1
|
Woo SJ, Kim SS, Kim A, Cho MY, Do JW. Isolation, Identification, and Characteristics of Aeromonas salmonicida subsp. masoucida from Diseased Starry Flounder ( Platichthys stellatus). Pathogens 2025; 14:257. [PMID: 40137743 PMCID: PMC11945087 DOI: 10.3390/pathogens14030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Aeromonas salmonicida is a predominant pathogen that infects fish. The pathogen A. salmonicida subsp. masoucida (ASM) was isolated for the first time from diseased starry flounders (Platichthys stellatus). Our study aimed to isolate, characterize, and investigate the pathogenicity of ASM. Bacterial species were identified using 16s rRNA, gyrB, dnaJ, and vapA analyses. Phylogenetic tree analysis revealed that the ASM strains were clustered with the ASM ATCC strain and other strains isolated from black rockfish. In the antimicrobial susceptibility test, the three ASM strains were considered non-wild types for enrofloxacin, florfenicol, flumequine, oxolinic acid, and oxytetracycline susceptibility. Histopathological analysis revealed bacterial colonies in the secondary lamella and heart, indicating that ASM strains are highly virulent in fish. Comparative analysis and annotation via genome sequencing revealed that, among the 1156 factors, adherence factors were the most prevalent putative virulence determinants, followed by the effector delivery system and adherence. ASM was found to possess 43 type III secretion systems, 22 type VI secretion systems, 11 antimicrobial resistance genes, 3 stress genes, and prophage regions. These findings provide new insights into the virulence profile of ASM and highlight the risk posed by emerging pathogenic strains to starry flounders.
Collapse
Affiliation(s)
- Soo-Ji Woo
- Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung 25435, Republic of Korea; (S.-J.W.); (S.-S.K.)
| | - So-Sun Kim
- Aquaculture Industry Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangneung 25435, Republic of Korea; (S.-J.W.); (S.-S.K.)
| | - Ahran Kim
- Pathology Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (A.K.); (M.-Y.C.)
| | - Mi-Young Cho
- Pathology Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (A.K.); (M.-Y.C.)
| | - Jeong-Wan Do
- Pathology Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (A.K.); (M.-Y.C.)
| |
Collapse
|
2
|
Iko R, Gao Z, Jiang S, Xiong Y, Zhang W, Qiao H, Jin S, Fu H. Genetic Diversity and Population Structure of Macrobrachium nipponense Populations in the Saline-Alkaline Regions of China. Animals (Basel) 2025; 15:158. [PMID: 39858158 PMCID: PMC11758298 DOI: 10.3390/ani15020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The oriental river prawn Macrobrachium nipponense is of great economic importance in China. However, its culture in the saline-alkaline regions is limited. This study used D-loop region sequences to analyze the genetic diversity and population structure across the saline-alkaline regions of China. A total of 264 individuals were successfully sequenced from nine sites, including Daqing in Heilongjiang Province (HLJ), Songyuan in Jilin Province (JL), Ulanhot in the east of inner Mongolia (NMG), Jingtai in Gansu Province (GS), Dongying in Shandong Province (SD), Dongtai in Jiangsu Province (JS), Nanchang in Jiangxi province (JX), Tianjin in mainland China (TJ), and Yinchuan in Ningxia Province (NX). In addition, 89 haplotypes were defined. The haplotype diversity (h) and nucleotide diversity π showed remarkable genetic diversity in the JS, NX, JL, and TJ sites. It was found that the genetic variation within sites was relatively greater. The genetic distance (D) and the pairwise genetic differentiation index (FST) revealed that SD and GS are closely related. The FST values among the nine sites were significant except for the one between SD and HLJ (p-value > 0.05). The cluster analyses and the phylogenetic tree identified two main groups. There is an association among sites by geographic location, and the JS site shows higher diversity. The results of this study provide basic information for the protection and development of M. nipponense resources in the saline-alkaline regions of China.
Collapse
Affiliation(s)
- Romaric Iko
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (R.I.); (Z.G.)
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (R.I.); (Z.G.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (Y.X.); (W.Z.); (H.Q.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (Y.X.); (W.Z.); (H.Q.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (Y.X.); (W.Z.); (H.Q.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (Y.X.); (W.Z.); (H.Q.)
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (R.I.); (Z.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (Y.X.); (W.Z.); (H.Q.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (R.I.); (Z.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (S.J.); (Y.X.); (W.Z.); (H.Q.)
| |
Collapse
|
3
|
Giraudeau M, Vincze O, Dupont SM, Sepp T, Baines C, Lemaitre JF, Lemberger K, Gentès S, Boddy A, Dujon AM, Bramwell G, Harris V, Ujvari B, Alix-Panabières C, Lair S, Sayag D, Conde DA, Colchero F, Harrison TM, Pavard S, Padilla-Morales B, Chevallier D, Hamede R, Roche B, Malkocs T, Aktipis AC, Maley C, DeGregori J, Loc’h GL, Thomas F. Approaches and methods to study wildlife cancer. J Anim Ecol 2024; 93:1410-1428. [PMID: 39189422 PMCID: PMC11745198 DOI: 10.1111/1365-2656.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 08/28/2024]
Abstract
The last few years have seen a surge of interest from field ecologists and evolutionary biologists to study neoplasia and cancer in wildlife. This contributes to the One Health Approach, which investigates health issues at the intersection of people, wild and domestic animals, together with their changing environments. Nonetheless, the emerging field of wildlife cancer is currently constrained by methodological limitations in detecting cancer using non-invasive sampling. In addition, the suspected differential susceptibility and resistance of species to cancer often make the choice of a unique model species difficult for field biologists. Here, we provide an overview of the importance of pursuing the study of cancer in non-model organisms and we review the currently available methods to detect, measure and quantify cancer in the wild, as well as the methodological limitations to be overcome to develop novel approaches inspired by diagnostic techniques used in human medicine. The methodology we propose here will help understand and hopefully fight this major disease by generating general knowledge about cancer, variation in its rates, tumour-suppressor mechanisms across species as well as its link to life history and physiological characters. Moreover, this is expected to provide key information about cancer in wildlife, which is a top priority due to the accelerated anthropogenic change in the past decades that might favour cancer progression in wild populations.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Orsolya Vincze
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Hungarian Department of Biology and Ecology, Evolutionary Ecology Group, Babeş-Bolyai University, Cluj-Napoca, Romania
- HUN-REN-DE Conservation Biology Research Group, Debrecen, Hungary
| | - Sophie M. Dupont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), FRE 2030, Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ciara Baines
- Department of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jean-Francois Lemaitre
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, UMR5558, Université Lyon 1, Villeurbanne, France
| | | | - Sophie Gentès
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Amy Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Antoine M. Dujon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS5290–Université de Montpellier, Montpellier, France
| | - Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Valerie Harris
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Stephane Lair
- Faculté de médecine vétérinaire, Canadian Wildlife Health Cooperative/Centre québécois sur la santé des animaux sauvages, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - David Sayag
- ONCOnseil—Unité d’expertise en oncologie vétérinaire, Toulouse, France
| | - Dalia A. Conde
- Department of Biology, University of Southern Denmark, Odense M, Denmark
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
| | - Fernando Colchero
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Mathematics and Computer Sciences, University of Southern Denmark, Odense M, Denmark
| | - Tara M. Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel Pavard
- Unité Eco-Anthropologie (EA), Muséum National d’Histoire Naturelle, CNRS 7206, Université Paris Cité, Paris, France
| | - Benjamin Padilla-Morales
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, UK
| | - Damien Chevallier
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), FRE 2030, Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Rodrigo Hamede
- Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS5290–Université de Montpellier, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Tamas Malkocs
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, IUEM, Plouzane, France
| | - Athena C. Aktipis
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Department of Psychology, Arizona State University, Tempe, Arizona, USA
| | - Carlo Maley
- Arizona Cancer Evolution Center, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS5290–Université de Montpellier, Montpellier, France
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
4
|
Dujon AM, Ujvari B, Tissot S, Meliani J, Rieu O, Stepanskyy N, Hamede R, Tokolyi J, Nedelcu A, Thomas F. The complex effects of modern oncogenic environments on the fitness, evolution and conservation of wildlife species. Evol Appl 2024; 17:e13763. [PMID: 39100750 PMCID: PMC11294924 DOI: 10.1111/eva.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Growing evidence indicates that human activities are causing cancer rates to rise in both human and wildlife populations. This is due to the inability of ancestral anti-cancer defences to cope with modern environmental risks. The evolutionary mismatch between modern oncogenic risks and evolved cancer defences has far-reaching effects on various biological aspects at different timeframes, demanding a comprehensive study of the biology and evolutionary ecology of the affected species. Firstly, the increased activation of anti-cancer defences leads to excessive energy expenditure, affecting other biological functions and potentially causing health issues like autoimmune diseases. Secondly, tumorigenesis itself can impact important fitness-related parameters such as competitiveness, predator evasion, resistance to parasites, and dispersal capacity. Thirdly, rising cancer risks can influence the species' life-history traits, often favoring early reproduction to offset fitness costs associated with cancer. However, this strategy has its limits, and it may not ensure the sustainability of the species if cancer risks continue to rise. Lastly, some species may evolve additional anti-cancer defences, with uncertain consequences for their biology and future evolutionary path. In summary, we argue that the effects of increased exposure to cancer-causing substances on wildlife are complex, ranging from immediate responses to long-term evolutionary changes. Understanding these processes, especially in the context of conservation biology, is urgently needed.
