1
|
Ibrahim IM, Rowden SJL, Cramer WA, Howe CJ, Puthiyaveetil S. Thiol redox switches regulate the oligomeric state of cyanobacterial Rre1, RpaA, and RpaB response regulators. FEBS Lett 2022; 596:1533-1543. [PMID: 35353903 PMCID: PMC9321951 DOI: 10.1002/1873-3468.14340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/18/2022]
Abstract
Cyanobacteria employ two‐component sensor‐response regulator systems to monitor and respond to environmental challenges. The response regulators RpaA, RpaB, Rre1 and RppA are integral to circadian clock function and abiotic stress acclimation in cyanobacteria. RpaA, RpaB and Rre1 are known to interact with ferredoxin or thioredoxin, raising the possibility of their thiol regulation. Here, we report that Synechocystis sp. PCC 6803 Rre1, RpaA and RpaB exist as higher‐order oligomers under oxidising conditions and that reduced thioredoxin A converts them to monomers. We further show that these response regulators contain redox‐responsive cysteine residues with an Em7 around −300 mV. These findings suggest a direct thiol modulation of the activity of these response regulators, independent of their cognate sensor kinases.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Stephen J L Rowden
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Bairagi N, Watanabe S, Nimura-Matsune K, Tanaka K, Tsurumaki T, Nakanishi S, Tanaka K. Conserved Two-component Hik2-Rre1 Signaling Is Activated Under Temperature Upshift and Plastoquinone-reducing Conditions in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT & CELL PHYSIOLOGY 2022; 63:176-188. [PMID: 34750635 DOI: 10.1093/pcp/pcab158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The highly conserved Hik2-Rre1 two-component system is a multi-stress responsive signal-transducing module that controls the expression of hsp and other genes in cyanobacteria. Previously, we found in Synechococcus elongatus PCC 7942 that the heat-inducible phosphorylation of Rre1 was alleviated in a hik34 mutant, suggesting that Hik34 positively regulates signaling. In this study, we examined the growth of the hik34 deletion mutant in detail, and newly identified suppressor mutations located in rre1 or sasA gene negating the phenotype. Subsequent analyses indicated that heat-inducible Rre1 phosphorylation is dependent on Hik2 and that Hik34 modulates this Hik2-dependent response. In the following part of this study, we focused on the mechanism to control the Hik2 activity. Other recent studies reported that Hik2 activity is regulated by the redox status of plastoquinone (PQ) through the 3Fe-4S cluster attached to the cyclic GMP, adenylyl cyclase, FhlA (GAF) domain. Consistent with this, Rre1 phosphorylation occurred after the addition of 2,5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone but not after the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea to the culture medium, which corresponded to PQ-reducing or -oxidizing conditions, respectively, suggesting that the Hik2-to-Rre1 phosphotransfer was activated under PQ-reducing conditions. However, there was no correlation between the measured PQ redox status and Rre1 phosphorylation during the temperature upshift. Therefore, changes in the PQ redox status are not the direct reason for the heat-inducible Rre1 phosphorylation, while some redox regulation is likely involved as oxidation events dependent on 2,6-dichloro-1,4-benzoquinone prevented heat-inducible Rre1 phosphorylation. On the basis of these results, we propose a model for the control of Hik2-dependent Rre1 phosphorylation.
Collapse
Affiliation(s)
- Nachiketa Bairagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan
| | - Kaori Nimura-Matsune
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan
| | - Kenya Tanaka
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531 Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Tatsuhiro Tsurumaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan
| |
Collapse
|
3
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
4
|
Kayanja GE, Ibrahim IM, Puthiyaveetil S. Regulation of Phaeodactylum plastid gene transcription by redox, light, and circadian signals. PHOTOSYNTHESIS RESEARCH 2021; 147:317-328. [PMID: 33387192 DOI: 10.1007/s11120-020-00811-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Diatoms are a diverse group of photosynthetic unicellular algae with a plastid of red-algal origin. As prolific primary producers in the ocean, diatoms fix as much carbon as all rainforests combined. The molecular mechanisms that contribute to the high photosynthetic productivity and ecological success of diatoms are however not yet fully understood. Using the model diatom Phaeodactylum tricornutum, here we show rhythmic transcript accumulation of plastid psaA, psbA, petB, and atpB genes as driven by a free running circadian clock. Treatment with the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea overrides the circadian signal by markedly downregulating transcription of psaA, petB, and atpB genes but not the psbA gene. Changes in light quantity produce little change in plastid gene transcription while the effect of light quality seems modest with only the psaA gene responding in a pattern that is dependent on the redox state of the plastoquinone pool. The significance of these plastid transcriptional responses and the identity of the underlying genetic control systems are discussed with relevance to diatom photosynthetic acclimation.
