1
|
Podbielski M, Knoll P, Brown G, Huld S, Neubeck A, Cartwright JHE, Sainz‐Díaz CI, Pimentel C, McMahon S. Troubles With Tubules: How Do Iron-Mineral Chemical Gardens Differ From Iron-Mineralized Sheaths of Iron Oxidizing Bacteria? GEOBIOLOGY 2025; 23:e70021. [PMID: 40368844 PMCID: PMC12078188 DOI: 10.1111/gbi.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Microscopic tubules and filaments composed of iron minerals occur in various rock types of all ages. Although typically lacking carbonaceous matter, many are reasonably interpreted as the remains of filamentous microorganisms coated with crystalline iron oxyhydroxides. Iron-oxidizing bacteria (IOB) acquire such a coating naturally during life. However, recent debates about purported microfossils have highlighted the potential for self-organized nonbiological mineral growth (particularly in chemical gardens) to form compositionally and morphologically similar tubules. How can biogenic and abiogenic iron-mineral tubules be differentiated? Here, we use optical and electron microscopy and Mössbauer spectroscopy to compare the composition, microtexture, and morphology of ferruginous chemical gardens and iron-mineralized sheaths of bacteria in the genus Leptothrix. Despite broad morphological similarity, we find that Leptothrix exhibits a narrower range of filament diameters and lower filament tortuosity than chemical gardens. Chemical gardens produced from a ferrous salt also tend to incorporate Fe2+ whereas Leptothrix sheaths predominantly do not. Finally, the oxyhydroxides formed in Leptothrix sheaths tend to be smoother and denser on the inward-facing side, rougher and sparser on the outward side, whereas for chemical garden tubules the reverse is true. Some of these differences show promise for the diagnosis of natural samples.
Collapse
Affiliation(s)
- Melanie Podbielski
- Grant Institute, School of GeoSciencesUniversity of EdinburghEdinburghScotland
- School of Biological SciencesUniversity of EdinburghEdinburghScotland
| | - Pamela Knoll
- School of Physics and AstronomyUniversity of EdinburghEdinburghScotland
| | - Georgia Brown
- School of Physics and AstronomyUniversity of EdinburghEdinburghScotland
| | - Sigrid Huld
- Department of Earth SciencesUppsala UniversityUppsalaSweden
| | - Anna Neubeck
- Department of Earth SciencesUppsala UniversityUppsalaSweden
| | - Julyan H. E. Cartwright
- Instituto Andaluz de Ciencias de la TierraCSICGranadaSpain
- Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
| | | | - Carlos Pimentel
- Departamento de Mineralogía y Petrología, Facultad de Ciencias GeológicasUniversidad Complutense de MadridMadridSpain
| | - Sean McMahon
- Grant Institute, School of GeoSciencesUniversity of EdinburghEdinburghScotland
- School of Physics and AstronomyUniversity of EdinburghEdinburghScotland
| |
Collapse
|
2
|
Ding Y, Cardoso SSS, Cartwright JHE. Dynamics of the osmotic lysis of mineral protocells and its avoidance at the origins of life. GEOBIOLOGY 2024; 22:e12611. [PMID: 39020475 DOI: 10.1111/gbi.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
The osmotic rupture of a cell, its osmotic lysis or cytolysis, is a phenomenon that active biological cell volume regulation mechanisms have evolved in the cell membrane to avoid. How then, at the origin of life, did the first protocells survive prior to such active processes? The pores of alkaline hydrothermal vents in the oceans form natural nanoreactors in which osmosis across a mineral membrane plays a fundamental role. Here, we discuss the dynamics of lysis and its avoidance in an abiotic system without any active mechanisms, reliant upon self-organized behaviour, similar to the first self-organized mineral membranes within which complex chemistry may have begun to evolve into metabolism. We show that such mineral nanoreactors could function as protocells without exploding because their self-organized dynamics have a large regime in parameter space where osmotic lysis does not occur and homeostasis is possible. The beginnings of Darwinian evolution in proto-biochemistry must have involved the survival of protocells that remained within such a safe regime.
Collapse
Affiliation(s)
- Yang Ding
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| |
Collapse
|
3
|
Gómez-Lozada F, del Valle CA, Jiménez-Paz JD, Lazarov BS, Galvis J. Modelling and simulation of brinicle formation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230268. [PMID: 37885987 PMCID: PMC10598449 DOI: 10.1098/rsos.230268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Below the Arctic sea ice, under the right conditions, a flux of icy brine flows down into the sea. The icy brine has a much lower fusion point and is denser than normal seawater. As a result, it sinks while freezing everything around it, forming an ice channel called a brinicle (also known as ice stalactite). In this paper, we develop a mathematical model for this phenomenon, assuming cylindrical symmetry. The fluid is considered to be viscous and quasi-stationary. The heat and salt transport are weakly coupled to the fluid motion and are modelled with the corresponding conservation equations, accounting for diffusive and convective effects. Finite-element discretization is employed to solve the coupled system of partial differential equations. We find that the model can capture the general behaviour of the physical system and generate brinicle-like structures while also recovering dendrite composition, which is a physically expected feature aligned with previous experimental results. This represents, to our knowledge, the first complete model proposed that captures the global structure of the physical phenomenon even though it has some discrepancies, such as brine accumulation.
