1
|
AL-Kahtani SN, Bienefeld K. Strength surpasses relatedness-queen larva selection in honeybees. PLoS One 2021; 16:e0255151. [PMID: 34351980 PMCID: PMC8341480 DOI: 10.1371/journal.pone.0255151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Abstract
Nepotism was initially theoretically predicted and sometimes found to trigger the selection of specific larvae to be reared as queens in the honeybee Apis mellifera. Although the importance of selecting the next queen for a colony indicates that it should not occur at random, nepotism is increasingly considered unlikely in eusocial insect societies. Different prenatal maternal supplies of embryos have been found to impact fitness in many other species and therefore could be a possible trigger underlying the likelihood of being raised as a queen. We offered related or unrelated larvae from six colonies originating from eggs of different weights for emergency queen rearing in queenless units with worker bees from these six colonies. We showed that nurses did not significantly prefer related larvae during queen rearing, which confirms the theory that different relatedness-driven kin preferences within a colony cannot be converted into a colony-level decision. However, we found that larvae originating from heavier eggs were significantly preferred for queen breeding. Studies on other species have shown that superior maternal supply is important for later reproductive success. However, we did observe tendencies in the expected direction (e.g., queens that hatched from heavier eggs had both more ovarioles and a shorter preoviposition period). Nevertheless, our data do not allow for a significant conclusion that the selection of larvae from heavy eggs truly offers fitness advantages.
Collapse
Affiliation(s)
- Saad Naser AL-Kahtani
- Institute for Bee Research Hohen Neuendorf & Humboldt University Berlin, Hohen Neuendorf, Germany
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Kaspar Bienefeld
- Institute for Bee Research Hohen Neuendorf & Humboldt University Berlin, Hohen Neuendorf, Germany
| |
Collapse
|
2
|
Oldroyd BP, Yagound B, Allsopp MH, Holmes MJ, Buchmann G, Zayed A, Beekman M. Adaptive, caste-specific changes to recombination rates in a thelytokous honeybee population. Proc Biol Sci 2021; 288:20210729. [PMID: 34102886 PMCID: PMC8187994 DOI: 10.1098/rspb.2021.0729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 11/12/2022] Open
Abstract
The ability to clone oneself has clear benefits-no need for mate hunting or dilution of one's genome in offspring. It is therefore unsurprising that some populations of haplo-diploid social insects have evolved thelytokous parthenogenesis-the virgin birth of a female. But thelytokous parthenogenesis has a downside: the loss of heterozygosity (LoH) as a consequence of genetic recombination. LoH in haplo-diploid insects can be highly deleterious because female sex determination often relies on heterozygosity at sex-determining loci. The two female castes of the Cape honeybee, Apis mellifera capensis, differ in their mode of reproduction. While workers always reproduce thelytokously, queens always mate and reproduce sexually. For workers, it is important to reduce the frequency of recombination so as to not produce offspring that are homozygous. Here, we ask whether recombination rates differ between Cape workers and Cape queens that we experimentally manipulated to reproduce thelytokously. We tested our hypothesis that Cape workers have evolved mechanisms that restrain genetic recombination, whereas queens have no need for such mechanisms because they reproduce sexually. Using a combination of microsatellite genotyping and whole-genome sequencing we find that a reduction in recombination is confined to workers only.