Collapse
Affiliation(s)
- Gilbert E Kayanja
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Ibrahim IM, Wu H, Ezhov R, Kayanja GE, Zakharov SD, Du Y, Tao WA, Pushkar Y, Cramer WA, Puthiyaveetil S. An evolutionarily conserved iron-sulfur cluster underlies redox sensory function of the Chloroplast Sensor Kinase. Commun Biol 2020; 3:13. [PMID: 31925322 PMCID: PMC6949291 DOI: 10.1038/s42003-019-0728-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/08/2019] [Indexed: 11/09/2022] Open
Abstract
Photosynthetic efficiency depends on equal light energy conversion by two spectrally distinct, serially-connected photosystems. The redox state of the plastoquinone pool, located between the two photosystems, is a key regulatory signal that initiates acclimatory changes in the relative abundance of photosystems. The Chloroplast Sensor Kinase (CSK) links the plastoquinone redox signal with photosystem gene expression but the mechanism by which it monitors the plastoquinone redox state is unclear. Here we show that the purified Arabidopsis and Phaeodactylum CSK and the cyanobacterial CSK homologue, Histidine kinase 2 (Hik2), are iron-sulfur proteins. The Fe-S cluster of CSK is further revealed to be a high potential redox-responsive [3Fe-4S] center. CSK responds to redox agents with reduced plastoquinone suppressing its autokinase activity. Redox changes within the CSK iron-sulfur cluster translate into conformational changes in the protein fold. These results provide key insights into redox signal perception and propagation by the CSK-based chloroplast two-component system.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huan Wu
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN, 47907, USA
| | - Gilbert E Kayanja
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Stanislav D Zakharov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yanyan Du
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Weiguo Andy Tao
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN, 47907, USA
| | - William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, Osman M, Hamze M, Cock JM, Schaap P, Papon N. Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes. Genome Biol Evol 2019; 11:86-108. [PMID: 30252070 PMCID: PMC6324907 DOI: 10.1093/gbe/evy213] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Histidine kinases (HKs) are primary sensor proteins that act in cell signaling pathways generically referred to as "two-component systems" (TCSs). TCSs are among the most widely distributed transduction systems used by both prokaryotic and eukaryotic organisms to detect and respond to a broad range of environmental cues. The structure and distribution of HK proteins are now well documented in prokaryotes, but information is still fragmentary for eukaryotes. Here, we have taken advantage of recent genomic resources to explore the structural diversity and the phylogenetic distribution of HKs in the prominent eukaryotic supergroups. Searches of the genomes of 67 eukaryotic species spread evenly throughout the phylogenetic tree of life identified 748 predicted HK proteins. Independent phylogenetic analyses of predicted HK proteins were carried out for each of the major eukaryotic supergroups. This allowed most of the compiled sequences to be categorized into previously described HK groups. Beyond the phylogenetic analysis of eukaryotic HKs, this study revealed some interesting findings: 1) characterization of some previously undescribed eukaryotic HK groups with predicted functions putatively related to physiological traits; 2) discovery of HK groups that were previously believed to be restricted to a single kingdom in additional supergroups, and 3) indications that some evolutionary paths have led to the appearance, transfer, duplication, and loss of HK genes in some phylogenetic lineages. This study provides an unprecedented overview of the structure and distribution of HKs in the Eukaryota and represents a first step toward deciphering the evolution of TCS signaling in living organisms.
Collapse
Affiliation(s)
- Samar Kabbara
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Anaïs Hérivaux
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | | | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales, BBV, EA2106, Université François Rabelais de Tours, France
| | - Amandine Gastebois
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Université Paris 06, CNRS, Roscoff, France
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, United Kingdom
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène, GEIHP, EA3142, Université d’Angers, SFR 4208 ICAT, France
| |
Collapse
|
7
|
Ibrahim IM, Wang L, Puthiyaveetil S, Krauß N, Nield J, Allen JF. Oligomeric states in sodium ion-dependent regulation of cyanobacterial histidine kinase-2. PROTOPLASMA 2018; 255:937-952. [PMID: 29290041 PMCID: PMC5904244 DOI: 10.1007/s00709-017-1196-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Two-component signal transduction systems (TCSs) consist of sensor histidine kinases and response regulators. TCSs mediate adaptation to environmental changes in bacteria, plants, fungi and protists. Histidine kinase 2 (Hik2) is a sensor histidine kinase found in all known cyanobacteria and as chloroplast sensor kinase in eukaryotic algae and plants. Sodium ions have been shown to inhibit the autophosphorylation activity of Hik2 that precedes phosphoryl transfer to response regulators, but the mechanism of inhibition has not been determined. We report on the mechanism of Hik2 activation and inactivation probed by chemical cross-linking and size exclusion chromatography together with direct visualisation of the kinase using negative-stain transmission electron microscopy of single particles. We show that the functional form of Hik2 is a higher-order oligomer such as a hexamer or octamer. Increased NaCl concentration converts the active hexamer into an inactive tetramer. The action of NaCl appears to be confined to the Hik2 kinase domain.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Department of Biochemistry and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Liang Wang
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Norbert Krauß
- Botanisches Institut, Karlsruher Institut für Technologie, Karlsruhe, Germany
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
8
|
