1
|
Hutton P, Lendvai ÁZ, Németh J, McGraw KJ. Urban house finches are more resistant to the effects of artificial light at night. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174525. [PMID: 38972420 DOI: 10.1016/j.scitotenv.2024.174525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Rapid urbanization of habitats alters the physical, chemical, auditory, and photic environments of human and wild animal inhabitants. One of the most widespread transformations is caused by artificial light at night (ALAN), but it is not clear the extent to which individuals acclimate to such rapid environmental change. Here, we tested the hypothesis that urban birds show increased resistance to harmful behavioral, parasitological, and physiological effects of ALAN. We captured house finches (Haemorhous mexicanus), a bird that commonly inhabits cities and their natural surroundings, from two urban and two rural sites in Phoenix, Arizona, USA, which differ by both degree of urbanization and by multiple orders of magnitude in ALAN intensity, and placed them in a common garden laboratory setting. We exposed half of the birds from each habitat type to ecologically relevant levels of night lighting during the subjective night and found that, while ALAN exposure reduced sleep in both urban and rural birds, ALAN-exposed urban birds were able to sleep longer than ALAN-exposed rural birds. We also found that ALAN exposure increased the proliferation rate of an intestinal coccidian parasite (Isospora spp.) in both urban and rural birds, but that the rate of proliferation was lower in urban relative to rural birds. We found that night lighting suppressed titers of feather corticosterone in rural but not urban birds, suggesting that light impairs HPA function through chronic stress or suppression of its circadian rhythmicity, and that urban birds were again resistant to this effect. Mediation analyses show that the effect of ALAN exposure in rural birds was significantly sleep-mediated for feather corticosterone but not coccidiosis, suggesting a diversity of mechanisms by which ALAN alters physiology. We contribute further evidence that animals from night-lit habitats can develop resistance to ALAN and its detrimental effects.
Collapse
Affiliation(s)
- Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - Jószef Németh
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Smit JAH, Vooijs R, Lindenburg P, Baugh AT, Halfwerk W. Noise and light pollution elicit endocrine responses in urban but not forest frogs. Horm Behav 2024; 157:105453. [PMID: 37979210 DOI: 10.1016/j.yhbeh.2023.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Urban areas are characterised by the presence of sensory pollutants, such as anthropogenic noise and artificial light at night (ALAN). Animals can quickly adapt to novel environmental conditions by adjusting their behaviour, which is proximately regulated by endocrine systems. While endocrine responses to sensory pollution have been widely reported, this has not often been linked to changes in behaviour, hampering the understanding of adaptiveness of endocrine responses. Our aim was, therefore, to investigate the effects of urbanisation, specifically urban noise and light pollution, on hormone levels in male urban and forest túngara frogs (Engystomops pustulosus), a species with reported population divergence in behaviour in response to urbanisation. We quantified testosterone and corticosterone release rates in the field and in the lab before and after exposure to urban noise and/or light. We show that urban and forest frogs differ in their endocrine phenotypes under field as well as lab conditions. Moreover, in urban frogs exposure to urban noise and light led, respectively, to an increase in testosterone and decrease in corticosterone, whereas in forest frogs sensory pollutants did not elicit any endocrine response. Our results show that urbanisation, specifically noise and light pollution, can modulate hormone levels in urban and forest populations differentially. The observed endocrine responses are consistent with the observed behavioural changes in urban frogs, providing a proximate explanation for the presumably adaptive behavioural changes in response to urbanisation.
Collapse
Affiliation(s)
- Judith A H Smit
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá.
| | - Riet Vooijs
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Peter Lindenburg
- Research Group Metabolomics, Leiden Centre for Applied Bioscience, University of Applied Sciences Leiden, the Netherlands
| | - Alexander T Baugh
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
| | - Wouter Halfwerk
- Amsterdam Institute for Life and Environment, Ecology and Evolution, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Berkhout BW, Budria A, Thieltges DW, Slabbekoorn H. Anthropogenic noise pollution and wildlife diseases. Trends Parasitol 2023; 39:181-190. [PMID: 36658057 DOI: 10.1016/j.pt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023]
Abstract
There is a global rise in anthropogenic noise and a growing awareness of its negative effects on wildlife, but to date the consequences for wildlife diseases have received little attention. In this paper, we discuss how anthropogenic noise can affect the occurrence and severity of infectious wildlife diseases. We argue that there is potential for noise impacts at three main stages of pathogen transmission and disease development: (i) the probability of preinfection exposure, (ii) infection upon exposure, and (iii) severity of postinfection consequences. We identify potential repercussions of noise pollution effects for wildlife populations and call for intensifying research efforts. We provide an overview of knowledge gaps and outline avenues for future studies into noise impacts on wildlife diseases.