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Michael H. Allsopp
- Michael H Allsopp, Honeybee Research Section, ARC-Plant Protection Research Institute, Stellenbosch 7600, South Africa
| | - Michael J. Holmes
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Gabrielle Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Amro Zayed
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| |
Collapse
|
3
|
Gloag R, Beekman M. The brood parasite's guide to inclusive fitness theory. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180198. [PMID: 30967088 DOI: 10.1098/rstb.2018.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hamilton's theory of inclusive fitness provides a framework for understanding the evolution of social behaviour between kin, including parental and alloparental care. Brood parasitism is a reproductive tactic in which parasites exploit the care of other individuals of the same species (conspecific parasitism) or different species (interspecific parasitism) to rear their brood. Here, drawing from examples in birds and social insects, we identify two insights into brood parasitism that stem from inclusive fitness theory. First, the kin structure within nests, or between neighbouring nests, can create a niche space favouring the evolution of conspecific parasitism. For example, low average relatedness within social insect nests can increase selection for reproductive cheats. Likewise, high average relatedness between adjacent nests of some birds can increase a female's tolerance of parasitism by her neighbour. Second, intrabrood conflict will be high in parasitized broods, from the perspective of both parasite and host young, relative to unparasitized broods. We also discuss offspring recognition by hosts as an example of discrimination in a kin-selected social behaviour. We conclude that the inclusive fitness framework is instructive for understanding aspects of brood parasite and host evolution. In turn, brood parasites present some unique opportunities to test the predictions of inclusive fitness theory. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Ros Gloag
- School of Life and Environmental Sciences, University of Sydney , Sydney, 2006 , Australia
| | - Madeleine Beekman
- School of Life and Environmental Sciences, University of Sydney , Sydney, 2006 , Australia
| |
Collapse
|
4
|
Beekman M, Oldroyd BP. Conflict and major transitions - why we need true queens. CURRENT OPINION IN INSECT SCIENCE 2019; 34:73-79. [PMID: 31247422 DOI: 10.1016/j.cois.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/18/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
In contrast to human societies, where kings and queens can be sources of conflict, we argue that the morphologically distinct queens of insect colonies are central to the minimization of conflict within their societies. Thus, the evolution of irreversible queen and worker castes represents a major transition in social evolution. Queens are selected to become better reproducers, and workers are selected to become better workers. The reproductive success of queens and workers are, therefore, inextricably linked. Workers achieve reproductive success by assisting the queen, whereas the queen needs her workers to provide her with the wherewithal to raise her brood. The tighter the mutual dependence, the lower conflict, and the larger insect societies can become. As the queen becomes a better breeder, workers are selected to become better at raising their siblings. Yet, nothing in nature is ever free of conflict and with the evolution of a true worker caste a new set of conflicts arises. Multiple mating by queens in particular opens the door to a new set of conflicts. Ironically, multiple mating can only evolve once within-colony conflict is reduced by evolving a true worker caste.
Collapse
Affiliation(s)
- Madeleine Beekman
- Behaviour and Genetics of Social Insects Lab, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Life and Environmental Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Doums C, Fédérici P, Chifflet-Belle P, Monnin T. Worker thelytoky allows requeening of orphaned colonies but increases susceptibility to reproductive cheating in an ant. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Yagound B, Duncan M, Chapman NC, Oldroyd BP. Subfamily-dependent alternative reproductive strategies in worker honeybees. Mol Ecol 2017; 26:6938-6947. [PMID: 29113015 DOI: 10.1111/mec.14417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/06/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023]
Abstract
Functional worker sterility is the defining feature of insect societies. Yet, workers are sometimes found reproducing in their own or foreign colonies. The proximate mechanisms underlying these alternative reproductive phenotypes are keys to understanding how reproductive altruism and selfishness are balanced in eusocial insects. In this study, we show that in honeybee (Apis mellifera) colonies, the social environment of a worker, that is, the presence and relatedness of the queens in a worker's natal colony and in surrounding colonies, significantly influences her fertility and drifting behaviour. Furthermore, subfamilies vary in the frequency of worker ovarian activation, propensity to drift and the kind of host colony that is targeted for reproductive parasitism. Our results show that there is an interplay between a worker's subfamily, reproductive state and social environment that substantially affects her reproductive phenotype. Our study further indicates that honeybee populations show substantial genetic variance for worker reproductive strategies, suggesting that no one strategy is optimal under all the circumstances that a typical worker may encounter.