Collapse
Affiliation(s)
- Antoine M. Dujon
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Océane Rieu
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Nikita Stepanskyy
- CREEC/CANECEV (CREES), MIVEGEC, Unité Mixte de Recherches, IRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| | - Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jácint Tokolyi
- Department of Evolutionary Zoology, MTA‐DE “Momentum” Ecology, Evolution and Developmental Biology Research GroupUniversity of DebrecenDebrecenHungary
| | - Aurora Nedelcu
- Department of BiologyUniversity of new BrunswickFrederictonNew BrunswickCanada
| | - Frédéric Thomas
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
5
|
Nunney L. The effect of body size and inbreeding on cancer mortality in breeds of the domestic dog: a test of the multi-stage model of carcinogenesis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231356. [PMID: 38298404 PMCID: PMC10827441 DOI: 10.1098/rsos.231356] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Cancer is a leading cause of death in domestic dogs. Deaths due to cancer vary widely among breeds, providing an opportunity for testing the multi-stage model of carcinogenesis. This model underpins evolutionary and basic studies of cancer suppression and predicts a linear increase in cancer with breed size, an expectation complicated by bigger breeds having a shorter lifespan (decreasing risk). Using three independent datasets, the weight and lifespan of breeds provided a good fit of lifetime cancer mortality to the multi-stage model, the fit suggesting many canine cancers are initiated by four driver mutations. Of 85 breeds in more than one dataset, only flat-coated retriever showed significantly elevated cancer mortality, with Scottish terrier, Bernese mountain dog and bullmastiff also showing notable risk (greater than 50% over expected). Analysis of breed clades suggested terriers experience elevated cancer mortality. There was no evidence that the lower mass-specific metabolic rate of larger breeds reduced cancer risk. Residuals indicated increased breed inbreeding shortened expected lifespan, but had no overall effect on cancer mortality. The results provide a baseline for identifying increased breed risk for specific cancers and demonstrate that, unless selection promotes increased cancer suppression, the evolution of larger longer-lived animals leads to a predictable increased cancer risk.
Collapse
Affiliation(s)
- Leonard Nunney
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Turner MD, Sunday A. A Lesion on the "King of Kings": Neurofibromas in the Parthian Empire's Arsacid Dynasty. Cureus 2023; 15:e46248. [PMID: 37908901 PMCID: PMC10614084 DOI: 10.7759/cureus.46248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Multiple kings of the Arsacid Dynasty of the ancient Parthian Empire are depicted on their coinage with a recurrent facial lesion, one that is found across multiple generations. Multiple theories have attempted to explain this phenomenon, from basal cell carcinoma to hereditary trichoepithelioma. In this paper, we suggest that these lesions are possibly a representation of the neurofibromas found in Neurofibromatosis 1, an autosomal dominant disease process.
Collapse
Affiliation(s)
- Matthew D Turner
- Emergency Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Adam Sunday
- Emergency, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| |
Collapse
|
7
|
Kraus C, Snyder-Mackler N, Promislow DEL. How size and genetic diversity shape lifespan across breeds of purebred dogs. GeroScience 2023; 45:627-643. [PMID: 36066765 PMCID: PMC9886701 DOI: 10.1007/s11357-022-00653-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/27/2022] [Indexed: 02/03/2023] Open
Abstract
While the lifespan advantage of small body size and mixed breed status has been documented repeatedly, evidence for an effect of genetic diversity across dog breeds is equivocal. We hypothesized that this might be due to a strong right-censoring bias in available breed-specific lifespan estimates where early-dying dogs from birth cohorts that have not died off completely at the time of data collection are sampled disproportionately, especially in breeds with rapidly growing populations. We took advantage of data on owner reported lifespan and cause of death from a large public database to quantify the effect of size and genetic diversity (heterozygosity) on mortality patterns across 118 breeds based on more than 40,000 dogs. After documenting and removing the right-censoring bias from the breed-specific lifespan estimates by including only completed birth cohorts in our analyses, we show that small size and genetic diversity are both linked to a significant increase in mean lifespan across breeds. To better understand the proximate mechanisms underlying these patterns, we then investigated two major mortality causes in dogs - the cumulative pathophysiologies of old age and cancer. Old age lifespan, as well as the percentage of old age mortality, decreased with increasing body size and increased with increasing genetic diversity. The lifespan of dogs dying of cancer followed the same patterns, but while large size significantly increased proportional cancer mortality, we could not detect a significant signal for lowered cancer mortality with increasing diversity. Our findings suggest that outcross programs will be beneficial for breed health and longevity. They also emphasize the need for high-quality mortality data for veterinary epidemiology as well as for developing the dog as a translational model for human geroscience.
Collapse
Affiliation(s)
| | - Noah Snyder-Mackler
- School of Life Sciences, Center for Evolution and Medicine, School for Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, WA 98195 USA
- Department of Biology, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
8
|
Ujvari B, Raven N, Madsen T, Klaassen M, Dujon AM, Schultz AG, Nunney L, Lemaître J, Giraudeau M, Thomas F. Telomeres, the loop tying cancer to organismal life-histories. Mol Ecol 2022; 31:6273-6285. [PMID: 35510763 PMCID: PMC9790343 DOI: 10.1111/mec.16488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/31/2023]
Abstract
Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.
