of Raman tensors and derive expressions for Raman responses suitable to compute Raman micro-images accounting effects of radial and vertical deformations of cellular envelopes. In application to membrane components, we extend the approach to a "counted per rotation" fast imaging protocol: once having Raman tensors for a molecule, precomputed expressions of molecular distributions can be used to construct Raman images of the modelled membrane envelope and its Raman spectra under any polarisation setting instantly. Using the theory, we review sub-cellular distributions of oxy-, deoxy- and methaemoglobins, as measured in experiment, considering their role in oxygen transport and oxidative stress mechanisms in the cytosol and when next to a membrane. We discuss possible applications of the approach in membrane specific studies, and its potential for combination with phase-sensitive and confocal fluorescence microscopy for advancing health care diagnostics.
Collapse
Affiliation(s)
- Victor V Volkov
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
2
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
3
|
Bardhan A, Abraham TJ, Das R, Patil PK. Biological Responses of Nile tilapia Oreochromis niloticus as Influenced by Dietary Florfenicol. TOXICS 2022; 10:571. [PMID: 36287851 PMCID: PMC9610182 DOI: 10.3390/toxics10100571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are used in the treatment of bacterial diseases in commercial aquaculture. In this study, we the biological responses of Oreochromis niloticus juveniles upon dietary florfenicol (FFC) administration at 15 mg (1×) and 45 mg kg biomass-1 day-1 (3×) for 10 days in terms of feed intake, survival, biomass, hematological, erythro-morphological, serum biochemical, and histopathological aberrations as compared with controls. FFC caused a dose-dependent reduction in feed intake, survival, and biomass, with marked variations in hematology, hematological indices, and erythrocytic cellular and nuclear abnormalities, suggesting its apparent cytotoxic and nucleotoxic effects. The serum biomarkers increased significantly in a dose-dependent manner, except for calcium and chloride, which decreased significantly. The therapeutic dose (1×) group exhibited marked histopathological aberrations, such as renal tubular epithelial degeneration and a widened lumen in the kidney, as well as glycogen-type vacuolation and cytoplasmic degeneration in the liver during the dosing period. The extent of kidney and liver tissue damage was more prominent in the 3× group. The 1× serum biomarker levels became normal, with the exception of alkaline phosphatase, within 3 weeks of suspension of dosing. The recovery of the measured parameters and histopathological and erythro-morphological changes suggested that the therapeutic dietary biological responses induced by FFC are reversible and safe for O. niloticus.
Collapse
Affiliation(s)
- Avishek Bardhan
- Department of Aquatic Animal Health, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700094, India
| | - Thangapalam J. Abraham
- Department of Aquatic Animal Health, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700094, India
| | - Ratnapriya Das
- Department of Aquatic Animal Health, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700094, India
| | - Prasanna K. Patil
- Aquatic Animal Health and Environment Division, ICAR—Central Institute of Brackishwater Aquaculture, Chennai 600028, India
| |
Collapse
|
4
|
Trewhella J. Recent advances in small-angle scattering and its expanding impact in structural biology. Structure 2022; 30:15-23. [PMID: 34995477 DOI: 10.1016/j.str.2021.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 10/19/2022]
Abstract
Applications of small-angle scattering (SAS) in structural biology have benefited from continuing developments in instrumentation, tools for data analysis, modeling capabilities, standards for data and model presentation, and data archiving. The interplay of these capabilities has enabled SAS to contribute to advances in structural biology as the field pushes the boundaries in studies of biomolecular complexes and assemblies as large as whole cells, membrane proteins in lipid environments, and dynamic systems on time scales ranging from femtoseconds to hours. This review covers some of the important advances in biomolecular SAS capabilities for structural biology focused on over the last 5 years and presents highlights of recent applications that demonstrate how the technique is exploring new territories.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
5
|
Beck C, Grimaldo M, Braun MK, Bühl L, Matsarskaia O, Jalarvo NH, Zhang F, Roosen-Runge F, Schreiber F, Seydel T. Temperature and salt controlled tuning of protein clusters. SOFT MATTER 2021; 17:8506-8516. [PMID: 34490428 DOI: 10.1039/d1sm00418b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes. Here, we systematically study the cluster formation approaching the phase separation in aqueous solutions of the globular protein BSA as a function of temperature (T), the protein concentration (cp) and the concentrations of the trivalent salts YCl3 and LaCl3 (cs). As an important complement to structural, i.e. time-averaged, techniques we employ a dynamical technique that can detect clusters even when they are transient on the order of a few nanoseconds. By employing incoherent neutron spectroscopy, we unambiguously determine the short-time self-diffusion of the protein clusters depending on cp, cs and T. We determine the cluster size in terms of effective hydrodynamic radii as manifested by the cluster center-of-mass diffusion coefficients D. For both salts, we find a simple functional form D(cp, cs, T) in the parameter range explored. The calculated inter-particle attraction strength, determined from the microscopic and short-time diffusive properties of the samples, increases with salt concentration and temperature in the regime investigated and can be linked to the macroscopic behavior of the samples.
Collapse
Affiliation(s)
- Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Marco Grimaldo
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Michal K Braun
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Lena Bühl
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| | - Niina H Jalarvo
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
- Chemical and Engineering Materials Division, Neutron Sciences Directorate, and JCNS Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831, USA
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 20506 Malmö, Sweden.
- Division of Physical Chemistry, Lund University, Naturvetarvägen 14, 22100 Lund, Sweden
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|