Allen JF. The CoRR hypothesis for genes in organelles. J Theor Biol 2017; 434:50-57. [DOI: 10.1016/j.jtbi.2017.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 11/12/2022]
|
9
|
Kobayashi I, Watanabe S, Kanesaki Y, Shimada T, Yoshikawa H, Tanaka K. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942. Mol Microbiol 2017; 104:260-277. [PMID: 28106321 DOI: 10.1111/mmi.13624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 11/28/2022]
Abstract
Bacteria and other organisms, including cyanobacteria, employ two-component signal transducing modules comprising histidine kinases and response regulators to acclimate to changing environments. While the number and composition of these modules differ among cyanobacteria, two response regulators that contain DNA binding domains, RpaB and Rre1, are conserved in all sequenced cyanobacterial genomes and are essential for viability. Although RpaB negatively or positively regulates high light and other stress-responsive gene expression, little is known about the function of Rre1. Here, they investigated the direct regulatory targets of Rre1 in the cyanobacterium Synechococcus elongatus PCC 7942. Chromatin immunoprecipitation and high-density tiling array analysis were used to map Rre1 binding sites. The sites included promoter regions for chaperone genes such as dnaK2, groESL-1, groEL-2, hspA and htpG, as well as the group 2 sigma factor gene rpoD2. In vivo and in vitro analyses revealed that Rre1 phosphorylation level, DNA binding activity and adjacent gene transcription increased in response to heat stress. These responses were much diminished in a knock-out mutant of Hik34, a previously identified heat shock regulator. Based on our results, we propose Hik34-Rre1 is the heat shock-responsive signaling module that positively regulates major chaperone and other genes in cyanobacteria.
Collapse
Affiliation(s)
- Ikki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Graduate School of Interdisciplinary Science, Tokyo Institute of Technology, Nagatsuta 4259-R1-29, Midori-ku, Yokohama, 226-8503, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tomohiro Shimada
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| |
Collapse
|
10
|
Ibrahim IM, Puthiyaveetil S, Khan C, Allen JF. Probing the nucleotide-binding activity of a redox sensor: two-component regulatory control in chloroplasts. PHOTOSYNTHESIS RESEARCH 2016; 130:93-101. [PMID: 26873738 PMCID: PMC5054060 DOI: 10.1007/s11120-016-0229-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/02/2016] [Indexed: 05/08/2023]
Abstract
Two-component signal transduction systems mediate adaptation to environmental changes in bacteria, plants, fungi, and protists. Each two-component system consists of a sensor histidine kinase and a response regulator. Chloroplast sensor kinase (CSK) is a modified sensor histidine kinase found in chloroplasts-photosynthetic organelles of plants and algae. CSK regulates the transcription of chloroplast genes in response to changes in photosynthetic electron transport. In this study, the full-length and truncated forms of Arabidopsis CSK proteins were overexpressed and purified in order to characterise their kinase and redox sensing activities. Our results show that CSK contains a modified kinase catalytic domain that binds ATP with high affinity and forms a quinone adduct that may confer redox sensing activity.
Collapse
Affiliation(s)
- Iskander M Ibrahim
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Sujith Puthiyaveetil
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | - John F Allen
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
11
|
Bohne AV, Schwenkert S, Grimm B, Nickelsen J. Roles of Tetratricopeptide Repeat Proteins in Biogenesis of the Photosynthetic Apparatus. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:187-227. [PMID: 27017009 DOI: 10.1016/bs.ircmb.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biosynthesis of the photosynthetic apparatus is a complex operation, which includes the concerted synthesis and assembly of lipids, pigments and metal cofactors, and dozens of proteins. Research conducted in recent years has shown that these processes, as well as the stabilization and repair of this molecular machinery, are facilitated by transiently acting regulatory proteins, many of which belong to the superfamily of helical repeat proteins. Here, we focus on one of its families in photoautotrophic model organisms, the tetratricopeptide repeat (TPR) proteins, which participate in almost all of these steps and are crucial for biogenesis of the thylakoid membrane.
Collapse
Affiliation(s)
- A-V Bohne
- Molecular Plant Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - S Schwenkert
- Botany, Ludwig-Maximilians-University, Munich, Germany
| | - B Grimm
- Institute of Biology/Plant Physiology, Humboldt University, Berlin, Germany
| | - J Nickelsen
- Molecular Plant Sciences, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
12
|
Ibrahim IM, Puthiyaveetil S, Allen JF. A Two-Component Regulatory System in Transcriptional Control of Photosystem Stoichiometry: Redox-Dependent and Sodium Ion-Dependent Phosphoryl Transfer from Cyanobacterial Histidine Kinase Hik2 to Response Regulators Rre1 and RppA. FRONTIERS IN PLANT SCIENCE 2016; 7:137. [PMID: 26904089 PMCID: PMC4751278 DOI: 10.3389/fpls.2016.00137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 05/13/2023]
Abstract
Two-component systems (TCSs) are ubiquitous signaling units found in prokaryotes. A TCS consists of a sensor histidine kinase and a response regulator protein as signal transducers. These regulatory systems mediate acclimation to various environmental changes by coupling environmental cues to gene expression. Hik2 is a sensor histidine kinase and its gene is found in all cyanobacteria. Hik2 is the homolog of Chloroplast Sensor Kinase (CSK), a protein involved in redox regulation of chloroplast gene expression during changes in light quality in plants and algae. Here we describe biochemical characterization of the signaling mechanism of Hik2 and its phosphotransferase activity. Results presented here indicate that Hik2 undergoes autophosphorylation on a conserved histidine residue, and becomes rapidly dephosphorylated by the action of response regulators Rre1 and RppA. We also show that the autophosphorylation of Hik2 is specifically inhibited by sodium ions.