Collapse
Affiliation(s)
- Beata Ujvari
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Nynke Raven
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Thomas Madsen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Marcel Klaassen
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Aaron G. Schultz
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Leonard Nunney
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCaliforniaUSA
| | - Jean‐François Lemaître
- Université de LyonLyonFrance,Laboratoire de Biométrie et Biologie ÉvolutiveUniversité Lyon 1CNRSUMR5558VilleurbanneFrance
| | - Mathieu Giraudeau
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance,LIENSsUMR 7266 CNRS‐La Rochelle UniversitéLa RochelleFrance
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MIVEGECUnité Mixte de RecherchesIRD 224–CNRS 5290–Université de MontpellierMontpellierFrance
| |
Collapse
|
9
|
Hendricks SA, King JL, Duncan CL, Vickers W, Hohenlohe PA, Davis BW. Genomic Assessment of Cancer Susceptibility in the Threatened Catalina Island Fox ( Urocyon littoralis catalinae). Genes (Basel) 2022; 13:1496. [PMID: 36011407 PMCID: PMC9408614 DOI: 10.3390/genes13081496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Small effective population sizes raise the probability of extinction by increasing the frequency of potentially deleterious alleles and reducing fitness. However, the extent to which cancers play a role in the fitness reduction of genetically depauperate wildlife populations is unknown. Santa Catalina island foxes (Urocyon littoralis catalinae) sampled in 2007-2008 have a high prevalence of ceruminous gland tumors, which was not detected in the population prior to a recent bottleneck caused by a canine distemper epidemic. The disease appears to be associated with inflammation from chronic ear mite (Otodectes) infections and secondary elevated levels of Staphyloccus pseudointermedius bacterial infections. However, no other environmental factors to date have been found to be associated with elevated cancer risk in this population. Here, we used whole genome sequencing of the case and control individuals from two islands to identify candidate loci associated with cancer based on genetic divergence, nucleotide diversity, allele frequency spectrum, and runs of homozygosity. We identified several candidate loci based on genomic signatures and putative gene functions, suggesting that cancer susceptibility in this population may be polygenic. Due to the efforts of a recovery program and weak fitness effects of late-onset disease, the population size has increased, which may allow selection to be more effective in removing these presumably slightly deleterious alleles. Long-term monitoring of the disease alleles, as well as overall genetic diversity, will provide crucial information for the long-term persistence of this threatened population.
Collapse
Affiliation(s)
- Sarah A. Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Julie L. King
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Calvin L. Duncan
- Catalina Island Conservancy, P.O. Box 2739, Avalon, CA 90704, USA
| | - Winston Vickers
- Institute for Wildlife Studies, Arcata, CA 95521, USA
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Paul A. Hohenlohe
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83844, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
10
|
Dujon AM, Boutry J, Tissot S, Meliani J, Guimard L, Rieu O, Ujvari B, Thomas F. A review of the methods used to induce cancer in invertebrates to study its effects on the evolution of species and ecosystem functioning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine M. Dujon
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Sophie Tissot
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Jordan Meliani
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Lena Guimard
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Océane Rieu
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Beata Ujvari
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| |
Collapse
|
11
|
Mursyidin DH, Makruf MI, Badruzsaufari, Noor A. Molecular diversity of exotic durian (Durio spp.) germplasm: a case study of Kalimantan, Indonesia. J Genet Eng Biotechnol 2022; 20:39. [PMID: 35230532 PMCID: PMC8888783 DOI: 10.1186/s43141-022-00321-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Background Durian of Indonesia, specifically Durio zibethinus, is a potential agricultural commodity for domestic and international markets. However, its quality is still less competitive or significantly lower to fulfill the export market, compared to a similar one from other countries. This study aimed to determine and analyze the genetic diversity and relationship of the exotic durian (Durio spp.) germplasm originally from Kalimantan, Indonesia, using the rbcL marker. Results Based on this marker, the durian germplasm has a low genetic diversity (π%=0.24). It may strongly correspond with the variability sites or mutation present in the region. In this case, the rbcL region of the durian germplasm has generated 23 variable sites with a transition/transversion (Ti/Tv) bias value of 1.00. However, following the phylogenetic and principal component analyses, this germplasm is separated into four main clades and six groups, respectively. In this case, D. zibethinus was very closely related to D. exleyanus. Meanwhile, D. lowianus and D. excelsus were the farthest. In further analysis, 29 durians were very closely related, and the farthest was shown by Durian Burung (D. acutifolius) and Kalih Haliyang (D. kutejensis) as well as Pampaken Burung Kecil (D. kutejensis) and Durian Burung (D. acutifolius) with a divergence coefficient of 0.011. The Pearson correlation analysis confirms that 20 pairs of individual durians have a strong relation, shown by, e.g., Maharawin Hamak and Durian Burung as well as Mantuala Batu Hayam and Durian Burung Besar. Conclusion While the durian has a low genetic diversity, the phylogenetic analyses revealed that this germplasm originally from Kalimantan, Indonesia, shows unique relationships. These findings may provide a beneficial task in supporting the durian genetic conservation and breeding practices in the future, locally and globally.
Collapse
|
12
|
Tissot S, Gérard AL, Boutry J, Dujon AM, Russel T, Siddle H, Tasiemski A, Meliani J, Hamede R, Roche B, Ujvari B, Thomas F. Transmissible Cancer Evolution: The Under-Estimated Role of Environmental Factors in the “Perfect Storm” Theory. Pathogens 2022; 11:pathogens11020241. [PMID: 35215185 PMCID: PMC8876101 DOI: 10.3390/pathogens11020241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Although the true prevalence of transmissible cancers is not known, these atypical malignancies are likely rare in the wild. The reasons behind this rarity are only partially understood, but the “Perfect Storm hypothesis” suggests that transmissible cancers are infrequent because a precise confluence of tumor and host traits is required for their emergence. This explanation is plausible as transmissible cancers, like all emerging pathogens, will need specific biotic and abiotic conditions to be able to not only emerge, but to spread to detectable levels. Because those conditions would be rarely met, transmissible cancers would rarely spread, and thus most of the time disappear, even though they would regularly appear. Thus, further research is needed to identify the most important factors that can facilitate or block the emergence of transmissible cancers and influence their evolution. Such investigations are particularly relevant given that human activities are increasingly encroaching into wild areas, altering ecosystems and their processes, which can influence the conditions needed for the emergence and spread of transmissible cell lines.
Collapse
Affiliation(s)
- Sophie Tissot
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
- Correspondence:
| | - Anne-Lise Gérard
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 32020, Australia; (A.M.D.); (B.U.)
| | - Justine Boutry
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
| | - Antoine M. Dujon
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 32020, Australia; (A.M.D.); (B.U.)
| | - Tracey Russel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Hannah Siddle
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Aurélie Tasiemski
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France;
| | - Jordan Meliani
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Benjamin Roche
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinariay Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 01030, Mexico
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 32020, Australia; (A.M.D.); (B.U.)
| | - Frédéric Thomas
- CREEC/MIVEGEC, Université de Montpellier, CNRS, IRD, 34394 Montpellier, France; (A.-L.G.); (J.B.); (J.M.); (B.R.); (F.T.)
| |
Collapse
|
13
|
Durrant R, Hamede R, Wells K, Lurgi M. Disruption of Metapopulation Structure Reduces Tasmanian Devil Facial Tumour Disease Spread at the Expense of Abundance and Genetic Diversity. Pathogens 2021; 10:pathogens10121592. [PMID: 34959547 PMCID: PMC8705368 DOI: 10.3390/pathogens10121592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Metapopulation structure plays a fundamental role in the persistence of wildlife populations. It can also drive the spread of infectious diseases and transmissible cancers such as the Tasmanian devil facial tumour disease (DFTD). While disrupting this structure can reduce disease spread, it can also impair host resilience by disrupting gene flow and colonisation dynamics. Using an individual-based metapopulation model we investigated the synergistic effects of host dispersal, disease transmission rate and inter-individual contact distance for transmission, on the spread and persistence of DFTD from local to regional scales. Disease spread, and the ensuing population declines, are synergistically determined by individuals' dispersal, disease transmission rate and within-population mixing. Transmission rates can be magnified by high dispersal and inter-individual transmission distance. The isolation of local populations effectively reduced metapopulation-level disease prevalence but caused severe declines in metapopulation size and genetic diversity. The relative position of managed (i.e., isolated) local populations had a significant effect on disease prevalence, highlighting the importance of considering metapopulation structure when implementing metapopulation-scale disease control measures. Our findings suggest that population isolation is not an ideal management method for preventing disease spread in species inhabiting already fragmented landscapes, where genetic diversity and extinction risk are already a concern.
