1
|
Thode AM, Blackwell SB. A statistical acoustics approach for estimating population-scale bowhead whale migration speed and direction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1969-1981. [PMID: 38466044 DOI: 10.1121/10.0025288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Bowhead whales vocalize during their annual fall migration from the Beaufort Sea to the Bering Sea, but the calling rates of individual animals are so low that tracking an individual trajectory is impractical using passive acoustic methods. However, the travel speed and direction of the migrating population can be inferred on a statistical basis by cross-correlating time sequences of call density measured at two locations spaced several kilometers apart. By using the triangulation abilities of a set of vector sensors deployed offshore the Alaskan North Slope between 2008 and 2014, call density time sequences were generated from 1-km wide and 40-km tall rectangular "zones" that were separated by distances ranging from 3.5 to 15 km. The cross-covariances between the two sequences generate a peak corresponding to the average time it takes for whales to travel between the zones. Consistent westward travel speeds of ∼5 km/h were obtained from four different locations on 6 of the 7 years of the study, independent of whether the zones were separated by 3.5, 7, or 15 km. Some sites, however, also revealed a less prominent eastern movement of whales, and shifts in migration speed were occasionally detectable over week-long time scales.
Collapse
Affiliation(s)
- Aaron M Thode
- Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California 92093-0238, USA
| | | |
Collapse
|
2
|
Storrie L, Loseto LL, Sutherland EL, MacPhee SA, O'Corry-Crowe G, Hussey NE. Do beluga whales truly migrate? Testing a key trait of the classical migration syndrome. MOVEMENT ECOLOGY 2023; 11:53. [PMID: 37649126 PMCID: PMC10469428 DOI: 10.1186/s40462-023-00416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Migration enables organisms to access resources in separate regions that have predictable but asynchronous spatiotemporal variability in habitat quality. The classical migration syndrome is defined by key traits including directionally persistent long-distance movements during which maintenance activities are suppressed. But recently, seasonal round-trip movements have frequently been considered to constitute migration irrespective of the traits required to meet this movement type, conflating common outcomes with common traits required for a mechanistic understanding of long-distance movements. We aimed to test whether a cetacean ceases foraging during so-called migratory movements, conforming to a trait that defines classical migration. METHODS We used location and dive data collected by satellite tags deployed on beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea population, which undertake long-distance directed movements between summer and winter areas. To identify phases of directionally persistent travel, behavioural states (area-restricted search, ARS; or Transit) were decoded using a hidden-Markov model, based on step length and turning angle. Established dive profiles were then used as a proxy for foraging, to test the hypothesis that belugas cease foraging during these long-distance transiting movements, i.e., they suppress maintenance activities. RESULTS Belugas principally made directed horizontal movements when moving between summer and winter residency areas, remaining in a Transit state for an average of 75.4% (range = 58.5-87.2%) of the time. All individuals, however, exhibited persistent foraging during Transit movements (75.8% of hours decoded as the Transit state had ≥ 1 foraging dive). These data indicate that belugas actively search for and/or respond to resources during these long-distance movements that are typically called a migration. CONCLUSIONS The long-distance movements of belugas do not conform to the traits defining the classical migration syndrome, but instead have characteristics of both migratory and nomadic behaviour, which may prove adaptive in the face of unpredictable environmental change. Such patterns are likely present in other cetaceans that have been labeled as migratory. Examination of not only horizontal movement state, but also the vertical behaviour of aquatic animals during directed movements is essential for identifying whether a species exhibits traits of the classical migration syndrome or another long-distance movement strategy, enabling improved ecological inference.
Collapse
Affiliation(s)
- Luke Storrie
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada.