Collapse
Affiliation(s)
- Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael Duncan
- School of Science and Health, Western Sydney University, Richmond, NSW, Australia
| | - Nadine C Chapman
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Wallberg A, Pirk CW, Allsopp MH, Webster MT. Identification of Multiple Loci Associated with Social Parasitism in Honeybees. PLoS Genet 2016; 12:e1006097. [PMID: 27280405 PMCID: PMC4900560 DOI: 10.1371/journal.pgen.1006097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| | - Christian W. Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Mike H. Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, South Africa
| | - Matthew T. Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| |
Collapse
|
8
|
Abstract
In complex environments, behavioural plasticity depends on the ability of an animal to integrate numerous sensory stimuli. The multidimensionality of factors interacting to shape plastic behaviour means it is difficult for both organisms and researchers to predict what constitutes an adaptive response to a given set of conditions. Although researchers may be able to map the fitness pay-offs of different behavioural strategies in changing environments, there is no guarantee that the study species will be able to perceive these pay-offs. We thus risk a disconnect between our own predictions about adaptive behaviour and what is behaviourally achievable given the umwelt of the animal being studied. This may lead to erroneous conclusions about maladaptive behaviour in circumstances when the behaviour exhibited is the most adaptive possible given sensory limitations. With advances in the computational resources available to behavioural ecologists, we can now measure vast numbers of interactions among behaviours and environments to create adaptive behavioural surfaces. These surfaces have massive heuristic, predictive and analytical potential in understanding adaptive animal behaviour, but researchers using them are destined to fail if they ignore the sensory ecology of the species they study. Here, we advocate the continued use of these approaches while directly linking them to perceptual space to ensure that the topology of the generated adaptive landscape matches the perceptual reality of the animal it intends to study. Doing so will allow predictive models of animal behaviour to reflect the reality faced by the agents on adaptive surfaces, vastly improving our ability to determine what constitutes an adaptive response for the animal in question.
Collapse
Affiliation(s)
- Lyndon A Jordan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael J Ryan
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Chapman NC, Beekman M, Allsopp MH, Rinderer TE, Lim J, Oxley PR, Oldroyd BP. Inheritance of thelytoky in the honey bee Apis mellifera capensis. Heredity (Edinb) 2015; 114:584-92. [PMID: 25585920 DOI: 10.1038/hdy.2014.127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/27/2014] [Accepted: 12/03/2014] [Indexed: 01/31/2023] Open
Abstract
Asexual reproduction via thelytokous parthenogenesis is widespread in the Hymenoptera, but its genetic underpinnings have been described only twice. In the wasp Lysiphlebus fabarum and the Cape honey bee Apis mellifera capensis the origin of thelytoky have each been traced to a single recessive locus. In the Cape honey bee it has been argued that thelytoky (th) controls the thelytoky phenotype and that a deletion of 9 bp in the flanking intron downstream of exon 5 (tae) of the gemini gene switches parthenogenesis from arrhenotoky to thelytoky. To further explore the mode of inheritance of thelytoky, we generated reciprocal backcrosses between thelytokous A. m. capensis and the arrhenotokous A. m. scutellata. Ten genetic markers were used to identify 108 thelytokously produced offspring and 225 arrhenotokously produced offspring from 14 colonies. Patterns of appearance of thelytokous parthenogenesis were inconsistent with a single locus, either th or tae, controlling thelytoky. We further show that the 9 bp deletion is present in the arrhenotokous A. m. scutellata population in South Africa, in A. m. intermissa in Morocco and in Africanized bees from Brazil and Texas, USA, where thelytoky has not been reported. Thus the 9 p deletion cannot be the cause of thelytoky. Further, we found two novel tae alleles. One contains the previously described 9 bp deletion and an additional deletion of 7 bp nearby. The second carries a single base insertion with respect to the wild type. Our data are consistent with the putative th locus increasing reproductive capacity.
Collapse
Affiliation(s)
- N C Chapman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M Beekman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - M H Allsopp
- ARC-Plant Protection Research Institute, Stellenbosch, South Africa
| | - T E Rinderer
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, USDA-ARS, Baton Rouge, LA, USA
| | - J Lim
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - P R Oxley
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| | - B P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW, Australia
| |
Collapse
|
11
|
Genetic reincarnation of workers as queens in the Eastern honeybee Apis cerana. Heredity (Edinb) 2014; 114:65-8. [PMID: 25052414 DOI: 10.1038/hdy.2014.70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 11/09/2022] Open
Abstract
Thelytokous parthenogenesis, or the asexual production of female offspring, is rare in the animal kingdom, but relatively common in social Hymenoptera. However, in honeybees, it is only known to be ubiquitous in one subspecies of Apis mellifera, the Cape honeybee, A. mellifera capensis. Here we report the appearance of queen cells in two colonies of the Eastern honeybee Apis cerana that no longer contained a queen or queen-produced brood to rear queens from. A combination of microsatellite genotyping and the timing of the appearance of these individuals excluded the possibility that they had been laid by the original queen. Based on the genotypes of these individuals, thelytokous production by natal workers is the most parsimonious explanation for their existence. Thus, we present the first example of thelytoky in a honeybee outside A. mellifera. We discuss the evolutionary and ecological consequences of thelytoky in A. cerana, in particular the role thelytoky may play in the recent invasions by populations of this species.