Collapse
Affiliation(s)
- Rowan Durrant
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (R.D.); (K.W.)
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Konstans Wells
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (R.D.); (K.W.)
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (R.D.); (K.W.)
- Correspondence: ; Tel.: +44-(0)-1792-602157
| |
Collapse
|
14
|
M. Dujon A, Brown JS, Destoumieux‐Garzón D, Vittecoq M, Hamede R, Tasiemski A, Boutry J, Tissot S, Alix‐Panabieres C, Pujol P, Renaud F, Simard F, Roche B, Ujvari B, Thomas F. On the need for integrating cancer into the One Health perspective. Evol Appl 2021; 14:2571-2575. [PMID: 34815739 PMCID: PMC8591323 DOI: 10.1111/eva.13303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/11/2022] Open
Abstract
Recent pandemics have highlighted the urgency to connect disciplines studying animal, human, and environment health, that is, the "One Health" concept. The One Health approach takes a holistic view of health, but it has largely focused on zoonotic diseases while not addressing oncogenic processes. We argue that cancers should be an additional key focus in the One Health approach based on three factors that add to the well-documented impact of humans on the natural environment and its implications on cancer emergence. First, human activities are oncogenic to other animals, exacerbating the dynamics of oncogenesis, causing immunosuppressive disorders in wildlife with effects on host-pathogen interactions, and eventually facilitating pathogen spillovers. Second, the emergence of transmissible cancers in animal species (including humans) has the potential to accelerate biodiversity loss across ecosystems and to become pandemic. It is crucial to understand why, how, and when transmissible cancers emerge and spread. Third, translating knowledge of tumor suppressor mechanisms found across the Animal Kingdom to human health offers novel insights into cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Antoine M. Dujon
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
| | - Joel S. Brown
- Department of Integrated Mathematical OncologyMoffitt Cancer CenterTampaFloridaUSA
| | | | - Marion Vittecoq
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
- Tour du ValatResearch Institute for the Conservation of Mediterranean WetlandsArlesFrance
| | - Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
| | - Aurélie Tasiemski
- Univ. LilleCNRSInsermCHU LilleInstitut Pasteur de LilleU1019‐UMR9017‐CIIL‐Centre d'Infection et d'Immunité de LilleLilleFrance
| | - Justine Boutry
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
| | - Sophie Tissot
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
| | - Catherine Alix‐Panabieres
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
- Laboratory of Rare Human Circulating Cells (LCCRH)University Medical Centre of MontpellierMontpellierFrance
| | - Pascal Pujol
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
- Oncogenetic DepartmentUniversity Medical Centre of MontpellierMontpellierFrance
| | - François Renaud
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
| | - Frédéric Simard
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
| | - Benjamin Roche
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
| | - Beata Ujvari
- School of Life and Environmental SciencesCentre for Integrative EcologyDeakin UniversityWaurn PondsVic.Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES)MontpellierFrance
- MIVEGECUniversité de Montpellier, CNRS, IRDMontpellierFrance
| |
Collapse
|
15
|
Madsen T, Loman J, Anderberg L, Anderberg H, Georges A, Ujvari B. Genetic rescue restores long-term viability of an isolated population of adders (Vipera berus). Curr Biol 2021; 30:R1297-R1299. [PMID: 33142093 DOI: 10.1016/j.cub.2020.08.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Climate change is regarded as a major threat to global biodiversity [1]. However, another key driver of declines in biodiversity during the last century has been, and still is, the devastating impact of anthropogenic habitat destruction [2]. Human degradation of natural habitats has resulted in large, formerly homogeneous areas becoming exceedingly isolated and fragmented, resulting in reduced genetic diversity and a concomitant increased vulnerability to pathogens [3] and increased risk of inbreeding [4]. In order to restore genetic diversity in small isolated or fragmented populations, genetic rescue - that is, an intervention in which unrelated individuals are brought into a population, leading to introduction of novel alleles - has been shown to reduce the deleterious effects of inbreeding [4,5].
Collapse
Affiliation(s)
- Thomas Madsen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia.
| | - Jon Loman
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | | | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| |
Collapse
|
16
|
Upadhyay A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis 2021; 8:655-661. [PMID: 34291136 PMCID: PMC8278524 DOI: 10.1016/j.gendis.2020.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer is a disease of altered signaling and metabolism, causing uncontrolled division and survival of transformed cells. A host of molecules, factors, and conditions have been designated as underlying causes for the inception and progression of the disease. An enormous amount of data is available, system-wide interaction networks of the genes and proteins are generated over the years and have now reached up to a level of saturation, where we need to shift our focus to the more advanced and comprehensive methods and approaches of data analysis and visualization. Even with the availability of enormous literature on this one of the most pressing pathological conditions, a successful cure of the disease seems to be obscure. New treatment plans, like immunotherapy and precision medicine, are being employed for different studies. Nevertheless, their actual benefits to the patients would be known only after the evaluation of clinical data over the next few years. Therefore, we need to look at few fundamental challenges that should be addressed in more depth before we could devise better, rigorous, and comprehensive treatment plans and may successfully reach a possible cure of the disease. This article aims at bringing attention towards some fundamental gaps in our approach towards the disease that leads to failure in devising successful therapeutics.
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, 305817, India
| |
Collapse
|
17
|
Yu Y, Krupa A, Keesler RI, Grinwis GCM, de Ruijsscher M, de Vos J, Groenen MAM, Crooijmans RPMA. Familial follicular cell thyroid carcinomas in a large number of Dutch German longhaired pointers. Vet Comp Oncol 2021; 20:227-234. [PMID: 34464021 PMCID: PMC9292937 DOI: 10.1111/vco.12769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
Thyroid carcinomas (TCs) originating from follicular cells of the thyroid gland occur in both humans and dogs, and they have highly similar histomorphologic patterns. In dogs, TCs have not been extensively investigated, especially concerning the familial origin of TCs. Here, we report familial thyroid follicular cell carcinomas (FCCs) confirmed by histology in 54 Dutch origin German longhaired pointers. From the pedigree, 45 of 54 histopathologically confirmed cases are closely related to a pair of first‐half cousins in the past, indicating a familial disease. In addition, genetics contributed more to the thyroid FCC than other factors by an estimated heritability of 0.62 based on pedigree. The age of diagnosis ranged between 4.5 and 13.5 years, and 76% of cases were diagnosed before 10 years of age, implying an early onset of disease. We observed a significant higher pedigree‐based inbreeding coefficient in the affected dogs (mean F, 0.23) compared to unaffected dogs (mean F, 0.14), suggesting the contribution of inbreeding to tumour development. The unique occurrence of familial thyroid FCC in this dog population and the large number of affected dogs make this population an important model to identify the genetic basis of familial thyroid FCC in this breed and may contribute to the research into pathogenesis, prevention and treatment in humans.