Collapse
Affiliation(s)
| | - Alexandre Budria
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands; Office Français de la Biodiversité, Direction générale déléguée 'Police, Connaissance, Expertise', rue du Bouchet, 45370 DRY, France
| | - David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands; Groningen Institute for Evolutionary Life-Sciences, GELIFES, Nijenborgh 7, 9747 AG Groningen, University of Groningen, The Netherlands
| | | |
Collapse
|
4
|
Newediuk L, Bath DR. Meta-analysis reveals between-population differences affect the link between glucocorticoids and population health. CONSERVATION PHYSIOLOGY 2023; 11:coad005. [PMID: 36845329 PMCID: PMC9945071 DOI: 10.1093/conphys/coad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Glucocorticoids are a popular tool for monitoring health of animal populations because they can increase with environmental stressors and can indicate chronic stress. However, individual responses to stressors create variation in the glucocorticoid-fitness relationship within populations. The inconsistency in this relationship calls into question the widespread use of glucocorticoids in conservation. We investigated the sources of variation in the glucocorticoid-fitness relationship by conducting a meta-analysis across a diverse set of species exposed to conservation-relevant stressors. We first quantified the extent to which studies inferred population health from glucocorticoids without first validating the glucocorticoid-fitness relationship in their own populations. We also tested whether population-level information like life history stage, sex and species longevity influenced the relationship between glucocorticoids and fitness. Finally, we tested for a universally consistent relationship between glucocorticoids and fitness across studies. We found more than half of peer-reviewed studies published between 2008 and 2022 inferred population health solely based on glucocorticoid levels. While life history stage explained some variation in the relationship between glucocorticoids and fitness, we found no consistent relationship between them. Much of the variation in the relationship could be the result of idiosyncratic characteristics of declining populations, such as unstable demographic structure, that coincided with large amounts of variation in glucocorticoid production. We suggest that conservation biologists capitalize on this variation in glucocorticoid production by declining populations by using the variance in glucocorticoid production as an early warning for declines in population health.
Collapse
Affiliation(s)
- Levi Newediuk
- Corresponding author: Department of Biology, Memorial University, 45 Arctic Avenue, St. John's, Newfoundland A1B 3X9, Canada.
| | - Devon R Bath
- Department of Ocean Sciences, Memorial University, 0 Marine Lab Road, St. John's, Newfoundland A1C 5S7, Canada
| |
Collapse
|
5
|
de Framond L, Brumm H. Long-term effects of noise pollution on the avian dawn chorus: a natural experiment facilitated by the closure of an international airport. Proc Biol Sci 2022; 289:20220906. [PMID: 36100015 PMCID: PMC9470256 DOI: 10.1098/rspb.2022.0906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The impacts of noise pollution on birdsong have been extensively investigated but potential long-term effects are neglected. Near airports, where noise levels are particularly high, birds start singing earlier in the morning, probably to gain more time of uninterrupted singing before air traffic sets in. In a previous study, we documented this phenomenon in the vicinity of Berlin Tegel airport. In 2020, Tegel airport closed down, giving us the opportunity to investigate potential long-term effects after noise removal and to gain insight into the mechanisms underlying the advancement of dawn singing. We found that several species at the airport shifted their song onset back after the closure and now had similar schedules to their conspecifics at a control site. Some species, however, still sang earlier near the closed airport. While the first suggests plastic adaptation, the latter suggests selection for early singing males in areas with long-lasting noise pollution. Our findings indicate that a uniform behavioural response to anthropogenic change in a community can be based on diverging evolutionary mechanisms. Overall, we show that noise pollution can have long-lasting effects on animal behaviour and noise removal may not lead to immediate recovery in some species.
Collapse
Affiliation(s)
- Léna de Framond
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 82319, Germany
| | - Henrik Brumm
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 82319, Germany
| |
Collapse
|
6
|
Rhodes C, Haunfelder W, Carlson BE. Citizen science reporting indicates geographic and phenotypic drivers of road use and mortality in a threatened rattlesnake. Curr Zool 2022. [DOI: 10.1093/cz/zoac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Roads may influence selection on phenotypic traits of wildlife. In particular, the likelihood of vehicle collisions with wildlife may vary depending on body coloration in contrast to the road, which may be exaggerated by cultural attitudes towards the species. The timber rattlesnake Crotalus horridus is a threatened species that varies widely in coloration, and their color pattern could influence thermoregulatory use of roads and visibility to motorists. Moreover, better camouflaged snakes may have higher road mortality in areas where environmental interest is lower and, perhaps, negative attitudes towards wildlife are more prevalent. We used citizen scientist observations of timber rattlesnakes from iNaturalist and categorized for each rattlesnake the surface they were on, color pattern, and whether they were alive. We combined iNaturalist data with Google Trends data to characterize regional variation in environmental interest. We discovered that lighter-colored snakes were more likely to be found on roads, as were snakes further south, west, and on warmer days. Once on a road, coloration didn’t influence survival regardless of road type or environmental interest. However, snakes on asphalt roads or on southern roads were more likely to be found dead. The higher likelihood of lighter colored snakes being found on roads suggests that they are at greater overall risk of road death, potentially selecting for darker coloration. Citizen scientist behavior may at least partly underlie the influence of latitude on the results, however, and further work in the application of citizen science data to such research questions is warranted.