Collapse
|
12
|
Roth KM, Beekman M, Allsopp MH, Goudie F, Wossler TC, Oldroyd BP. Cheating workers with large activated ovaries avoid risky foraging. Behav Ecol 2014. [DOI: 10.1093/beheco/aru043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Oldroyd BP, Allsopp MH, Roth KM, Remnant EJ, Drewell RA, Beekman M. A parent-of-origin effect on honeybee worker ovary size. Proc Biol Sci 2013; 281:20132388. [PMID: 24285196 DOI: 10.1098/rspb.2013.2388] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Apis mellifera capensis is unique among honeybees in that unmated workers can produce pseudo-clonal female offspring via thelytokous parthenogenesis. Workers use this ability to compete among themselves and with their queen to be the mother of new queens. Males could therefore enhance their reproductive success by imprinting genes that enhance fertility in their daughter workers. This possibility sets the scene for intragenomic conflict between queens and drones over worker reproductive traits. Here, we show a strong parent-of-origin effect for ovary size (number of ovarioles) in reciprocal crosses between two honeybee subspecies, A. m. capensis and Apis mellifera scutellata. In this cross, workers with an A. m. capensis father had 30% more ovarioles than genotypically matched workers with an A. m. scutellata father. Other traits we measured (worker weight at emergence and the presence/absence of a spermatheca) are influenced more by rearing conditions than by parent-of-origin effects. Our study is the first to show a strong epigenetic (or, less likely, cytoplasmic maternal) effect for a reproductive trait in the honeybee and suggests that a search for parent-of-origin effects in other social insects may be fruitful.
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, , Sydney, New South Wales 2006, Australia, Honey Bee Research Section, ARC-Plant Protection Research Institute, , Private Bag X5017, Stellenbosch 7599, South Africa, Department of Biology, Harvey Mudd College, , 301 Platt Boulevard, Claremont, CA 91001, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Cooperation in biological, social, and economic groups is underpinned by public goods that are generated by group members at some personal cost. Theory predicts that public goods will be exploited by cheaters who benefit from the goods by not paying for them, thereby leading to the collapse of cooperation. This situation, described as the "public goods dilemma" in game theory, makes the ubiquity of cooperation a major evolutionary puzzle. Despite this generalization, the demonstration of genetic background and fitness effects of the public goods dilemma has been limited to interactions between viruses and between cells, and thus its relevance at higher levels of organismal complexity is still largely unexplored. Here we provide experimental evidence for the public goods dilemma in a social insect, the ant Pristomyrmex punctatus. In this species, all workers are involved in both asexual reproduction and cooperative tasks. Genetic cheaters infiltrate field colonies, reproducing more than the workers but shunning cooperative tasks. In laboratory experiments, cheaters outcompeted coexisting workers in both survival and reproduction, although a group composed only of cheaters failed to produce offspring. The operations of the public goods dilemma in P. punctatus showed a remarkable convergence with those in microbial societies, not only in fitness consequences but also in behavioral mechanisms. Our study reinforces the evolutionary impact of cheaters on diverse cooperative systems in the laboratory and in the field.
Collapse
|
15
|
Holmes MJ, Oldroyd BP, Duncan M, Allsopp MH, Beekman M. Cheaters sometimes prosper: targeted worker reproduction in honeybee (Apis mellifera) colonies during swarming. Mol Ecol 2013; 22:4298-4306. [PMID: 23889604 DOI: 10.1111/mec.12387] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/08/2013] [Accepted: 05/12/2013] [Indexed: 11/29/2022]
Abstract
Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre-emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker-produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over-represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well-timed sons.