Collapse
Affiliation(s)
- Yun Yu
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Adriana Krupa
- AniCura Dierenziekenhuis Zeeuws-Vlaanderen, Terneuzen, The Netherlands
| | - Rebekah I Keesler
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Johan de Vos
- AniCura Dierenziekenhuis Zeeuws-Vlaanderen, Terneuzen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
18
|
Yu Y, Bovenhuis H, Wu Z, Laport K, Groenen MAM, Crooijmans RPMA. Deleterious Mutations in the TPO Gene Associated with Familial Thyroid Follicular Cell Carcinoma in Dutch German Longhaired Pointers. Genes (Basel) 2021; 12:997. [PMID: 34209805 PMCID: PMC8306087 DOI: 10.3390/genes12070997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Familial thyroid cancer originating from follicular cells accounts for 5-15% of all the thyroid carcinoma cases in humans. Previously, we described thyroid follicular cell carcinomas in a large number of the Dutch German longhaired pointers (GLPs) with a likely autosomal recessive inheritance pattern. Here, we investigated the genetic causes of the disease using a combined approach of genome-wide association study and runs of homozygosity (ROH) analysis based on 170k SNP array genotype data and whole-genome sequences. A region 0-5 Mb on chromosome 17 was identified to be associated with the disease. Whole-genome sequencing revealed many mutations fitting the recessive inheritance pattern in this region including two deleterious mutations in the TPO gene, chr17:800788G>A (686F>V) and chr17:805276C>T (845T>M). These two SNP were subsequently genotyped in 186 GLPs (59 affected and 127 unaffected) and confirmed to be highly associated with the disease. The recessive genotypes had higher relative risks of 16.94 and 16.64 compared to homozygous genotypes for the reference alleles, respectively. This study provides novel insight into the genetic causes leading to the familial thyroid follicular cell carcinoma, and we were able to develop a genetic test to screen susceptible dogs.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard P. M. A. Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.Y.); (H.B.); (Z.W.); (K.L.); (M.A.M.G.)
| |
Collapse
|
19
|
Al-Fatlawi A, Malekian N, García S, Henschel A, Kim I, Dahl A, Jahnke B, Bailey P, Bolz SN, Poetsch AR, Mahler S, Grützmann R, Pilarsky C, Schroeder M. Deep Learning Improves Pancreatic Cancer Diagnosis Using RNA-Based Variants. Cancers (Basel) 2021; 13:2654. [PMID: 34071263 PMCID: PMC8199344 DOI: 10.3390/cancers13112654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
For optimal pancreatic cancer treatment, early and accurate diagnosis is vital. Blood-derived biomarkers and genetic predispositions can contribute to early diagnosis, but they often have limited accuracy or applicability. Here, we seek to exploit the synergy between them by combining the biomarker CA19-9 with RNA-based variants. We use deep sequencing and deep learning to improve differentiating pancreatic cancer and chronic pancreatitis. We obtained samples of nucleated cells found in peripheral blood from 268 patients suffering from resectable, non-resectable pancreatic cancer, and chronic pancreatitis. We sequenced RNA with high coverage and obtained millions of variants. The high-quality variants served as input together with CA19-9 values to deep learning models. Our model achieved an area under the curve (AUC) of 96% in differentiating resectable cancer from pancreatitis using a test cohort. Moreover, we identified variants to estimate survival in resectable cancer. We show that the blood transcriptome harbours variants, which can substantially improve noninvasive clinical diagnosis.
Collapse
Affiliation(s)
- Ali Al-Fatlawi
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (A.A.-F.); (N.M.); (I.K.); (S.N.B.); (A.R.P.)
| | - Negin Malekian
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (A.A.-F.); (N.M.); (I.K.); (S.N.B.); (A.R.P.)
| | - Sebastián García
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.G.); (B.J.)
| | - Andreas Henschel
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| | - Ilwook Kim
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (A.A.-F.); (N.M.); (I.K.); (S.N.B.); (A.R.P.)
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Beatrix Jahnke
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.G.); (B.J.)
| | - Peter Bailey
- Department of Surgical Research, Universitätsklinikum Erlangen, Maximiliansplatz 2, 91054 Erlangen, Germany; (P.B.); (R.G.); (C.P.)
| | - Sarah Naomi Bolz
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (A.A.-F.); (N.M.); (I.K.); (S.N.B.); (A.R.P.)
| | - Anna R. Poetsch
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (A.A.-F.); (N.M.); (I.K.); (S.N.B.); (A.R.P.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
| | - Sandra Mahler
- Department of Medical Oncology, Universitätsklinikum Dresden, 01307 Dresden, Germany;
| | - Robert Grützmann
- Department of Surgical Research, Universitätsklinikum Erlangen, Maximiliansplatz 2, 91054 Erlangen, Germany; (P.B.); (R.G.); (C.P.)
| | - Christian Pilarsky
- Department of Surgical Research, Universitätsklinikum Erlangen, Maximiliansplatz 2, 91054 Erlangen, Germany; (P.B.); (R.G.); (C.P.)
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany; (A.A.-F.); (N.M.); (I.K.); (S.N.B.); (A.R.P.)
| |
Collapse
|
20
|
Abstract
AbstractMany species on endangered species lists such as the IUCN Red List (RL) are categorized using demographic factors such as numbers of mature individuals. Genetic factors are not currently used in the RL even though their explicit consideration, including effective population size (Ne) and expected heterozygosity-loss (H-loss), could improve the assessment of extinction risk. Here, we consider the estimation of Ne and H-loss in the context of RL species. First, we investigate the reporting of number of mature individuals for RL Endangered species, which is needed to estimate Ne and H-loss. We found 77% of species assessments studied here did not report methods used to estimate the number of mature adults, and that these assessments rarely report other important determinants of Ne (e.g., sex ratio, variance in family size). We therefore applied common rules of thumb to estimate Ne, and found that Ne was likely < 50 for at least 25% of the 170 RL Endangered species studied here. We also estimated mean expected H-loss for these species over the next 100 years, and found it to be 9–29%. These estimates of high H-loss and low Ne suggest that some species listed as Endangered likely warrant listing as Critically Endangered if genetic considerations were included. We recommend that RL and other assessment frameworks (i) report methods used for estimating the number of mature adults, (ii) include standardized information on species traits that influence Ne to facilitate Ne estimation, and (iii) consider using concepts like Ne and heterozygosity-loss in risk assessments.
