1
|
Banerjee A, Chen F, Druckmann S, Long MA. Temporal scaling of motor cortical dynamics reveals hierarchical control of vocal production. Nat Neurosci 2024; 27:527-535. [PMID: 38291282 DOI: 10.1038/s41593-023-01556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Neocortical activity is thought to mediate voluntary control over vocal production, but the underlying neural mechanisms remain unclear. In a highly vocal rodent, the male Alston's singing mouse, we investigate neural dynamics in the orofacial motor cortex (OMC), a structure critical for vocal behavior. We first describe neural activity that is modulated by component notes (~100 ms), probably representing sensory feedback. At longer timescales, however, OMC neurons exhibit diverse and often persistent premotor firing patterns that stretch or compress with song duration (~10 s). Using computational modeling, we demonstrate that such temporal scaling, acting through downstream motor production circuits, can enable vocal flexibility. These results provide a framework for studying hierarchical control circuits, a common design principle across many natural and artificial systems.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
- Department of Otolaryngology, New York University Langone Health, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Feng Chen
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Michael A Long
- NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
- Department of Otolaryngology, New York University Langone Health, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Watts HE, Cornelius JM. Toward understanding the endocrine regulation of diverse facultative migration strategies. Horm Behav 2024; 158:105465. [PMID: 38061233 DOI: 10.1016/j.yhbeh.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/05/2024]
Abstract
Migration is an important event in the annual cycle of many animals that facilitates the use of resources that vary across space and time. It can occur with regular and predictable timing, as in obligate migration, or with much greater flexibility, as in facultative migration. Most research aimed at understanding the endocrine mechanisms regulating the transition to a migratory stage has focused on obligate migration, whereas less is known about facultative forms of migration. One challenge for research into the endocrine regulation of facultative migration is that facultative migrations encompass a diverse array of migratory movements. Here, we present a framework to describe and conceptualize variation in facultative migrations that focuses on conditions at departure. Within the context of this framework, we review potential endocrine mechanisms involved in the initiation of facultative migrations in vertebrates. We first focus on glucocorticoids, which have been the subject of most research on the topic. We then examine other potential hormones and neurohormones that have received less attention, but are exciting candidates to consider. We conclude by highlighting areas where future research is particularly needed.
Collapse
Affiliation(s)
- Heather E Watts
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Jamie M Cornelius
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Tripp JA, Phelps SM. Females counter-sing, but response to male song differs by sex in Alston's singing mouse. Biol Lett 2024; 20:20230484. [PMID: 38195056 PMCID: PMC10776218 DOI: 10.1098/rsbl.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
Vocal display behaviours are common throughout the animal kingdom, play important roles in both courtship and aggression, and are frequent subjects of behavioural research. Although females of many species vocalize, an overwhelming fraction of behavioural research has focused on male display. We investigated vocal display behaviours in female singing mice (Scotinomys teguina), small muroid rodents in which both sexes produce songs consisting of trills of rapid, downward frequency sweeps. Previous research established that male singing mice increase song production and engage in precisely timed counter-singing behaviour in response to playback of conspecific male song. We tested whether female singing mice also increased their rate of singing in response to playback of male song, whether they counter-sing, and whether there are sexual dimorphisms in song effort. Our results demonstrate that much like males, female singing mice increase their song effort and counter-sing in response to playback of male song; however, females sing fewer and shorter songs compared to males. This study further informs the understanding of female vocal behaviour and establishes the singing mouse as a valuable model for investigating female vocal display.