Collapse
Affiliation(s)
- Iskander M. Ibrahim
- Faculty of Engineering and Science, University of Greenwich, Chatham MaritimeKent, UK
| | | | - John F. Allen
- Research Department of Genetics, Evolution and Environment, University College LondonLondon, UK
- *Correspondence: John F. Allen
| |
Collapse
|
13
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
14
|
Chauhan N. Two-component phosphorelays in fungal mitochondria and beyond. Mitochondrion 2015; 22:60-5. [PMID: 25858273 DOI: 10.1016/j.mito.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
Abstract
Prokaryotes, eukaryotic microorganisms and plants utilize two-component signal transduction pathways to detect and respond to various environmental cues. These signaling cascades were acquired by eukaryotes via horizontal gene transfer events from ancestral bacteria. Recent exciting discoveries have identified two-component signaling systems in mitochondria and chloroplasts of several eukaryotic microorganisms and plants, therefore providing important clues to the evolutionary transition of these signaling cascades from prokaryotes to eukaryotes. This review will focus on the role of two-component signal transduction pathways in fungal pathogenesis and also discuss key new discoveries of presence of proteins participating in these signaling pathways in mitochondrion. Before addressing these issues, I first briefly describe the magnitude and the economic impact of the healthcare problems caused by fungal pathogens.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, United States; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, United States.
| |
Collapse
|
15
|
Imam S, Noguera DR, Donohue TJ. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet 2014; 10:e1004837. [PMID: 25503406 PMCID: PMC4263372 DOI: 10.1371/journal.pgen.1004837] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022] Open
Abstract
Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. Photosynthetic organisms are among the most abundant life forms on earth. Their unique ability to harvest solar energy and use it to fix atmospheric carbon dioxide is at the foundation of the global food chain. This paper reports the first comprehensive analysis of networks that control expression of photosynthesis genes using Rhodobacter sphaeroides, a microbe that has been studied for decades as a model of solar energy capture and other aspects of the photosynthetic lifestyle. We find a previously unappreciated complexity in the level of control of photosynthetic genes, while identifying new links between photosynthesis and central processes like iron availability. This organism is an ancestor of modern day plants, so our data can inform studies in other photosynthetic organisms and improve our ability to harness solar energy for food and industrial processes.
Collapse
Affiliation(s)
- Saheed Imam
- Program in Cellular and Molecular Biology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin – Madison, Wisconsin Energy Institute, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin – Madison, Wisconsin Energy Institute, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Maier UG, Zauner S, Woehle C, Bolte K, Hempel F, Allen JF, Martin WF. Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol 2014; 5:2318-29. [PMID: 24259312 PMCID: PMC3879969 DOI: 10.1093/gbe/evt181] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Plastid and mitochondrial genomes have undergone parallel evolution to encode the same functional set of genes. These encode conserved protein components of the electron transport chain in their respective bioenergetic membranes and genes for the ribosomes that express them. This highly convergent aspect of organelle genome evolution is partly explained by the redox regulation hypothesis, which predicts a separate plastid or mitochondrial location for genes encoding bioenergetic membrane proteins of either photosynthesis or respiration. Here we show that convergence in organelle genome evolution is far stronger than previously recognized, because the same set of genes for ribosomal proteins is independently retained by both plastid and mitochondrial genomes. A hitherto unrecognized selective pressure retains genes for the same ribosomal proteins in both organelles. On the Escherichia coli ribosome assembly map, the retained proteins are implicated in 30S and 50S ribosomal subunit assembly and initial rRNA binding. We suggest that ribosomal assembly imposes functional constraints that govern the retention of ribosomal protein coding genes in organelles. These constraints are subordinate to redox regulation for electron transport chain components, which anchor the ribosome to the organelle genome in the first place. As organelle genomes undergo reduction, the rRNAs also become smaller. Below size thresholds of approximately 1,300 nucleotides (16S rRNA) and 2,100 nucleotides (26S rRNA), all ribosomal protein coding genes are lost from organelles, while electron transport chain components remain organelle encoded as long as the organelles use redox chemistry to generate a proton motive force.