Collapse
Affiliation(s)
- Felipe Gómez-Lozada
- Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Edificio Uriel Gutiérrez, Bogotá D.C., Colombia
| | - Carlos Andrés del Valle
- Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Edificio Uriel Gutiérrez, Bogotá D.C., Colombia
| | - Julián David Jiménez-Paz
- Departamento de Física, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Edificio Uriel Gutiérrez, Bogotá D.C., Colombia
| | | | - Juan Galvis
- Departamento de Matemáticas, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Edificio Uriel Gutiérrez, Bogotá D.C., Colombia
| |
Collapse
|
4
|
Nogueira JA, Batista BC, Cooper MA, Steinbock O. Shape Evolution of Precipitate Membranes in Flow Systems. J Phys Chem B 2023; 127:1471-1478. [PMID: 36745753 DOI: 10.1021/acs.jpcb.2c08433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemical gardens are macroscopic structures that form when a salt seed is submerged in an alkaline solution. Their thin precipitate membranes separate the reactant partners and slow down the approach toward equilibrium. During this stage, a gradual thickening occurs, which is driven by steep cross-membrane gradients and governed by selective ion transport. We study these growth dynamics in microfluidic channels for the case of Ni(OH)2 membranes. Fast flowing reactant solutions create thickening membranes of a nearly constant width along the channel, whereas slow flows produce wedge-shaped structures that fail to grow along their downstream end. The overall dynamics and shapes are caused by the competition of reactant consumption and transport replenishment. They are reproduced quantitatively by a two-variable reaction-diffusion-advection model which provides kinetic insights into the growth of precipitate membranes.
Collapse
Affiliation(s)
- Jéssica A Nogueira
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Bruno C Batista
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Maggie A Cooper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| |
Collapse
|
5
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
6
|
Ding Y, Gutiérrez-Ariza CM, Zheng M, Felgate A, Lawes A, Sainz-Díaz CI, Cartwright JHE, Cardoso SSS. Downward fingering accompanies upward tube growth in a chemical garden grown in a vertical confined geometry. Phys Chem Chem Phys 2022; 24:17841-17851. [PMID: 35851594 DOI: 10.1039/d2cp01862d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical gardens are self-assembled structures of mineral precipitates enabled by semi-permeable membranes. To explore the effects of gravity on the formation of chemical gardens, we have studied chemical gardens grown from cobalt chloride pellets and aqueous sodium silicate solution in a vertical Hele-Shaw cell. Through photography, we have observed and quantitatively analysed upward growing tubes and downward growing fingers. The latter were not seen in previous experimental studies involving similar physicochemical systems in 3-dimensional or horizontal confined geometry. To better understand the results, further studies of flow patterns, buoyancy forces, and growth dynamics under schlieren optics have been carried out, together with characterisation of the precipitates with scanning electron microscopy and X-ray diffractometry. In addition to an ascending flow and the resulting precipitation of tubular filaments, a previously not reported descending flow has been observed which, under some conditions, is accompanied by precipitation of solid fingering structures. We conclude that the physics of both the ascending and descending flows are shaped by buoyancy, together with osmosis and chemical reaction. The existence of the descending flow might highlight a limitation in current experimental methods for growing chemical gardens under gravity, where seeds are typically not suspended in the middle of the solution and are confined by the bottom of the vessel.
Collapse
Affiliation(s)
- Yang Ding
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Carlos M Gutiérrez-Ariza
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Avenida de las Palmeras, 4, E-18100 Armilla, Granada, Spain.
| | - Mingchuan Zheng
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Amy Felgate
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Anna Lawes
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Avenida de las Palmeras, 4, E-18100 Armilla, Granada, Spain.