Collapse
Affiliation(s)
- Joel A. Tripp
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Steven M. Phelps
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Banerjee A, Chen F, Druckmann S, Long MA. Neural dynamics in the rodent motor cortex enables flexible control of vocal timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525252. [PMID: 36747850 PMCID: PMC9900850 DOI: 10.1101/2023.01.23.525252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neocortical activity is thought to mediate voluntary control over vocal production, but the underlying neural mechanisms remain unclear. In a highly vocal rodent, the Alston's singing mouse, we investigate neural dynamics in the orofacial motor cortex (OMC), a structure critical for vocal behavior. We first describe neural activity that is modulated by component notes (approx. 100 ms), likely representing sensory feedback. At longer timescales, however, OMC neurons exhibit diverse and often persistent premotor firing patterns that stretch or compress with song duration (approx. 10 s). Using computational modeling, we demonstrate that such temporal scaling, acting via downstream motor production circuits, can enable vocal flexibility. These results provide a framework for studying hierarchical control circuits, a common design principle across many natural and artificial systems.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Otolaryngology, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Feng Chen
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neuroscience, Stanford University, Stanford, CA 94304, USA
| | - Michael A Long
- NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
- Department of Otolaryngology, New York University Langone Health, New York, NY 10016, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
5
|
Zheng DJ, Okobi DE, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus. J Comp Neurol 2022; 530:2075-2099. [PMID: 35385140 DOI: 10.1002/cne.25321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Vocalizations are often elaborate, rhythmically structured behaviors. Vocal motor patterns require close coordination of neural circuits governing the muscles of the larynx, jaw, and respiratory system. In the elaborate vocalization of Alston's singing mouse (Scotinomys teguina) each note of its rapid, frequency-modulated trill is accompanied by equally rapid modulation of breath and gape. To elucidate the neural circuitry underlying this behavior, we introduced the polysynaptic retrograde neuronal tracer pseudorabies virus (PRV) into the cricothyroid and digastricus muscles, which control frequency modulation and jaw opening, respectively. Each virus singly labels ipsilateral motoneurons (nucleus ambiguus for cricothyroid, and motor trigeminal nucleus for digastricus). We find that the two isogenic viruses heavily and bilaterally colabel neurons in the gigantocellular reticular formation, a putative central pattern generator. The viruses also show strong colabeling in compartments of the midbrain including the ventrolateral periaqueductal gray and the parabrachial nucleus, two structures strongly implicated in vocalizations. In the forebrain, regions important to social cognition and energy balance both exhibit extensive colabeling. This includes the paraventricular and arcuate nuclei of the hypothalamus, the lateral hypothalamus, preoptic area, extended amygdala, central amygdala, and the bed nucleus of the stria terminalis. Finally, we find doubly labeled neurons in M1 motor cortex previously described as laryngeal, as well as in the prelimbic cortex, which indicate these cortical regions play a role in vocal production. The progress of both viruses is broadly consistent with vertebrate-general patterns of vocal circuitry, as well as with circuit models derived from primate literature.
Collapse
Affiliation(s)
- Da-Jiang Zheng
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Daniel E Okobi
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - Ryan Shu
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Rania Agrawal
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Samantha K Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, Langone Medical Center, New York University, New York City, New York, USA
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Podos J, Fernández-Vargas M. Mating displays: the interface of mechanism, function and evolution. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Nourbakhsh-Rey M, Markham MR. Leptinergic Regulation of Vertebrate Communication Signals. Integr Comp Biol 2021; 61:1946-1954. [PMID: 34329470 DOI: 10.1093/icb/icab173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Animal communication signals are regulated by multiple hormonal axes that ensure appropriate signal targeting, timing, and information content. The regulatory roles of steroid hormones and many peptide hormones are well understood and documented across a wide range of vertebrate taxa. Two recent studies have reported a novel function for leptin, a peptide hormone central to energy balance regulation: regulating communication signals of weakly electric fish and singing mice. With only limited evidence available at this time, a key question is just how widespread leptinergic regulation of communication signals is within and across taxa. A second important question is what features of communication signals are subject to leptinergic regulation. Here we consider the functional significance of leptinergic regulation of animal communication signals in the context of both direct and indirect signal metabolic costs. Direct costs arise from metabolic investment in signal production, while indirect costs arise from the predation and social conflict consequences of the signal's information content. We propose a preliminary conceptual framework for predicting which species will exhibit leptinergic regulation of their communication signals and which signal features leptin will regulate. This framework suggests a number of directly testable predictions within and across taxa. Accounting for additional factors such as life history and the potential co-regulation of communication signals by leptin and glucocorticoids will likely require modification or elaboration of this model.