Collapse
|
21
|
Boddy AM, Harrison TM, Abegglen LM. Comparative Oncology: New Insights into an Ancient Disease. iScience 2020; 23:101373. [PMID: 32738614 PMCID: PMC7394918 DOI: 10.1016/j.isci.2020.101373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has deep evolutionary roots and is an important source of selective pressure in organismal evolution. Yet, we find a great deal of variation in cancer vulnerabilities across the tree of life. Comparative oncology offers insights into why some species vary in their susceptibility to cancer and the mechanisms responsible for the diversity of cancer defenses. Here we provide an overview for why cancer persists across the tree of life. We then summarize current data on cancer in mammals, reptiles, and birds in comparison with commonly reported human cancers. We report on both novel and shared mechanisms of cancer protection in animals. Cross-discipline collaborations, including zoological and aquarium institutions, wildlife and evolutionary biologists, veterinarians, medical doctors, cancer biologists, and oncologists, will be essential for progress in the field of comparative oncology. Improving medical treatment of humans and animals with cancer is the ultimate promise of comparative oncology.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Tara M Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lisa M Abegglen
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
22
|
Hamede R, Owen R, Siddle H, Peck S, Jones M, Dujon AM, Giraudeau M, Roche B, Ujvari B, Thomas F. The ecology and evolution of wildlife cancers: Applications for management and conservation. Evol Appl 2020; 13:1719-1732. [PMID: 32821279 PMCID: PMC7428810 DOI: 10.1111/eva.12948] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Ecological and evolutionary concepts have been widely adopted to understand host-pathogen dynamics, and more recently, integrated into wildlife disease management. Cancer is a ubiquitous disease that affects most metazoan species; however, the role of oncogenic phenomena in eco-evolutionary processes and its implications for wildlife management and conservation remains undeveloped. Despite the pervasive nature of cancer across taxa, our ability to detect its occurrence, progression and prevalence in wildlife populations is constrained due to logistic and diagnostic limitations, which suggests that most cancers in the wild are unreported and understudied. Nevertheless, an increasing number of virus-associated and directly transmissible cancers in terrestrial and aquatic environments have been detected. Furthermore, anthropogenic activities and sudden environmental changes are increasingly associated with cancer incidence in wildlife. This highlights the need to upscale surveillance efforts, collection of critical data and developing novel approaches for studying the emergence and evolution of cancers in the wild. Here, we discuss the relevance of malignant cells as important agents of selection and offer a holistic framework to understand the interplay of ecological, epidemiological and evolutionary dynamics of cancer in wildlife. We use a directly transmissible cancer (devil facial tumour disease) as a model system to reveal the potential evolutionary dynamics and broader ecological effects of cancer epidemics in wildlife. We provide further examples of tumour-host interactions and trade-offs that may lead to changes in life histories, and epidemiological and population dynamics. Within this framework, we explore immunological strategies at the individual level as well as transgenerational adaptations at the population level. Then, we highlight the need to integrate multiple disciplines to undertake comparative cancer research at the human-domestic-wildlife interface and their environments. Finally, we suggest strategies for screening cancer incidence in wildlife and discuss how to integrate ecological and evolutionary concepts in the management of current and future cancer epizootics.
Collapse
Affiliation(s)
- Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Rachel Owen
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Hannah Siddle
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Sarah Peck
- Wildlife Veterinarian, Veterinary Register of TasmaniaSouth HobartTas.Australia
| | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
| | - Antoine M. Dujon
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| | - Beata Ujvari
- School of Natural SciencesUniversity of TasmaniaHobartTas.Australia
- Centre for Integrative EcologySchool of Life and Environmental SciencesDeakin UniversityVic.Australia
| | - Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la SantéUnité Mixte de RecherchesInstitut de Recherches pour le Développement 224‐Centre National de la Recherche Scientifique 5290‐Université de MontpellierMontpellierFrance
| |
Collapse
|
23
|
Heidari Z, Eskandari M, Aryan A, Rostamzad F, Salimi S. The effect of CASP3 rs4647610 and rs4647602 polymorphisms on tumour size and cancer stage in papillary thyroid carcinoma. Br J Biomed Sci 2020; 77:129-134. [PMID: 32151194 DOI: 10.1080/09674845.2020.1741249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most frequent form of thyroid cancer whose incidence has increased in recent years. Dysregulated apoptosis is known in the pathogenesis of various cancers. Caspase-3 is an important apoptotic component and its abnormal function may play a key role in cancer pathogenesis. We tested the hypothesis of a link between CASP3 single nucleotide polymorphisms rs4647610 and rs4647602 on PTC and its clinical outcomes. MATERIAL AND METHODS A total of 134 PTC patients and 151 healthy controls were genotyped for CASP3 rs4647610 and rs4647602 single nucleotide polymorphisms (SNPs) using PCR-RFLP method. RESULTS Allele and genotype frequencies of both SNPs were not different between cases and controls. The combined genotypes and haplotypes were not linked to PTC. However, the frequencies of CASP3 rs4647610 GA and AA genotypes were higher in PTC patients with larger tumour size (≥1 cm), and the rs4647610 SNP was associated with increased tumour size in the dominant model (OR 3.4 [95% CI, 1.1-11], P = 0.04). The CASP3 rs4647602CA and AA genotypes were higher in PTC patients with lower TNM stage (I-II) compared to higher stages (III-IV). No association was observed between CASP3 polymorphisms and other PTC outcomes. CONCLUSION Although CASP3 rs4647610 and rs4647602 SNPs are not associated with PTC, rs4647610 is linked to larger tumour size, and rs4647602 to lower stage of cancer.
Collapse
Affiliation(s)
- Z Heidari
- Department of Internal Medicine, Zahedan University of Medical Sciences , Zahedan, Iran
| | - M Eskandari
- Department of Laboratory Sciences, Zahedan University of Medical Sciences , Zahedan, Iran
| | - A Aryan
- Radiology Department, Zahedan University of Medical Sciences , Zahedan, Iran
| | - F Rostamzad
- Department of Biology, Faculty of Science, Islamic Azad University , Marand, Iran
| | - S Salimi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences , Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences , Zahedan, Iran
| |
Collapse
|
24
|
Bilyi DD, Gerdeva AА, Samoiliuk VV, Suslova NI, Yevtushenko ID. A modern look at the molecular-biological mechanisms of breast tumours in dogs. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High morbidity and increase in the number of registrations of breast tumours in dogs, their wide application as biological models, discussion of numerous questions of oncogenesis, and the lack of a uniform/unified methodological approach to the study of molecular and biological mechanisms of treatment of cancer determine the relevance of the problem of cancer both in humans and in our domestic companions. The analysis of publications allowed us to establish the following patterns of carcinogenesis. The peculiarities of the biological behaviour of breast tumours depend on their pathomorphological structure. Genetic predisposition to breast cancer is characteristic only in the single breed aspect. Environmental factors are of critical relevance to carcinogenesis : chemical pollutants initiate oncogenesis indirectly – by altering the expression of several receptors, impaired endocrine balance and direct mutagenic effects. Reproductive status plays a key role in the initiation and progression of breast tumours by reducing the expression of estrogen, progesterone and prolactin receptor genes. The inflammatory response that accompanies the neoplasia process is characterized by increased production of cytokines, cyclooxygenase-2, interleukins (IL-1, IL-6, IL-8), vascular endothelial growth receptors, and impaired hemostatic status (oxidative stress), which promotes progression of disease. In breast cancer in dogs, genomic instability leads to genomic aberrations, and subsequently, mutations that support the proliferation, survival and dissemination of neoplastic cells. The initiation and progression of mammary gland tumours is provided by cancer stem cells by disrupting the regulation of precursor cell self-renewal, which also predispose to resistance to chemotherapeutic agents, radiation, and hormonal cancer therapy. The analysis of the publications revealed the major markers of carcinogenesis that could potentially be used as biological targets for the design of modern diagnostic strategies and high-performance therapeutic protocols.