Collapse
Affiliation(s)
- Uwe-G Maier
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The persistence of mtDNA to encode a small subset of mitochondrial proteins reflects the selective advantage of co-location of key respiratory chain subunit genes with their gene products. The disadvantage of this co-location is exposure of mtDNA to mutagenic ROS (reactive oxygen species), which are by-products of aerobic respiration. The resulting 'vicious circle' of mitochondrial mutation has been proposed to underlie aging and its associated degenerative diseases. Recent evidence is consistent with the hypothesis that oocyte mitochondria escape the aging process by acting as quiescent genetic templates, transcriptionally and bioenergetically repressed. Transmission of unexpressed mtDNA in the female germline is considered as a reason for the existence of separate sexes, i.e. male and female. Maternal inheritance then circumvents incremental accumulation of age-related disease in each new generation.
Collapse
|
18
|
Kotajima T, Shiraiwa Y, Suzuki I. Functional analysis of the N-terminal region of an essential histidine kinase, Hik2, in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 2013; 351:88-94. [PMID: 24283389 DOI: 10.1111/1574-6968.12346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/23/2013] [Indexed: 01/26/2023] Open
Abstract
Histidine kinases are sensory proteins involved in the perception of environmental changes. Here, we characterized one of three essential histidine kinases, Hik2, in the cyanobacterium Synechocystis sp. PCC 6803 by constructing a fused sensor, Hik2n-Hik7c, which has the signal input domain of Hik2 and the kinase domain of the phosphate-deficiency sensor Hik7. The coding region of the hik7 gene was replaced with the fused sensor to evaluate the signalling activity in vivo as the activity of alkaline phosphatase (AP), which is regulated by Hik7. Cells expressing Hik2n-Hik7c had weak AP activities under standard growth conditions. Saline stress by NaCl induced AP activity in a dose-dependent manner. Analysis of the effects of several salt compounds on induction of AP activity indicated that Hik2n-Hik7c responded to Cl- concentration. Amino acid substitution in the signal input domain of Hik2 resulted in loss of this responsiveness. These results suggest that the signal input domain of Hik2 responds to environmental Cl- concentration in Synechocystis.
Collapse
Affiliation(s)
- Tomonori Kotajima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; CREST, JST, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
19
|
Puthiyaveetil S, Ibrahim IM, Allen JF. Evolutionary rewiring: a modified prokaryotic gene-regulatory pathway in chloroplasts. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120260. [PMID: 23754813 DOI: 10.1098/rstb.2012.0260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photosynthetic electron transport regulates chloroplast gene transcription through the action of a bacterial-type sensor kinase known as chloroplast sensor kinase (CSK). CSK represses photosystem I (PS I) gene transcription in PS I light and thus initiates photosystem stoichiometry adjustment. In cyanobacteria and in non-green algae, CSK homologues co-exist with their response regulator partners in canonical bacterial two-component systems. In green algae and plants, however, no response regulator partner of CSK is found. Yeast two-hybrid analysis has revealed interaction of CSK with sigma factor 1 (SIG1) of chloroplast RNA polymerase. Here we present further evidence for the interaction between CSK and SIG1. We also show that CSK interacts with quinone. Arabidopsis SIG1 becomes phosphorylated in PS I light, which then specifically represses transcription of PS I genes. In view of the identical signalling properties of CSK and SIG1 and of their interactions, we suggest that CSK is a SIG1 kinase. We propose that the selective repression of PS I genes arises from the operation of a gene-regulatory phosphoswitch in SIG1. The CSK-SIG1 system represents a novel, rewired chloroplast-signalling pathway created by evolutionary tinkering. This regulatory system supports a proposal for the selection pressure behind the evolutionary stasis of chloroplast genes.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary University of London, , Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
20
|
Mitochondrial two-component signaling systems in Candida albicans. EUKARYOTIC CELL 2013; 12:913-22. [PMID: 23584995 DOI: 10.1128/ec.00048-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two-component signal transduction pathways are one of the primary means by which microorganisms respond to environmental signals. These signaling cascades originated in prokaryotes and were inherited by eukaryotes via endosymbiotic lateral gene transfer from ancestral cyanobacteria. We report here that the nuclear genome of the pathogenic fungus Candida albicans contains elements of a two-component signaling pathway that seem to be targeted to the mitochondria. The C. albicans two-component response regulator protein Srr1 (stress response regulator 1) contains a mitochondrial targeting sequence at the N terminus, and fluorescence microscopy reveals mitochondrial localization of green fluorescent protein-tagged Srr1. Moreover, phylogenetic analysis indicates that C. albicans Srr1 is more closely related to histidine kinases and response regulators found in marine bacteria than are other two-component proteins present in the fungi. These data suggest conservation of this protein during the evolutionary transition from endosymbiont to a subcellular organelle. We used microarray analysis to determine whether the phenotypes observed with a srr1Δ/Δ mutant could be correlated with gene transcriptional changes. The expression of mitochondrial genes was altered in the srr1Δ/Δ null mutant in comparison to their expression in the wild type. Furthermore, apoptosis increased significantly in the srr1Δ/Δ mutant strain compared to the level of apoptosis in the wild type, suggesting the activation of a mitochondrion-dependent apoptotic cell death pathway in the srr1Δ/Δ mutant. Collectively, this study shows for the first time that a lower eukaryote like C. albicans possesses a two-component response regulator protein that has survived in mitochondria and regulates a subset of genes whose functions are associated with the oxidative stress response and programmed cell death (apoptosis).