Collapse
Affiliation(s)
| | - Michael R Markham
- Department of Biology, University of Oklahoma, Norman OK 73019 USA.,Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman OK 73019 USA
| |
Collapse
|
8
|
Zheng DJ, Singh A, Phelps SM. Conservation and dimorphism in androgen receptor distribution in Alston's singing mouse (Scotinomys teguina). J Comp Neurol 2021; 529:2539-2557. [PMID: 33576501 DOI: 10.1002/cne.25108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
Because of their roles in courtship and intrasexual competition, sexual displays are often sexually dimorphic, but we know little about the mechanisms that produce such dimorphism. Among mammals, one example is the vocalization of Alston's singing mouse (Scotinomys teguina), which consists of a series of rapidly repeated, frequency-modulated notes. The rate and duration of songs is sexually dimorphic and androgen responsive. To understand the neuronal mechanisms underlying this sexual dimorphism, we map the sites of androgen sensitivity throughout the brain, focusing analysis along a pathway that spans from limbic structures to vocal motor regions. We find widespread expression of AR immunoreactivity (AR-ir) throughout limbic structures important for social behavior and vocalization, including the lateral septum, extended amygdala, preoptic area and hypothalamus. We also find extensive AR staining along previously documented vocal motor pathways, including the periaqueductal gray, parabrachial nucleus, and nucleus ambiguus, the last of which innervates intrinsic laryngeal muscles. Lastly, AR-ir is also evident in sensory areas such as the medial geniculate, inferior, and superior colliculi. A quantitative analysis revealed that males exhibited more AR-ir than females, a pattern that was most pronounced in the hypothalamus. Despite the elaboration of vocalization in singing mice, comparison with prior literature suggests that the broad pattern of AR-ir may be conserved across a wide range of rodents. Together these data identify brain nuclei well positioned to shape the sexually dimorphic vocalization of S. teguina and suggest that such androgen modulation of vocalization is evolutionary conserved among rodents.
Collapse
Affiliation(s)
- Da-Jiang Zheng
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Aditi Singh
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
Smith SK, Burkhard TT, Phelps SM. A comparative characterization of laryngeal anatomy in the singing mouse. J Anat 2021; 238:308-320. [PMID: 32996145 PMCID: PMC7812124 DOI: 10.1111/joa.13315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023] Open
Abstract
Sexual displays are some of the most dramatic and varied behaviors that have been documented. The elaboration of such behaviors often relies on the modification of existing morphology. To understand how display elaboration arises, we analyzed the laryngeal anatomy of three species of mice that vary in the presence and complexity of their vocal displays. Mice and rats have a specialized larynx that enables them to produce both low-frequency "audible" sounds, perhaps using vocal fold vibration, as well as distinct mechanisms that are thought to enable higher frequency sounds, such as vocal membrane vibration and intralaryngeal whistles. These mechanisms rely on different structures within the larynx. Using histology, we characterized laryngeal anatomy in Alston's singing mouse (Scotinomys teguina), the northern pygmy mouse (Baiomys taylori), and the laboratory mouse (Mus musculus), which produce different types of vocalizations. We found evidence of a vocal membrane in all species, as well as species differences in vocal fold and ventral pouch size. Presence of a vocal membrane in these three species, which are not known to use vocal membrane vibration, suggests that this structure may be widespread among muroid rodents. An expanded ventral pouch in singing and pygmy mice suggests that these mice may use an intralaryngeal whistle to produce their advertisement songs, and that an expanded ventral pouch may enable lower frequencies than laboratory mouse whistle-produced sounds. Variation in the laryngeal anatomy of rodents fits into a larger pattern across terrestrial vertebrates, where the development and modification of vocal membranes and pouches, or air sacs, are common mechanisms by which vocalizations diversify. Understanding variation in the functional anatomy of relevant organs is the first step in understanding how morphological changes enable novel displays.