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-Universidad de Granada, Avenida de las Palmeras, 4, E-18100 Armilla, Granada, Spain. .,Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Avenida de Fuente Nueva, s/n, E-18071 Granada, Spain
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
7
|
'Whole Organism', Systems Biology, and Top-Down Criteria for Evaluating Scenarios for the Origin of Life. Life (Basel) 2021; 11:life11070690. [PMID: 34357062 PMCID: PMC8306273 DOI: 10.3390/life11070690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
While most advances in the study of the origin of life on Earth (OoLoE) are piecemeal, tested against the laws of chemistry and physics, ultimately the goal is to develop an overall scenario for life's origin(s). However, the dimensionality of non-equilibrium chemical systems, from the range of possible boundary conditions and chemical interactions, renders the application of chemical and physical laws difficult. Here we outline a set of simple criteria for evaluating OoLoE scenarios. These include the need for containment, steady energy and material flows, and structured spatial heterogeneity from the outset. The Principle of Continuity, the fact that all life today was derived from first life, suggests favoring scenarios with fewer non-analog (not seen in life today) to analog (seen in life today) transitions in the inferred first biochemical pathways. Top-down data also indicate that a complex metabolism predated ribozymes and enzymes, and that full cellular autonomy and motility occurred post-LUCA. Using these criteria, we find the alkaline hydrothermal vent microchamber complex scenario with a late evolving exploitation of the natural occurring pH (or Na+ gradient) by ATP synthase the most compelling. However, there are as yet so many unknowns, we also advocate for the continued development of as many plausible scenarios as possible.
Collapse
|
8
|
Wang Q, Steinbock O. Chemical Garden Membranes in Temperature-Controlled Microfluidic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2485-2493. [PMID: 33555186 DOI: 10.1021/acs.langmuir.0c03548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thin-walled tubes that classically form when metal salts react with sodium silicate solution are known as chemical gardens. They share similarities with the porous, catalytic materials in hydrothermal vent chimneys, and both structures are exposed to steep pH gradients that, combined with thermal factors, might have provided the free energy for prebiotic chemistry on early Earth. We report temperature effects on the shape, composition, and opacity of chemical gardens. Tubes grown at high temperature are more opaque, indicating changes to the membrane structure or thickness. To study this dependence, we developed a temperature-controlled microfluidic device, which allows the formation of analogous membranes at the interface of two coflowing reactant solutions. For the case of Ni(OH)2, membranes thicken according to a diffusion-controlled mechanism. In the studied range of 10-40 °C, the effective diffusion coefficient is independent of temperature. This suggests that counteracting processes are at play (including an increased solubility) and that the opacity of chemical garden tubes arises from changes in internal morphology. The latter could be linked to experimentally observed dendritic structures within the membranes.
Collapse
Affiliation(s)
- Qingpu Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
9
|
Hughes EAB, Jones‐Salkey O, Forey P, Chipara M, Grover LM. Exploring the Formation of Calcium Orthophosphate‐Pyrophosphate Chemical Gardens. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Erik A. B. Hughes
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
- NIHR Surgical Reconstruction and Microbiology Research Centre Queen Elizabeth Hospital Birmingham UK
| | - Owen Jones‐Salkey
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Prescillia Forey
- Ensaia Université De Lorraine 34 Cours Léopold, CS 25233 F-54052 Nancy France
| | - Miruna Chipara
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Liam M. Grover
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
10
|
Jones JP, Firdosy SA, Barge LM, Bescup JC, Perl SM, Zhang X, Pate AM, Price RE. 3D Printed Minerals as Astrobiology Analogs of Hydrothermal Vent Chimneys. ASTROBIOLOGY 2020; 20:1405-1412. [PMID: 32924535 DOI: 10.1089/ast.2020.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrothermal vents, which are highly plausible habitable environments for life and of interest for some origin-of-life scenarios, may exist on icy moons such as Europa or Enceladus in addition to Earth. Some hydrothermal vent chimney structures are extremely porous and friable, making their reconstruction in the lab challenging (e.g., brucite or saponite in alkaline hydrothermal settings). Here, we present the results from our efforts to reconstruct a simplified chimney structure directly out of mineral powder using binder jet additive manufacturing. Olivine sand was chosen for this initial method development effort since it represents a naturally occurring seafloor material and is inexpensively available in large quantities in powder form. The crystal structure of olivine used for the print was not modified during the process, as confirmed by powder X-ray diffraction (XRD). To characterize the microstructure of our 3D printed precipitates, we used computed tomography (CT) X-ray scan techniques. We also evaluated a chimney precipitate from a sample collected from the Prony Hydrothermal Field (PHF), southern New Caledonia, an alkaline system driven by serpentinization with mineralogy composed of brucite and carbonates. While not directly comparable from a mineralogical point of view, the microstructure and porosity of both precipitates was similar, suggesting that our 3D printing technique may be a valuable tool for future astrobiology research on hydrothermal vent precipitates.