Collapse
|
25
|
Thomas F, Giraudeau M, Dheilly NM, Gouzerh F, Boutry J, Beckmann C, Biro PA, Hamede R, Abadie J, Labrut S, Bieuville M, Misse D, Bramwell G, Schultz A, Le Loc'h G, Vincze O, Roche B, Renaud F, Russell T, Ujvari B. Rare and unique adaptations to cancer in domesticated species: An untapped resource? Evol Appl 2020. [DOI: 10.1111/eva.12920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Frédéric Thomas
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Mathieu Giraudeau
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook NY USA
| | - Flora Gouzerh
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Christa Beckmann
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
- School of Science Western Sydney UniversityParramatta NSW Australia
| | - Peter A. Biro
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Rodrigo Hamede
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| | | | | | - Margaux Bieuville
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Dorothée Misse
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Georgina Bramwell
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Aaron Schultz
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
| | - Guillaume Le Loc'h
- Clinique des NAC et de la Faune Sauvage, UMR IHAP École Nationale Vétérinaire de Toulouse Toulouse France
| | - Orsolya Vincze
- Hungarian Department of Biology and Ecology Evolutionary Ecology Group Babeş‐Bolyai University Cluj‐Napoca Romania
- Department of Tisza Research MTA Centre for Ecological Research‐DRI Debrecen Hungary
| | - Benjamin Roche
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
- Unité mixte Internationale de Modélisation Mathématique et Informatique des Systèmes Complexes UMI IRD/Sorbonne UniversitéUMMISCO Bondy France
| | - François Renaud
- CREECUMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Tracey Russell
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| | - Beata Ujvari
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds VIC Australia
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| |
Collapse
|
26
|
Thomas F, Giraudeau M, Renaud F, Ujvari B, Roche B, Pujol P, Raymond M, Lemaitre JF, Alvergne A. Can postfertile life stages evolve as an anticancer mechanism? PLoS Biol 2019; 17:e3000565. [PMID: 31805037 PMCID: PMC6917346 DOI: 10.1371/journal.pbio.3000565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Why a postfertile stage has evolved in females of some species has puzzled evolutionary biologists for over 50 years. We propose that existing adaptive explanations have underestimated in their formulation an important parameter operating both at the specific and the individual levels: the balance between cancer risks and cancer defenses. During their life, most multicellular organisms naturally accumulate oncogenic processes in their body. In parallel, reproduction, notably the pregnancy process in mammals, exacerbates the progression of existing tumors in females. When, for various ecological or evolutionary reasons, anticancer defenses are too weak, given cancer risk, older females could not pursue their reproduction without triggering fatal metastatic cancers, nor even maintain a normal reproductive physiology if the latter also promotes the growth of existing oncogenic processes, e.g., hormone-dependent malignancies. At least until stronger anticancer defenses are selected for in these species, females could achieve higher inclusive fitness by ceasing their reproduction and/or going through menopause (assuming that these traits are easier to select than anticancer defenses), thereby limiting the risk of premature death due to metastatic cancers. Because relatively few species experience such an evolutionary mismatch between anticancer defenses and cancer risks, the evolution of prolonged life after reproduction could also be a rare, potentially transient, anticancer adaptation in the animal kingdom.
Collapse
Affiliation(s)
- Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - François Renaud
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
- Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, Unité Mixte de Recherches, Institut de Recherches pour le développement/Sorbonne Université, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Pascal Pujol
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
- CHU Arnaud de Villeneuve, Montpellier, France
| | - Michel Raymond
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jean-François Lemaitre
- Centre National de la Recherche Scientifique, Unité mixte de recherche 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1 Villeurbanne, France
| | - Alexandra Alvergne
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom
| |
Collapse
|
27
|
Ahmadi N, Gausterer JC, Honeder C, Mötz M, Schöpper H, Zhu C, Saidov N, Gabor F, Arnoldner C. Long-term effects and potential limits of intratympanic dexamethasone-loaded hydrogels combined with dexamethasone-eluting cochlear electrodes in a low-insertion trauma Guinea pig model. Hear Res 2019; 384:107825. [PMID: 31669876 DOI: 10.1016/j.heares.2019.107825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/07/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022]
Abstract
Cochlear implantation has become the most effective hearing restoration method and is one of the great advances in modern medicine. Early implants have been continuously developed into more efficient devices, and electro-acoustic stimulation is increasingly expanding the indication criteria for cochlear implants to patients with more residual hearing. Therefore, protecting the cochlear structures and maintaining its intrinsic capacities like residual hearing has become more important than ever before. In the present study, we aimed to assess the long-term protective effects of a dexamethasone-eluting electrode combined with the preoperative intratympanic application of a dexamethasone-loaded thermoreversible hydrogel in a cochlear implant guinea pig model. 40 normal-hearing animals were equally randomized into a control group receiving an unloaded hydrogel and a non-eluting electrode, a group receiving a dexamethasone-loaded hydrogel and a non-eluting electrode, a group receiving an unloaded hydrogel and a dexamethasone-eluting electrode and a group receiving both a dexamethasone-loaded hydrogel and a dexamethasone-eluting electrode. Residual hearing and impedances were investigated during a period of 120 days. Tissue response and histological changes of cochlear structures were analyzed at the end of the experiments. Treatment with dexamethasone did not show a significant protective effect on residual hearing independent of treatment group. Although the majority of the cochleae didn't exhibit any signs of electrode insertion trauma, a small degree of tissue response could be observed in all animals without a significant difference between the groups. Foreign body giant cells and osteogenesis were significantly associated with tissue response. Hair cells, synapsin-1-positive cells and spiral ganglion cells were preserved in all study groups. Cochlear implantation using a dexamethasone-eluting electrode alone and in combination with a dexamethasone-loaded hydrogel significantly protected auditory nerve fibers on day 120. Post-implantation impedances were equal across study groups and remained stable over the duration of the experiment. In this study we were able to show that use of a dexamethasone-eluting electrode alone and in combination with preoperative application of dexamethasone-loaded hydrogel significantly protects auditory nerve fibers. Furthermore, we have shown that a cochlear implantation-associated hearing threshold shift and tissue response may not be completely prevented by the sole application of dexamethasone.
Collapse
Affiliation(s)
- Navid Ahmadi
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Julia Clara Gausterer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
| | - Clemens Honeder
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Marlene Mötz
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Austria.
| | - Hanna Schöpper
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Austria.
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Nodir Saidov
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria.
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
28
|
James S, Jennings G, Kwon YM, Stammnitz M, Fraik A, Storfer A, Comte S, Pemberton D, Fox S, Brown B, Pye R, Woods G, Lyons B, Hohenlohe PA, McCallum H, Siddle H, Thomas F, Ujvari B, Murchison EP, Jones M, Hamede R. Tracing the rise of malignant cell lines: Distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evol Appl 2019; 12:1772-1780. [PMID: 31548856 PMCID: PMC6752152 DOI: 10.1111/eva.12831] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 01/04/2023] Open
Abstract
Emerging infectious diseases are rising globally and understanding host-pathogen interactions during the initial stages of disease emergence is essential for assessing potential evolutionary dynamics and designing novel management strategies. Tasmanian devils (Sarcophilus harrisii) are endangered due to a transmissible cancer-devil facial tumour disease (DFTD)-that since its emergence in the 1990s, has affected most populations throughout Tasmania. Recent studies suggest that devils are adapting to the DFTD epidemic and that disease-induced extinction is unlikely. However, in 2014, a second and independently evolved transmissible cancer-devil facial tumour 2 (DFT2)-was discovered at the d'Entrecasteaux peninsula, in south-east Tasmania, suggesting that the species is prone to transmissible cancers. To date, there is little information about the distribution, epidemiology and effects of DFT2 and its interaction with DFTD. Here, we use data from monitoring surveys and roadkills found within and adjacent to the d'Entrecasteaux peninsula to determine the distribution of both cancers and to compare their epidemiological patterns. Since 2012, a total of 51 DFTD tumours have been confirmed among 26 individuals inside the peninsula and its surroundings, while 40 DFT2 tumours have been confirmed among 23 individuals, and two individuals co-infected with both tumours. All devils with DFT2 were found within the d'Entrecasteaux peninsula, suggesting that this new transmissible cancer is geographically confined to this area. We found significant differences in tumour bodily location in DFTD and DFT2, with non-facial tumours more commonly found in DFT2. There was a significant sex bias in DFT2, with most cases reported in males, suggesting that since DFT2 originated from a male host, females might be less susceptible to this cancer. We discuss the implications of our results for understanding the epidemiological and evolutionary interactions of these two contemporary transmissible cancers and evaluating the effectiveness of potential management strategies.