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada.
| | - Lisa L Loseto
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Emma L Sutherland
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Shannon A MacPhee
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Greg O'Corry-Crowe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
3
|
Szesciorka AR, Stafford KM. Sea ice directs changes in bowhead whale phenology through the Bering Strait. MOVEMENT ECOLOGY 2023; 11:8. [PMID: 36750903 PMCID: PMC9903510 DOI: 10.1186/s40462-023-00374-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Climate change is warming the Arctic faster than the rest of the planet. Shifts in whale migration timing have been linked to climate change in temperate and sub-Arctic regions, and evidence suggests Bering-Chukchi-Beaufort (BCB) bowhead whales (Balaena mysticetus) might be overwintering in the Canadian Beaufort Sea. METHODS We used an 11-year timeseries (spanning 2009-2021) of BCB bowhead whale presence in the southern Chukchi Sea (inferred from passive acoustic monitoring) to explore relationships between migration timing and sea ice in the Chukchi and Bering Seas. RESULTS Fall southward migration into the Bering Strait was delayed in years with less mean October Chukchi Sea ice area and earlier in years with greater sea ice area (p = 0.04, r2 = 0.40). Greater mean October-December Bering Sea ice area resulted in longer absences between whales migrating south in the fall and north in the spring (p < 0.01, r2 = 0.85). A stepwise shift after 2012-2013 shows some whales are remaining in southern Chukchi Sea rather than moving through the Bering Strait and into the northwestern Bering Sea for the winter. Spring northward migration into the southern Chukchi Sea was earlier in years with less mean January-March Chukchi Sea ice area and delayed in years with greater sea ice area (p < 0.01, r2 = 0.82). CONCLUSIONS As sea ice continues to decline, northward spring-time migration could shift earlier or more bowhead whales may overwinter at summer feeding grounds. Changes to bowhead whale migration could increase the overlap with ships and impact Indigenous communities that rely on bowhead whales for nutritional and cultural subsistence.
Collapse
Affiliation(s)
- Angela R Szesciorka
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR, USA.
| | - Kathleen M Stafford
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, 2030 SE Marine Science Drive, Newport, OR, USA
| |
Collapse
|
4
|
O'Brien O, Pendleton DE, Ganley LC, McKenna KR, Kenney RD, Quintana-Rizzo E, Mayo CA, Kraus SD, Redfern JV. Repatriation of a historical North Atlantic right whale habitat during an era of rapid climate change. Sci Rep 2022; 12:12407. [PMID: 35859111 PMCID: PMC9300694 DOI: 10.1038/s41598-022-16200-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
Climate change is affecting species distributions in space and time. In the Gulf of Maine, one of the fastest-warming marine regions on Earth, rapid warming has caused prey-related changes in the distribution of the critically endangered North Atlantic right whale (Eubalaena glacialis). Concurrently, right whales have returned to historically important areas such as southern New England shelf waters, an area known to have been a whaling ground. We compared aerial survey data from two time periods (2013-2015; 2017-2019) to assess trends in right whale abundance in the region during winter and spring. Using distance sampling techniques, we chose a hazard rate key function to model right whale detections and used seasonal encounter rates to estimate abundance. The mean log of abundance increased by 1.40 annually between 2013 and 2019 (p = 0.004), and the mean number of individuals detected per year increased by 2.23 annually between 2013 and 2019 (R2 = 0.69, p = 0.001). These results demonstrate the current importance of this habitat and suggest that management options must continually evolve as right whales repatriate historical habitats and potentially expand to new habitats as they adapt to climate change.
Collapse
Affiliation(s)
- O O'Brien
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA, 02110, USA.