Collapse
Affiliation(s)
- John-Paul Jones
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Samad A Firdosy
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - John C Bescup
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Scott M Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Xu Zhang
- College of Engineering Center for Design and Manufacturing Excellence, Ohio State University, Columbus, Ohio, USA
| | - Andre M Pate
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Roy E Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
11
|
Cardoso SSS, Cartwright JHE, Čejková J, Cronin L, De Wit A, Giannerini S, Horváth D, Rodrigues A, Russell MJ, Sainz-Díaz CI, Tóth Á. Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. ARTIFICIAL LIFE 2020; 26:315-326. [PMID: 32697160 DOI: 10.1162/artl_a_00323] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Self-organizing precipitation processes, such as chemical gardens forming biomimetic micro- and nanotubular forms, have the potential to show us new fundamental science to explore, quantify, and understand nonequilibrium physicochemical systems, and shed light on the conditions for life's emergence. The physics and chemistry of these phenomena, due to the assembly of material architectures under a flux of ions, and their exploitation in applications, have recently been termed chemobrionics. Advances in understanding in this area require a combination of expertise in physics, chemistry, mathematical modeling, biology, and nanoengineering, as well as in complex systems and nonlinear and materials sciences, giving rise to this new synergistic discipline of chemobrionics.
Collapse
Affiliation(s)
- Silvana S S Cardoso
- University of Cambridge, Department of Chemical Engineering and Biotechnology.
| | - Julyan H E Cartwright
- Universidad de Granada CSIC, Instituto Andaluz de Ciencias de la Tierra, Instituto Carlos I de Física Teórica y Computacional.
| | - Jitka Čejková
- University of Chemistry and Technology Prague, Department of Chemical Engineering
| | | | - Anne De Wit
- Université Libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit
| | - Simone Giannerini
- Università di Bologna, Dipartimento di Scienze Statistiche "Paolo Fortunati"
| | - Dezső Horváth
- University of Szeged, Department of Applied and Environmental Chemistry
| | | | | | | | - Ágota Tóth
- University of Szeged, Department of Physical Chemistry and Materials Science
| |
Collapse
|
12
|
Hughes EAB, Chipara M, Hall TJ, Williams RL, Grover LM. Chemobrionic structures in tissue engineering: self-assembling calcium phosphate tubes as cellular scaffolds. Biomater Sci 2020; 8:812-822. [DOI: 10.1039/c9bm01010f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A diverse range of complex patterns and mineralised hierarchical microstructures can be derived from chemobrionic systems. In this work, we explore chemobrionic calcium phosphate tubes as cellular scaffolds.
Collapse
Affiliation(s)
- Erik A. B. Hughes
- School of Chemical Engineering
- University of Birmingham
- UK
- NIHR Surgical Reconstruction and Microbiology Research Centre
- Queen Elizabeth Hospital
| | - Miruna Chipara
- School of Chemical Engineering
- University of Birmingham
- UK
| | - Thomas J. Hall
- School of Chemical Engineering
- University of Birmingham
- UK
| | | | - Liam M. Grover
- School of Chemical Engineering
- University of Birmingham
- UK
| |
Collapse
|
13
|
Ding Y, Cartwright JHE, Cardoso SSS. Intrinsic concentration cycles and high ion fluxes in self-assembled precipitate membranes. Interface Focus 2019; 9:20190064. [PMID: 31641435 DOI: 10.1098/rsfs.2019.0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/11/2019] [Indexed: 11/12/2022] Open
Abstract
Concentration cycles are important for bonding of basic molecular building components at the emergence of life. We demonstrate that oscillations occur intrinsically in precipitation reactions when coupled with fluid mechanics in self-assembled precipitate membranes, such as at submarine hydrothermal vents. We show that, moreover, the flow of ions across one pore in such a prebiotic membrane is larger than that across one ion channel in a modern biological cell membrane, suggesting that proto-biological processes could be sustained by osmotic flow in a less efficient prebiotic environment. Oscillations in nanoreactors at hydrothermal vents may be just right for these warm little pores to be the cradle of life.
Collapse
Affiliation(s)
- Yang Ding
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18100 Armilla, Granada, Spain.,Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Vance SD, Barge LM, Cardoso SSS, Cartwright JHE. Self-Assembling Ice Membranes on Europa: Brinicle Properties, Field Examples, and Possible Energetic Systems in Icy Ocean Worlds. ASTROBIOLOGY 2019; 19:685-695. [PMID: 30964322 DOI: 10.1089/ast.2018.1826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean worlds. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials. The specifics of the composition and dynamics of both the ice and the ocean in these worlds remain poorly constrained. We demonstrate through calculations using FREZCHEM that sulfate likely fractionates out of accreting ice in Europa and Enceladus, and thus that an exogenous origin of sulfate observed on Europa's surface need not preclude additional endogenous sulfate in Europa's ocean. We suggest that, like hydrothermal vents on Earth, brinicles in icy ocean worlds constitute ideal places where ecosystems of organisms might be found.
Collapse
Affiliation(s)
- Steven D Vance
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Silvana S S Cardoso
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- 3 Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
- 4 Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| |
Collapse
|