Collapse
|
21
|
Shimura Y, Shiraiwa Y, Suzuki I. Characterization of the Subdomains in the N-Terminal Region of Histidine Kinase Hik33 in the Cyanobacterium Synechocystis sp. PCC 6803. ACTA ACUST UNITED AC 2012; 53:1255-66. [DOI: 10.1093/pcp/pcs068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Soule KM, Rumpho ME. LIGHT-REGULATED PHOTOSYNTHETIC GENE EXPRESSION AND PHOSPHORIBULOKINASE ENZYME ACTIVITY IN THE HETEROKONT ALGA VAUCHERIA LITOREA (XANTHOPHYCEAE) AND ITS SYMBIOTIC MOLLUSKAN PARTNER ELYSIA CHLOROTICA (GASTROPODA)(1). JOURNAL OF PHYCOLOGY 2012; 48:373-383. [PMID: 27009727 DOI: 10.1111/j.1529-8817.2012.01111.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthesis is composed of tightly coupled reactions requiring finely tuned nucleocytosolic-plastid interaction. Herein, we examined the influence of light on select photosynthetic gene expression and enzyme activity in the plastid-containing mollusk (sea slug) Elysia chlorotica and its heterokont algal prey Vaucheria litorea C. Agardh. Transcript levels of nuclear photosynthetic genes (psbO and prk) were significantly lower in E. chlorotica compared with V. litorea, whereas plastid photosynthesis genes (psaA and rbcL) were more comparable, although still lower in the animal. None of the genes responded similarly to changes in light conditions over a 24 h period in the sea slug compared with the alga. Activity of the nuclear-encoded photosynthetic enzyme phosphoribulokinase (PRK) exhibited redox regulation in vitro in crude extracts of both organisms sequentially treated with oxidizing and reducing agents. However, PRK was differentially affected in vivo by redox and light versus dark treatment in V. litorea, but not in E. chlorotica. Overall, these results support the active transcription of algal nuclear and plastid genes in E. chlorotica, as well as sustained activity of a nuclear-encoded plastid enzyme, even after several months of starvation (absence of algal prey). The apparent absence of tight transcriptional regulation and redox control suggests that essential nuclear-encoded regulatory factors in V. litorea are probably not present in the sea slug. These findings are discussed relative to light regulation of photosynthetic gene expression in the green and red algal lineages and in the context of the sea slug/algal plastid kleptoplastic association.
Collapse
Affiliation(s)
- Kara M Soule
- Department of Molecular and Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, Maine 04469, USA
| | - Mary E Rumpho
- Department of Molecular and Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, Maine 04469, USA
| |
Collapse
|
23
|
Giraud E, Van Aken O, Uggalla V, Whelan J. REDOX regulation of mitochondrial function in plants. PLANT, CELL & ENVIRONMENT 2012; 35:271-80. [PMID: 21332513 DOI: 10.1111/j.1365-3040.2011.02293.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mitochondrial components dynamically change in response to environmental and developmental cues. However, the regulatory pathways that underlie these changes are largely unknown. A global analysis of changes in mitochondrial components at the transcript, protein and metabolite levels was undertaken, to gain a greater insight into how mitochondrial functions are regulated and respond to various internal or external cues. At the transcript level, large-scale changes in groups of genes suggest the presence of co-regulatory mechanisms for these components. Furthermore, the pathways that regulate these changes appear to be integrated into regulatory pathways that alter a variety of functions in cells. However, the changes in transcripts are not always observed at the protein or the metabolite level. This is likely to be due to post-transcriptional levels of regulation and also the fact that in-depth profiles, which have been obtained for transcripts from a variety of studies, are currently not available for proteins and metabolites. Thus, while transcripts for genes give us a picture of what the cells are 'thinking' in relation to mitochondrial components, some of these responses may be lost in translation.