Collapse
Affiliation(s)
- Michael J Holmes
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, Macleay A12, Science Road, Sydney, NSW, 2006, Australia
| | - Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, Macleay A12, Science Road, Sydney, NSW, 2006, Australia
| | - Michael Duncan
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, Macleay A12, Science Road, Sydney, NSW, 2006, Australia
| | - Michael H Allsopp
- Honeybee Research Section, ARC-Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - Madeleine Beekman
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, Macleay A12, Science Road, Sydney, NSW, 2006, Australia
| |
Collapse
|
16
|
Beekman M, Allsopp MH, Lim J, Goudie F, Oldroyd BP. Response to "Reproductive Biology of the Cape Honeybee: A Critique of Beekman et al." by Pirk et al. J Hered 2012. [DOI: 10.1093/jhered/ess008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Pirk CW, Lattorff HMG, Moritz RFA, Sole CL, Radloff SE, Neumann P, Hepburn HR, Crewe RM. Reproductive Biology of the Cape Honeybee: A Critique of Beekman et al.: A critique of "Asexually Produced Cape Honeybee Queens (Apis mellifera capensis) Reproduce Sexually," authors: Madeleine Beekman, Michael H. Allsopp, Julianne Lim, Frances Goudie, and Benjamin P. Oldroyd. Journal of Heredity. 2011:102(5):562-566. J Hered 2012; 103:612-4; author reply 614-5. [DOI: 10.1093/jhered/ess007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Goudie F, Allsopp MH, Beekman M, Oxley PR, Lim J, Oldroyd BP. Maintenance and loss of heterozygosity in a thelytokous lineage of honey bees (Apis mellifera capensis). Evolution 2012; 66:1897-906. [PMID: 22671554 DOI: 10.1111/j.1558-5646.2011.01543.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades. It has been proposed that cytological adaptations slow the loss of heterozygosity in this lineage. However, we show that heterozygosity at the complementary sex determining (csd) locus is maintained via selection against homozygous diploid males that arise from recombination. Further, because zygosity is correlated across the genome, it appears that selection against diploid males reduces loss of homozygosity at other loci. Selection against homozygotes at csd results in substantial genetic load, so that if a thelytokous lineage is to endure, unusual ecological circumstances must exist in which asexuality permits such a high degree of fecundity that the genetic load can be tolerated. Without these ecological circumstances, sex will triumph over asexuality. In A. m. capensis, these conditions are provided by the parasitic interaction with its conspecific host, Apis mellifera scutellata.
Collapse
Affiliation(s)
- Frances Goudie
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Wenseleers T, Van Oystaeyen A. Unusual modes of reproduction in social insects: shedding light on the evolutionary paradox of sex. Bioessays 2011; 33:927-37. [PMID: 21997278 DOI: 10.1002/bies.201100096] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The study of alternative genetic systems and mixed modes of reproduction, whereby sexual and asexual reproduction is combined within the same lifecycle, is of fundamental importance as they may shed light on classical evolutionary issues, such as the paradox of sex. Recently, several such cases were discovered in social insects. A closer examination of these systems has revealed many amazing facts, including the mixed use of asexual and sexual reproduction for the production of new queens and workers, males that can clone themselves and the routine use of incest without deleterious genetic consequences. In addition, in several species, remarkable cases of asexually reproducing socially parasitic worker lineages have been discovered. The study of these unusual systems promises to provide insight into many basic evolutionary questions, including the maintenance of sex, the expression of sexual conflict and kin conflict and the evolution of cheating in asexual lineages.
Collapse
Affiliation(s)
- Tom Wenseleers
- Laboratory of Entomology, Department of Biology, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
20
|
Beekman M, Allsopp MH, Lim J, Goudie F, Oldroyd BP. Asexually produced Cape honeybee queens (Apis mellifera capensis) reproduce sexually. J Hered 2011; 102:562-6. [PMID: 21775677 DOI: 10.1093/jhered/esr075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unmated workers of the Cape honeybee Apis mellifera capensis can produce female offspring including daughter queens. As worker-laid queens are produced asexually, we wondered whether these asexually produced individuals reproduce asexually or sexually. We sampled 11 colonies headed by queens known to be the clonal offspring of workers and genotyped 23 worker offspring from each queen at 5 microsatellite loci. Without exception, asexually produced queens produced female worker offspring sexually. In addition, we report the replacement of a queen by her asexually produced granddaughter, with this asexually produced queen also producing offspring sexually. Hence, once a female larva is raised as a queen, mating and sexual reproduction appears to be obligatory in this subspecies, despite the fact that worker-laid queens are derived from asexual lineages.