Collapse
Affiliation(s)
- Samantha K. Smith
- Department of Integrative BiologyUniversity of Texas at AustinAustinTXUSA
| | - Tracy T. Burkhard
- Department of Integrative BiologyUniversity of Texas at AustinAustinTXUSA
| | - Steven M. Phelps
- Department of Integrative BiologyUniversity of Texas at AustinAustinTXUSA
| |
Collapse
|
10
|
Volodin IA, Klenova AV, Ilchenko OG, Volodina EV. High frequency audible calls in northern birch mice Sicista betulina in response to handling: effects of individuality, sex and body mass on the acoustics. BMC Res Notes 2019; 12:677. [PMID: 31640790 PMCID: PMC6805337 DOI: 10.1186/s13104-019-4719-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES This is the first study of the sonic and ultrasonic vocalization in a Dipodidae rodent. For the small-sized quadrupedal northern birch mouse Sicista betulina, phylogenetically related to the bipedal jerboas (Dipodidae), we report null results for ultrasonic vocalization and investigate the acoustic cues to individual identity, sex and body size in the discomfort-related high-frequency tonal sonic calls. RESULTS We used a parallel audio recording in the sonic and ultrasonic ranges during weighting adult northern birch mice before the scheduled hibernation in captivity. The sonic (audible) high-frequency tonal calls (ranging from 6.21 to 9.86 kHz) were presented in all individuals (7 males and 4 females). The ultrasonic calls lacked in the recordings. Two-way nested ANOVA revealed the effects of caller individual identity on all 10 measured acoustic variables and the effects of sex on four out of 10 measured acoustic variables. Discriminant function analyses with 10 acoustic variables included in the analysis showed 85.5% correct assignment of calls to individual and 79.7% correct assignment of calls to sex; both values significantly exceeded the random values (23.1% and 54.3%, respectively) calculated with randomization procedure. Body mass did not differ between sexes and did not correlate significantly with the acoustic variables.
Collapse
Affiliation(s)
- Ilya A Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, Moscow, 119234, Russia. .,Scientific Research Department, Moscow Zoo, B. Gruzinskaya, 1, Moscow, 123242, Russia.
| | - Anna V Klenova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, Moscow, 119234, Russia
| | - Olga G Ilchenko
- Scientific Research Department, Moscow Zoo, B. Gruzinskaya, 1, Moscow, 123242, Russia
| | - Elena V Volodina
- Scientific Research Department, Moscow Zoo, B. Gruzinskaya, 1, Moscow, 123242, Russia
| |
Collapse
|
11
|
Okobi DE, Banerjee A, Matheson AMM, Phelps SM, Long MA. Motor cortical control of vocal interaction in neotropical singing mice. Science 2019; 363:983-988. [DOI: 10.1126/science.aau9480] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Like many adaptive behaviors, acoustic communication often requires rapid modification of motor output in response to sensory cues. However, little is known about the sensorimotor transformations that underlie such complex natural behaviors. In this study, we examine vocal exchanges in Alston’s singing mouse (Scotinomys teguina). We find that males modify singing behavior during social interactions on a subsecond time course that resembles both traditional sensorimotor tasks and conversational speech. We identify an orofacial motor cortical region and, via a series of perturbation experiments, demonstrate a hierarchical control of vocal production, with the motor cortex influencing the pacing of singing behavior on a moment-by-moment basis, enabling precise vocal interactions. These results suggest a systems-level framework for understanding the sensorimotor transformations that underlie natural social interactions.
Collapse
|
12
|
|