| | - D E Pendleton
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA, 02110, USA
| | - L C Ganley
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA, 02110, USA
| | - K R McKenna
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA, 02110, USA
| | - R D Kenney
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA
| | - E Quintana-Rizzo
- Department of Biology, Simmons University, Boston, MA, 02115, USA
| | - C A Mayo
- Center for Coastal Studies, Provincetown, MA, 02657, USA
| | - S D Kraus
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA, 02110, USA
| | - J V Redfern
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, MA, 02110, USA
| |
Collapse
|
5
|
Posdaljian N, Soderstjerna C, Jones JM, Solsona‐Berga A, Hildebrand JA, Westdal K, Ootoowak A, Baumann‐Pickering S. Changes in sea ice and range expansion of sperm whales in the eclipse sound region of Baffin Bay, Canada. GLOBAL CHANGE BIOLOGY 2022; 28:3860-3870. [PMID: 35302678 PMCID: PMC9324104 DOI: 10.1111/gcb.16166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Sperm whales (Physeter macrocephalus) are a cosmopolitan species but are only found in ice-free regions of the ocean. It is unknown how their distribution might change in regions undergoing rapid loss of sea ice and ocean warming like Baffin Bay in the eastern Canadian Arctic. In 2014 and 2018, sperm whales were sighted near Eclipse Sound, Baffin Bay: the first recorded uses of this region by sperm whales. In this study, we investigate the spatiotemporal distribution of sperm whales near Eclipse Sound using visual and acoustic data. We combine several published open-source, data sets to create a map of historical sperm whale presence in the region. We use passive acoustic data from two recording sites between 2015 and 2019 to investigate more recent presence in the region. We also analyze regional trends in sea ice concentration (SIC) dating back to 1901 and relate acoustic presence of sperm whales to the mean SIC near the recording sites. We found no records of sperm whale sightings near Eclipse Sound outside of the 2014/2018 observations. Our acoustic data told a different story, with sperm whales recorded yearly from 2015 to 2019 with presence in the late summer and fall months. Sperm whale acoustic presence increased over the 5-year study duration and was closely related to the minimum SIC each year. Sperm whales, like other cetaceans, are ecosystem sentinels, or indicators of ecosystem change. Increasing number of days with sperm whale presence in the Eclipse Sound region could indicate range expansion of sperm whales as a result of changes in sea ice. Monitoring climate change-induced range expansion in this region is important to understand how increasing presence of a top-predator might impact the Arctic food web.
Collapse
Affiliation(s)
- Natalie Posdaljian
- University of California San DiegoScripps Institution of OceanographyLa JollaCaliforniaUSA
| | - Caroline Soderstjerna
- University of California San DiegoScripps Institution of OceanographyLa JollaCaliforniaUSA
| | - Joshua M. Jones
- University of California San DiegoScripps Institution of OceanographyLa JollaCaliforniaUSA
| | - Alba Solsona‐Berga
- University of California San DiegoScripps Institution of OceanographyLa JollaCaliforniaUSA
| | - John A. Hildebrand
- University of California San DiegoScripps Institution of OceanographyLa JollaCaliforniaUSA
| | | | | | | |
Collapse
|
6
|
Hamilton CD, Lydersen C, Aars J, Acquarone M, Atwood T, Baylis A, Biuw M, Boltunov AN, Born EW, Boveng P, Brown TM, Cameron M, Citta J, Crawford J, Dietz R, Elias J, Ferguson SH, Fisk A, Folkow LP, Frost KJ, Glazov DM, Granquist SM, Gryba R, Harwood L, Haug T, Heide‐Jørgensen MP, Hussey NE, Kalinek J, Laidre KL, Litovka DI, London JM, Loseto LL, MacPhee S, Marcoux M, Matthews CJD, Nilssen K, Nordøy ES, O’Corry‐Crowe G, Øien N, Olsen MT, Quakenbush L, Rosing‐Asvid A, Semenova V, Shelden KEW, Shpak OV, Stenson G, Storrie L, Sveegaard S, Teilmann J, Ugarte F, Von Duyke AL, Watt C, Wiig Ø, Wilson RR, Yurkowski DJ, Kovacs KM. Marine mammal hotspots across the circumpolar Arctic. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Bromaghin JF, Douglas DC, Durner GM, Simac KS, Atwood TC. Survival and abundance of polar bears in Alaska's Beaufort Sea, 2001-2016. Ecol Evol 2021; 11:14250-14267. [PMID: 34707852 PMCID: PMC8525099 DOI: 10.1002/ece3.8139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