Collapse
Affiliation(s)
- Madeleine Beekman
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
21
|
Chéron B, Monnin T, Fédérici P, Doums C. Variation in patriline reproductive success during queen production in orphaned colonies of the thelytokous ant Cataglyphis cursor. Mol Ecol 2011; 20:2011-22. [PMID: 21449906 DOI: 10.1111/j.1365-294x.2011.05075.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In genetically diverse insect societies (polygynous or polyandrous queens), the production of new queens can set the ground for competition among lineages. This competition can be very intense when workers can reproduce using thelytoky as worker lineages that manage to produce new queens gain a huge benefit. Selection at the individual level might then lead to the evolution of cheating genotypes, i.e. genotypes that reproduce more than their fair share. We studied the variation in reproductive success among worker patrilines in the thelytokous and highly polyandrous ant Cataglyphis cursor. Workers produce new queens by thelytoky in orphaned colonies. The reproductive success of each patriline was assessed in 13 orphaned colonies using genetic analysis of 433 workers and 326 worker-produced queens. Our results show that patrilines contributed unequally to queen production in half of the colonies, and the success of patrilines was function of their frequencies in workers. However, over all colonies, we observed a significant difference in the distribution of patrilines between workers and worker-produced queens, and this difference was significant in three of 13 colonies. In addition, six colonies contained a low percentage of foreign workers (drifters), and in one colony, they produced a disproportionably high number of queens. Hence, we found some evidence for the occurrence of rare cheating genotypes. Nevertheless, cheating appears to be less pronounced than in the Cape Honey bee, a species with a similar reproductive system. We argue that worker reproduction by parthenogenesis might not be common in natural populations of C. cursor.
Collapse
Affiliation(s)
- Blandine Chéron
- Laboratoire Écologie and Évolution CNRS UMR 7625, Université Pierre et Marie Curie, Paris 6, France
| | | | | | | |
Collapse
|
22
|
Oldroyd BP, Allsopp MH, Lim J, Beekman M. A thelytokous lineage of socially parasitic honey bees has retained heterozygosity despite at least 10 years of inbreeding. Evolution 2010; 65:860-8. [PMID: 21044063 DOI: 10.1111/j.1558-5646.2010.01164.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The honey bee population of South Africa is divided into two subspecies: a northern population in which queenless workers reproduce arrhenotokously and a southern one in which workers reproduce thelytokously. A hybrid zone separates the two, but on at least three occasions the northern population has become infested by reproductive workers derived from the southern population. These parasitic workers lay in host colonies parthenogenetically, resulting in yet more parasites. The current infestation is 20-year old--surprising because an asexual lineage is expected to show a decline in vigor over time due to increasing homozygosity. The decline is expected to be acute in honey bees, where homozygosity at the sex locus is lethal. We surveyed colonies from the zone of infestation and genotyped putative parasites at two sets of linked microsatellite loci. We confirm that there is a single clonal lineage of parasites that shows minor variations arising from recombination events. The lineage shows high levels of heterozygosity, which may be maintained by selection against homozygotes, or by a reduction in recombination frequency within the lineage. We suggest that the clonal lineage can endure the costs of asexual reproduction because of the fitness benefits of its parasitic life history.
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
23
|
Wenseleers T, Alves DA, Francoy TM, Billen J, Imperatriz-Fonseca VL. Intraspecific queen parasitism in a highly eusocial bee. Biol Lett 2010; 7:173-6. [PMID: 20961883 DOI: 10.1098/rsbl.2010.0819] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intraspecific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests.