Collapse
Affiliation(s)
- Samantha James
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Geordie Jennings
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Young Mi Kwon
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Alexandra Fraik
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Andrew Storfer
- School of Biological SciencesWashington State UniversityPullmanWashingtonUSA
| | - Sebastien Comte
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - David Pemberton
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE)HobartTasmaniaAustralia
| | - Samantha Fox
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE)HobartTasmaniaAustralia
| | - Bill Brown
- Department of Primary Industries, Parks, Water and the Environment (DPIPWE)HobartTasmaniaAustralia
| | - Ruth Pye
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Gregory Woods
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Bruce Lyons
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - Paul A. Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowIdahoUSA
| | - Hamish McCallum
- School of Environment and ScienceGriffith UniversityNathanQueenslandAustralia
| | - Hannah Siddle
- Centre for Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Frédéric Thomas
- Centre for Ecological and Evolutionary Research on CancerMontpellierFrance
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityDeakinVictoriaAustralia
| | | | - Menna Jones
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Rodrigo Hamede
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
29
|
Abstract
The origin and subsequent maintenance of sex and recombination are among the most elusive and controversial problems in evolutionary biology. Here, we propose a novel hypothesis, suggesting that sexual reproduction not only evolved to reduce the negative effects of the accumulation of deleterious mutations and processes associated with pathogen and/or parasite resistance but also to prevent invasion by transmissible selfish neoplastic cheater cells, henceforth referred to as transmissible cancer cells. Sexual reproduction permits systematic change of the multicellular organism's genotype and hence an enhanced detection of transmissible cancer cells by immune system. Given the omnipresence of oncogenic processes in multicellular organisms, together with the fact that transmissible cancer cells can have dramatic effects on their host fitness, our scenario suggests that the benefits of sex and concomitant recombination will be large and permanent, explaining why sexual reproduction is, despite its costs, the dominant mode of reproduction among eukaryotes.
Collapse
|
30
|
Peck SJ, Michael SA, Knowles G, Davis A, Pemberton D. Causes of mortality and severe morbidity requiring euthanasia in captive Tasmanian devils (Sarcophilus harrisii) in Tasmania. Aust Vet J 2019; 97:89-92. [PMID: 30919442 DOI: 10.1111/avj.12797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Devil facial tumour disease (DFTD) is a contagious cancer causing marked population declines in wild Tasmanian devils. In response to this threat, a captive insurance population has been established. This study investigated causes of death in captive Tasmanian devils. METHODS Clinical and laboratory records of captive Tasmanian devils held in seven Tasmanian captive facilities were analysed for cause of death or severe morbidity requiring euthanasia. RESULTS Neoplasia was found to be the most common cause of mortality/severe morbidity, accounting for 27/63 of deaths. Cutaneous lymphoma was the most frequently observed tumour (10/27), at a higher incidence than previously reported. The most common cause of severe morbidity, following neoplasia, was leucoencephalomyelopathy, which caused severe, progressive hindlimb paresis and ataxia. CONCLUSION Neoplasia, specifically cutaneous lymphoma, and degenerative neurological conditions are the most frequent causes of death in captive Tasmanian devils in Tasmania. Further work to determine the aetiologies of these conditions, as well as effective treatments, would be valuable.
Collapse
Affiliation(s)
- S J Peck
- Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, 200 Collins Street, Hobart, Tasmania, 7000, Australia
| | - S A Michael
- Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, 200 Collins Street, Hobart, Tasmania, 7000, Australia
| | - G Knowles
- Animal Health Laboratory, Department of Primary Industries, Parks, Water and Environment, Prospect, TAS, Australia
| | - A Davis
- Animal Health Laboratory, Department of Primary Industries, Parks, Water and Environment, Prospect, TAS, Australia
| | - D Pemberton
- Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, 200 Collins Street, Hobart, Tasmania, 7000, Australia
| |
Collapse
|
31
|
Sepp T, Ujvari B, Ewald PW, Thomas F, Giraudeau M. Urban environment and cancer in wildlife: available evidence and future research avenues. Proc Biol Sci 2019; 286:20182434. [PMID: 30963883 PMCID: PMC6367167 DOI: 10.1098/rspb.2018.2434] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/10/2018] [Indexed: 12/23/2022] Open
Abstract
While it is generally known that the risk of several cancers in humans is higher in urban areas compared with rural areas, cancer is often deemed a problem of human societies with modern lifestyles. At the same time, more and more wild animals are affected by urbanization processes and are faced with the need to adapt or acclimate to urban conditions. These include, among other things, increased exposure to an assortment of pollutants (e.g. chemicals, light and noise), novel types of food and new infections. According to the abundant literature available for humans, all of these factors are associated with an increased probability of developing cancerous neoplasias; however, the link between the urban environment and cancer in wildlife has not been discussed in the scientific literature. Here, we describe the available evidence linking environmental changes resulting from urbanization to cancer-related physiological changes in wild animals. We identify the knowledge gaps in this field and suggest future research avenues, with the ultimate aim of understanding how our modern lifestyle affects cancer prevalence in urbanizing wild populations. In addition, we consider the possibilities of using urban wild animal populations as models to study the association between environmental factors and cancer epidemics in humans, as well as to understand the evolution of cancer and defence mechanisms against it.
Collapse
Affiliation(s)
- Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Paul W. Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Frédéric Thomas
- CREEC, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| | - Mathieu Giraudeau
- CREEC, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5, France
| |
Collapse
|
32
|
Morris MRJ, Kaufman R, Rogers SM. Heterozygosity and asymmetry:
Ectodysplasin
as a form of genetic stress in marine threespine stickleback. Evolution 2019; 73:378-389. [DOI: 10.1111/evo.13678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew R. J. Morris
- Biological SciencesUniversity of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
- Current Address: Biological SciencesAmbrose University 150 Ambrose Cir SW Calgary AB T3H 0L5 Canada
| | - Rebecca Kaufman
- Biological SciencesUniversity of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| | - Sean M. Rogers
- Biological SciencesUniversity of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| |
Collapse
|
33
|
Lacy RC. Lessons from 30 years of population viability analysis of wildlife populations. Zoo Biol 2018; 38:67-77. [PMID: 30585658 DOI: 10.1002/zoo.21468] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/14/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022]
Abstract
Population viability analysis (PVA) has been used for three decades to assess threats and evaluate conservation options for wildlife populations. What has been learned from PVA on in situ populations are valuable lessons also for assessing and managing viability and sustainability of ex situ populations. The dynamics of individual populations are unpredictable, due to limited knowledge about important factors, variability in the environment, and the probabilistic nature of demographic events. PVA considers such uncertainty within simulations that generate the distribution of likely fates for a population; management of ex situ populations should also take into consideration the uncertainty in our data and in the trajectories of populations. The processes affecting wildlife populations interact, with feedbacks often leading to amplified threats to viability; projections of ex situ populations should include such feedbacks to allow for management that foresees and responds to the cumulative and synergistic threats. PVA is useful for evaluating conservation options only if the goals for each population and measures of success are first clearly identified; similarly, for ex situ populations to contribute maximally to species conservation, the purposes for the population and definitions of sustainability in terms of acceptable risk must be documented. PVA requires a lot of data, knowledge of many processes affecting the populations, modeling expertize, and understanding of management goals and constraints. Therefore, to be useful in guiding conservation it must be a collaborative, trans-disciplinary, and social process. PVA can help integrate management of in situ and ex situ populations within comprehensive species conservation plans.
Collapse
|
34
|
Human activities might influence oncogenic processes in wild animal populations. Nat Ecol Evol 2018; 2:1065-1070. [DOI: 10.1038/s41559-018-0558-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 12/29/2022]
|