Collapse
Affiliation(s)
- Estelle Giraud
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | | | | | | |
Collapse
|
24
|
Puthiyaveetil S, Ibrahim IM, Allen JF. Oxidation-reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts. PLANT, CELL & ENVIRONMENT 2012; 35:347-59. [PMID: 21554328 DOI: 10.1111/j.1365-3040.2011.02349.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
State transitions and photosystem stoichiometry adjustment are two oxidation-reduction (redox)-regulated acclimatory responses in photosynthesis. State transitions are short-term adaptations that, in chloroplasts, involve reversible post-translational modification by phosphorylation of light-harvesting complex II (LHC II). Photosystem stoichiometry adjustments are long-term responses involving transcriptional regulation of reaction centre genes. Both responses are initiated by changes in light quality and are regulated by the redox state of plastoquinone (PQ). The LHC II kinase involved in the state 2 transition is a serine/threonine kinase known as STT7 in Chlamydomonas, and as STN7 in Arabidopsis. The phospho-LHC II phosphatase that produces the state 1 transition is a PP2C-type protein phosphatase currently termed both TAP38 and PPH1. In plants and algae, photosystem stoichiometry adjustment is governed by a modified two-component sensor kinase of cyanobacterial origin - chloroplast sensor kinase (CSK). CSK is a sensor of the PQ redox state. Chloroplast sigma factor 1 (SIG1) and plastid transcription kinase (PTK) are the functional partners of CSK in chloroplast gene regulation. We suggest a signalling pathway for photosystem stoichiometry adjustment. The signalling pathways of state transitions and photosystem stoichiometry adjustments are proposed to be distinct, with the two pathways sensing PQ redox state independently of each other.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- Queen Mary, University of London, School of Biological and Chemical Sciences, London, UK
| | | | | |
Collapse
|
25
|
Allen JF, de Paula WBM, Puthiyaveetil S, Nield J. A structural phylogenetic map for chloroplast photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:645-55. [PMID: 22093371 DOI: 10.1016/j.tplants.2011.10.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts are cytoplasmic organelles and the sites of photosynthesis in eukaryotic cells. Advances in structural biology and comparative genomics allow us to identify individual components of the photosynthetic apparatus precisely with respect to the subcellular location of their genes. Here we present outline maps of four energy-transducing thylakoid membranes. The maps for land plants and red and green algae distinguish protein subunits encoded in the nucleus from those encoded in the chloroplast. We find no defining structural feature that is common to all chloroplast gene products. Instead, conserved patterns of gene location are consistent with photosynthetic redox chemistry exerting gene regulatory control over its own rate-limiting steps. Chloroplast DNA carries genes whose expression is placed under this control.
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | | | |
Collapse
|
26
|
Allen JF, Santabarbara S, Allen CA, Puthiyaveetil S. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription. PLoS One 2011; 6:e26372. [PMID: 22039472 PMCID: PMC3198397 DOI: 10.1371/journal.pone.0026372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/26/2011] [Indexed: 11/24/2022] Open
Abstract
In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK) is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II). Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32)P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.
Collapse
Affiliation(s)
- John F Allen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| | | | | | | |
Collapse
|
27
|
Kutuzov MA, Andreeva AV. Prediction of biological functions of Shewanella-like protein phosphatases (Shelphs) across different domains of life. Funct Integr Genomics 2011; 12:11-23. [DOI: 10.1007/s10142-011-0254-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/07/2011] [Accepted: 09/13/2011] [Indexed: 12/12/2022]
|
28
|
McDermott JE, Oehmen CS, McCue LA, Hill E, Choi DM, Stöckel J, Liberton M, Pakrasi HB, Sherman LA. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142. MOLECULAR BIOSYSTEMS 2011; 7:2407-18. [PMID: 21698331 DOI: 10.1039/c1mb05006k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. The cyanobacterium Cyanothece sp. ATCC 51142 is an excellent candidate for such systems biology studies because: (i) it displays tight functional regulation between photosynthesis and nitrogen fixation; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels; and (iii) it has potential applications for bioenergy production and carbon sequestration. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in this organism. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions, and represents a significant advance in the understanding of gene regulation in this important organism.
Collapse
Affiliation(s)
- Jason E McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, MSIN: J4-33, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Puthiyaveetil S, Ibrahim IM, Jeličić B, Tomašić A, Fulgosi H, Allen JF. Transcriptional control of photosynthesis genes: the evolutionarily conserved regulatory mechanism in plastid genome function. Genome Biol Evol 2010; 2:888-96. [PMID: 21071627 PMCID: PMC3012001 DOI: 10.1093/gbe/evq073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts—photosynthetic plastids—in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light quantity and quality.
Collapse
Affiliation(s)
- Sujith Puthiyaveetil
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Iskander M. Ibrahim
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | - Branka Jeličić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Tomašić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Hrvoje Fulgosi
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
30
|
Minoda A, Weber AP, Tanaka K, Miyagishima SY. Nucleus-independent control of the rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae. PLANT PHYSIOLOGY 2010; 154:1532-40. [PMID: 20813908 PMCID: PMC2971626 DOI: 10.1104/pp.110.163188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chloroplasts originated from a cyanobacterium, which was engulfed by a primitive eukaryotic host cell. During evolution, chloroplasts have largely lost their autonomy due to the loss of many genes from their own genomes. Consequently, expression of genes encoded in the chloroplast genome is mainly controlled by the factors transferred from the cytosol to chloroplasts. However, chloroplast genomes of glaucophytes and red algae have retained some transcription factors (hypothetical chloroplast open reading frame 27 to 30 [Ycf27-Ycf30]) that are absent from green algae and land plants. Here, we show that the red algal chloroplast up-regulates transcription of the Rubisco operon rbcLS-cbbX via Ycf30 independently of nuclear control. Light-induced transcriptional activation of the Rubisco operon was observed in chloroplasts isolated from the red alga Cyanidioschyzon merolae. The activation was suppressed by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results suggest that chloroplast autonomously regulates transcription of the Rubisco operon in response to the activation of photosynthesis driven by the light. Transcriptional activation of the Rubisco operon was specifically repressed by the addition of anti-Ycf30 antibodies. Furthermore, reduced NADP, ribulose-1,5-bisphosphate, and 3-phosphoglyceric acid triggered the up-regulation of Rubisco transcription in the dark, and the activation was dependent on Ycf30. Thus, red algal chloroplasts have retained a nucleus-independent transcriptional regulation of the Rubisco operon to respond to environmental changes. The autonomous system would have been necessary for the initial fixation of cyanobacterial photosynthesis in the ancient nonphotosynthetic eukaryotic host. It has remained functional in the red algal chloroplast over evolutionary time.