Collapse
Affiliation(s)
- Tom Wenseleers
- Laboratory of Entomology, Zoological Institute, Catholic University of Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Moritz RFA, Lattorff HMG, Crous KL, Hepburn RH. Social parasitism of queens and workers in the Cape honeybee (Apis mellifera capensis). Behav Ecol Sociobiol 2010. [DOI: 10.1007/s00265-010-1077-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Zheng HQ, Dietemann V, Crewe RM, Hepburn R, Hu FL, Yang MX, Pirk CW. Pheromonal predisposition to social parasitism in the honeybee Apis mellifera capensis. Behav Ecol 2010. [DOI: 10.1093/beheco/arq131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Holmes MJ, Oldroyd BP, Allsopp MH, Lim J, Wossler TC, Beekman M. Maternity of emergency queens in the Cape honey bee, Apis mellifera capensis. Mol Ecol 2010; 19:2792-9. [PMID: 20546135 DOI: 10.1111/j.1365-294x.2010.04683.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de-queened colonies and determined the maternity of larvae and pupae that were reared as queens. This allowed us to determine how soon after queen loss workers contribute to the production of new queens. We were further interested to see if workers would preferentially raise new queens from queen-laid brood if this was introduced later. We performed our manipulations in two different settings: an apiary setting where colonies were situated close together and a more natural situation in which the colonies were well separated. This allowed us to determine how the vicinity of other colonies affects the presence of parasites. We found that workers do indeed contribute to queen cell production immediately after the loss of their queen, thus demonstrating that some workers either have activated ovaries even when their colony has a queen or are able to activate their ovaries extremely rapidly. Queen-laid brood introduced days after queen loss was ignored, showing that workers do not prefer to raise new queens from queen brood when given a choice. We also detected non-natal parasitism of queen cells in both settings. We therefore conclude that some A. m. capensis genotypes specialize in parasitizing queen cells.
Collapse
Affiliation(s)
- Michael J Holmes
- Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Insect colonies have been traditionally regarded as closed societies comprised of completely sterile workers ruled over by a single once-mated queen. However, over the past 15 years, microsatellite studies of parentage have revealed that this perception is far from the truth (Beekman & Oldroyd 2008). First, we learned that honey bee queens are far more promiscuous than we had previously imagined (Estoup et al. 1994), with one Apis dorsata queen clocked at over 100 mates (Wattanachaiyingcharoen et al. 2003). Then Oldroyd et al. (1994) reported a honey bee colony from Queensland, where virtually all the males were sons of a single patriline of workers - a clear case of a cheater mutant that promoted intra-colonial reproductive parasitism. Then we learned that both bumble bee colonies (Lopez-Vaamonde et al. 2004) and queenless honey bee colonies (Nanork et al. 2005, 2007) are routinely parasitized by workers from other nests that fly in and lay male-producing eggs that are then reared by the victim colony. There is even evidence that in a thelytokous honey bee population, workers lay female-destined eggs directly into queen cells, thus reincarnating themselves as a queen (Jordan et al. 2008). And let us not forget ants, where microsatellite studies have revealed equally bizarre and totally unexpected phenomena (e.g. Cahan & Keller 2003; Pearcy et al. 2004; Fournier et al. 2005). Now, in this issue, Alves et al. (2009) use microsatellites to provide yet another shocking and completely unexpected revelation about the nefarious goings-on in insect colonies: intergenerational reproductive parasitism by stingless bee workers.
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
28
|
Maternity of replacement queens in the thelytokous Cape honey bee Apis mellifera capensis. Behav Ecol Sociobiol 2009. [DOI: 10.1007/s00265-009-0872-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
|
30
|
Abstract
Ovarioles are the functional unit of the female insect reproductive organs and the number of ovarioles per ovary strongly influences egg-laying rate and fecundity. Social evolution in the honeybee (Apis mellifera) has resulted in queens with 200-360 total ovarioles and workers with usually 20 or less. In addition, variation in ovariole number among workers relates to worker sensory tuning, foraging behavior, and the ability to lay unfertilized male-destined eggs. To study the genetic architecture of worker ovariole number, we performed a series of crosses between Africanized and European bees that differ in worker ovariole number. Unexpectedly, these crosses produced transgressive worker phenotypes with extreme ovariole numbers that were sensitive to the social environment. We used a new selective pooled DNA interval mapping approach with two Africanized backcrosses to identify quantitative trait loci (QTL) underlying the transgressive ovary phenotype. We identified one QTL on chromosome 11 and found some evidence for another QTL on chromosome 2. Both QTL regions contain plausible functional candidate genes. The ovariole number of foragers was correlated with the sugar concentration of collected nectar, supporting previous studies showing a link between worker physiology and foraging behavior. We discuss how the phenotype of extreme worker ovariole numbers and the underlying genetic factors we identified could be linked to the development of queen traits.