The Arctic Ocean is undergoing rapid transformation toward a seasonally ice-free ecosystem. As ice-adapted apex predators, polar bears (Ursus maritimus) are challenged to cope with ongoing habitat degradation and changes in their prey base driven by food-web response to climate warming. Knowledge of polar bear response to environmental change is necessary to understand ecosystem dynamics and inform conservation decisions. In the southern Beaufort Sea (SBS) of Alaska and western Canada, sea ice extent has declined since satellite observations began in 1979 and available evidence suggests that the carrying capacity of the SBS for polar bears has trended lower for nearly two decades. In this study, we investigated the population dynamics of polar bears in Alaska's SBS from 2001 to 2016 using a multistate Cormack-Jolly-Seber mark-recapture model. States were defined as geographic regions, and we used location data from mark-recapture observations and satellite-telemetered bears to model transitions between states and thereby explain heterogeneity in recapture probabilities. Our results corroborate prior findings that the SBS subpopulation experienced low survival from 2003 to 2006. Survival improved modestly from 2006 to 2008 and afterward rebounded to comparatively high levels for the remainder of the study, except in 2012. Abundance moved in concert with survival throughout the study period, declining substantially from 2003 and 2006 and afterward fluctuating with lower variation around an average of 565 bears (95% Bayesian credible interval [340, 920]) through 2015. Even though abundance was comparatively stable and without sustained trend from 2006 to 2015, polar bears in the Alaska SBS were less abundant over that period than at any time since passage of the U.S. Marine Mammal Protection Act. The potential for recovery is likely limited by the degree of habitat degradation the subpopulation has experienced, and future reductions in carrying capacity are expected given current projections for continued climate warming.
Collapse
Affiliation(s)
| | | | | | | | - Todd C. Atwood
- U.S. Geological SurveyAlaska Science CenterAnchorageAKUSA
| |
Collapse
|
8
|
Stafford KM, Citta JJ, Okkonen SR, Zhang J. Bowhead and beluga whale acoustic detections in the western Beaufort Sea 2008-2018. PLoS One 2021; 16:e0253929. [PMID: 34181700 PMCID: PMC8238202 DOI: 10.1371/journal.pone.0253929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 12/05/2022] Open
Abstract
The Distributed Biological Observatory (DBO) was established to detect environmental changes in the Pacific Arctic by regular monitoring of biophysical responses in each of 8 DBO regions. Here we examine the occurrence of bowhead and beluga whale vocalizations in the western Beaufort Sea acquired by acoustic instruments deployed from September 2008-July 2014 and September 2016-October 2018 to examine inter-annual variability of these Arctic endemic species in DBO Region 6. Acoustic data were collected on an oceanographic mooring deployed in the Beaufort shelfbreak jet at ~71.4°N, 152.0°W. Spectrograms of acoustic data files were visually examined for the presence or absence of known signals of bowhead and beluga whales. Weekly averages of whale occurrence were compared with outputs of zooplankton, temperature and sea ice from the BIOMAS model to determine if any of these variables influenced whale occurrence. In addition, the dates of acoustic whale passage in the spring and fall were compared to annual sea ice melt-out and freeze-up dates to examine changes in phenology. Neither bowhead nor beluga whale migration times changed significantly in spring, but bowhead whales migrated significantly later in fall from 2008-2018. There were no clear relationships between bowhead whales and the environmental variables, suggesting that the DBO 6 region is a migratory corridor, but not a feeding hotspot, for this species. Surprisingly, beluga whale acoustic presence was related to zooplankton biomass near the mooring, but this is unlikely to be a direct relationship: there are likely interactions of environmental drivers that result in higher occurrence of both modeled zooplankton and belugas in the DBO 6 region. The environmental triggers that drive the migratory phenology of the two Arctic endemic cetacean species likely extend from Bering Sea transport of heat, nutrients and plankton through the Chukchi and into the Beaufort Sea.
Collapse
Affiliation(s)
- Kathleen M. Stafford
- Applied Physics Laboratory, University of Washington, Seattle, Washington, United States of America
| | - John J. Citta
- Alaska Department of Fish and Game, Fairbanks, Alaska, United States of America
| | - Stephen R. Okkonen
- Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Jinlun Zhang
- Applied Physics Laboratory, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|