Collapse
|
31
|
Singh AK, Elvitigala T, Cameron JC, Ghosh BK, Bhattacharyya-Pakrasi M, Pakrasi HB. Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium. BMC SYSTEMS BIOLOGY 2010; 4:105. [PMID: 20678200 PMCID: PMC2924297 DOI: 10.1186/1752-0509-4-105] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 08/02/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. Synechocystis sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in Synechocystis have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes. RESULTS We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in Synechocystis. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of Synechocystis genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in Synechocystis under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes. CONCLUSION We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in Synechocystis.
Collapse
Affiliation(s)
- Abhay K Singh
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
32
|
Barbrook AC, Howe CJ, Kurniawan DP, Tarr SJ. Organization and expression of organellar genomes. Philos Trans R Soc Lond B Biol Sci 2010; 365:785-97. [PMID: 20124345 DOI: 10.1098/rstb.2009.0250] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protist mitochondrial genomes show a very wide range of gene content, ranging from three genes for respiratory chain components in Apicomplexa and dinoflagellates to nearly 100 genes in Reclinomonas americana. In many organisms the rRNA genes are fragmented, although still functional. Some protist mitochondria encode a full set of tRNAs, while others rely on imported molecules. There is similarly a wide variation in mitochondrial genome organization, even among closely related groups. Mitochondrial gene expression and control are generally poorly characterized. Transcription probably relies on a 'viral-type' RNA polymerase, although a 'bacterial-type' enzyme may be involved in some cases. Transcripts are heavily edited in many lineages. The chloroplast genome generally shows less variation in gene content and organization, although greatly reduced genomes are found in dinoflagellate algae and non-photosynthetic organisms. Genes in the former are located on small plasmids in contrast to the larger molecules found elsewhere. Control of gene expression in chloroplasts involves transcriptional and post-transcriptional regulation. Redox poise and the ATP/ADP ratio are likely to be important determinants. Some protists have an additional extranuclear genome, the nucleomorph, which is a remnant nucleus. Nucleomorphs of two separate lineages have a number of features in common.
Collapse
Affiliation(s)
- Adrian C Barbrook
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | | | |
Collapse
|
33
|
Ishida K, Niwa Y, Yamashino T, Mizuno T. A genome-wide compilation of the two-component systems in Lotus japonicus. DNA Res 2009; 16:237-47. [PMID: 19675111 PMCID: PMC2725789 DOI: 10.1093/dnares/dsp012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/30/2009] [Indexed: 11/14/2022] Open
Abstract
The two-component systems (TCS), or histidine-to-aspartate phosphorelays, are evolutionarily conserved common signal transduction mechanisms that are implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes including plants. Among higher plants, legumes including Lotus japonicus have a unique ability to engage in beneficial symbiosis with nitrogen-fixing bacteria. We previously presented a genome-wide compiled list of TCS-associated components of Mesorhizobium loti, which is a symbiont specific to L. japonicus (Hagiwara et al. 2004, DNA Res., 11, 57-65). To gain both general and specific insights into TCS of this currently attractive model legume, here we compiled TCS-associated components as many as possible from a genome-wide viewpoint by taking advantage that the efforts of whole genome sequencing of L. japonicus are almost at final stage. In the current database (http://www.kazusa.or.jp/lotus/index.html), it was found that L. japonicus has, at least, 14 genes each encoding a histidine kinase, 7 histidine-containing phosphotransmitter-related genes, 7 type-A response regulator (RR)-related genes, 11 type-B RR-related genes, and also 5 circadian clock-associated pseudo-RR genes. These results suggested that most of the L. japonicus TCS-associated genes have already been uncovered in this genome-wide analysis, if not all. Here, characteristics of these TCS-associated components of L. japonicus were inspected, one by one, in comparison with those of Arabidopsis thaliana. In addition, some critical experiments were also done to gain further insights into the functions of L. japonicus TCS-associated genes with special reference to cytokinin-mediated signal transduction and circadian clock.
Collapse
Affiliation(s)
| | | | - Takafumi Yamashino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | | |
Collapse
|