Collapse
|
31
|
BEEKMAN MADELEINE, ALLSOPP MICHAELH, JORDAN LYNDONA, LIM JULIANNE, OLDROYD BENJAMINP. A quantitative study of worker reproduction in queenright colonies of the Cape honey bee,Apis mellifera capensis. Mol Ecol 2009; 18:2722-7. [DOI: 10.1111/j.1365-294x.2009.04224.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Cremer S, Sixt M. Analogies in the evolution of individual and social immunity. Philos Trans R Soc Lond B Biol Sci 2009; 364:129-42. [PMID: 18926974 DOI: 10.1098/rstb.2008.0166] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We compare anti-parasite defences at the level of multicellular organisms and insect societies, and find that selection by parasites at these two organisational levels is often very similar and has created a number of parallel evolutionary solutions in the host's immune response. The defence mechanisms of both individuals and insect colonies start with border defences to prevent parasite intake and are followed by soma defences that prevent the establishment and spread of the parasite between the body's cells or the social insect workers. Lastly, germ line defences are employed to inhibit infection of the reproductive tissue of organisms or the reproductive individuals in colonies. We further find sophisticated self/non-self-recognition systems operating at both levels, which appear to be vital in maintaining the integrity of the body or colony as a reproductive entity. We then expand on the regulation of immune responses and end with a contemplation of how evolution may shape the different immune components, both within and between levels. The aim of this review is to highlight common evolutionary principles acting in disease defence at the level of both individual organisms and societies, thereby linking the fields of physiological and ecological immunology.
Collapse
Affiliation(s)
- Sylvia Cremer
- Evolution, Behaviour and Genetics, Biology I, University of Regensburg, 93040 Regensburg, Germany.
| | | |
Collapse
|
33
|
Thelytokous parthenogenesis in unmated queen honeybees (Apis mellifera capensis): central fusion and high recombination rates. Genetics 2008; 180:359-66. [PMID: 18716331 DOI: 10.1534/genetics.108.090415] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits. Thus, in successful lineages of parasitic workers, recombination events are reduced by an order of magnitude relative to meiosis in queens of other honeybee subspecies. Here we show that in unmated A. m. capensis queens treated to induce oviposition, no such reduction in recombination occurs, indicating that thelytoky and reduced recombination are not controlled by the same gene. Our virgin queens were able to lay both arrhenotokous male-producing haploid eggs and thelytokous female-producing diploid eggs at the same time, with evidence that they have some voluntary control over which kind of egg was laid. If so, they are able to influence the kind of second-division meiosis that occurs in their eggs post partum.
Collapse
|
34
|
|
35
|
Oldroyd BP, Beekman M. Effects of selection for honey bee worker reproduction on foraging traits. PLoS Biol 2008; 6:e56. [PMID: 18318602 PMCID: PMC2270312 DOI: 10.1371/journal.pbio.0060056] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 01/22/2008] [Indexed: 11/18/2022] Open
Abstract
The "reproductive ground plan" hypothesis (RGPH) proposes that reproductive division of labour in social insects had its antecedents in the ancient gene regulatory networks that evolved to regulate the foraging and reproductive phases of their solitary ancestors. Thus, queens express traits that are characteristic of the reproductive phase of solitary insects, whereas workers express traits characteristic of the foraging phase. The RGPH has also been extended to help understand the regulation of age polyethism within the worker caste and more recently to explain differences in the foraging specialisations of individual honey bee workers. Foragers that specialise in collecting proteinaceous pollen are hypothesised to have higher reproductive potential than individuals that preferentially forage for nectar because genes that were ancestrally associated with the reproductive phase are active. We investigated the links between honey bee worker foraging behaviour and reproductive traits by comparing the foraging preferences of a line of workers that has been selected for high rates of worker reproduction with the preferences of wild-type bees. We show that while selection for reproductive behaviour in workers has not altered foraging preferences, the age at onset of foraging of our selected line has been increased. Our findings therefore support the hypothesis that age polyethism is related to the reproductive ground plan, but they cast doubt on recent suggestions that foraging preferences and reproductive traits are pleiotropically linked.
Collapse
Affiliation(s)
- Benjamin P Oldroyd
- Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences A12, University of Sydney, New South Wales, Australia.
| | | |
Collapse
|
36
|
Social Evolution: Reincarnation, Free-Riding and Inexplicable Modes of Reproduction. Curr Biol 2008; 18:R206-7. [DOI: 10.1016/j.cub.2008.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Kin composition effects on reproductive competition among queenless honeybee workers. Naturwissenschaften 2008; 95:427-32. [DOI: 10.1007/s00114-008-0343-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/23/2007] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
|