Collapse
Affiliation(s)
- Chaz Rhodes
- Department of Biology, Wabash College, Crawfordsville Indiana , USA
| | | | | |
Collapse
|
7
|
Giordano A, Hunninck L, Sheriff MJ. Prey responses to predation risk under chronic road noise. J Zool (1987) 2022. [DOI: 10.1111/jzo.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Giordano
- Biology Department University of Massachusetts Dartmouth North Dartmouth MA USA
| | - L. Hunninck
- Department of Natural Resources and Environmental Sciences University of Illinois Urbana‐Champaign Urbana IL USA
| | - M. J. Sheriff
- Biology Department University of Massachusetts Dartmouth North Dartmouth MA USA
| |
Collapse
|
8
|
Evans MJ, Barton PS, Westgate MJ, Soga M, Fujita G, Miyashita T. Ecological processes associated with different animal taxa in urban environments. Ecosphere 2021. [DOI: 10.1002/ecs2.3712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Maldwyn John Evans
- Department of Ecosystem Studies Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Philip S. Barton
- School of Science, Psychology and Sport Federation University Australia Mt Helen Victoria 3350 Australia
| | - Martin J. Westgate
- Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory 2601 Australia
- Atlas of Living Australia Commonwealth Scientific and Industrial Research Organisation Black Mountain Canberra Australian Capital Territory 2601 Australia
| | - Masashi Soga
- Department of Ecosystem Studies Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Go Fujita
- Department of Ecosystem Studies Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| | - Tadashi Miyashita
- Department of Ecosystem Studies Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
| |
Collapse
|
9
|
Higham V, Deal NDS, Chan YK, Chanin C, Davine E, Gibbings G, Keating R, Kennedy M, Reilly N, Symons T, Vran K, Chapple DG. Traffic noise drives an immediate increase in call pitch in an urban frog. J Zool (1987) 2021. [DOI: 10.1111/jzo.12866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- V. Higham
- School of Biological Sciences Monash University Clayton VIC Australia
| | - N. D. S. Deal
- School of Biological Sciences Monash University Clayton VIC Australia
| | - Y. K. Chan
- School of Biological Sciences Monash University Clayton VIC Australia
| | - C. Chanin
- School of Biological Sciences Monash University Clayton VIC Australia
| | - E. Davine
- School of Biological Sciences Monash University Clayton VIC Australia
| | - G. Gibbings
- School of Biological Sciences Monash University Clayton VIC Australia
| | - R. Keating
- School of Biological Sciences Monash University Clayton VIC Australia
| | - M. Kennedy
- School of Biological Sciences Monash University Clayton VIC Australia
| | - N. Reilly
- School of Biological Sciences Monash University Clayton VIC Australia
| | - T. Symons
- School of Biological Sciences Monash University Clayton VIC Australia
| | - K. Vran
- School of Biological Sciences Monash University Clayton VIC Australia
| | - D. G. Chapple
- School of Biological Sciences Monash University Clayton VIC Australia
| |
Collapse
|
10
|
Hammond TT, Ortiz-Jimenez CA, Smith JE. Anthropogenic Change Alters Ecological Relationships via Interactive Changes in Stress Physiology and Behavior within and among Organisms. Integr Comp Biol 2020; 60:57-69. [PMID: 31960928 DOI: 10.1093/icb/icaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic change has well-documented impacts on stress physiology and behavior across diverse taxonomic groups. Within individual organisms, physiological and behavioral traits often covary at proximate and ultimate timescales. In the context of global change, this means that impacts on physiology can have downstream impacts on behavior, and vice versa. Because all organisms interact with members of their own species and other species within their communities, the effects of humans on one organism can impose indirect effects on one or more other organisms, resulting in cascading effects across interaction networks. Human-induced changes in the stress physiology of one species and the downstream impacts on behavior can therefore interact with the physiological and behavioral responses of other organisms to alter emergent ecological phenomena. Here, we highlight three scenarios in which the stress physiology and behavior of individuals on different sides of an ecological relationship are interactively impacted by anthropogenic change. We discuss host-parasite/pathogen dynamics, predator-prey relationships, and beneficial partnerships (mutualisms and cooperation) in this framework, considering cases in which the effect of stressors on each type of network may be attenuated or enhanced by interactive changes in behavior and physiology. These examples shed light on the ways that stressors imposed at the level of one individual can impact ecological relationships to trigger downstream consequences for behavioral and ecological dynamics. Ultimately, changes in stress physiology on one or both sides of an ecological interaction can mediate higher-level population and community changes due in part to their cascading impacts on behavior. This framework may prove useful for anticipating and potentially mitigating previously underappreciated ecological responses to anthropogenic perturbations in a rapidly changing world.
Collapse
Affiliation(s)
- Talisin T Hammond
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
| | - Chelsea A Ortiz-Jimenez
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
11
|
Cope KL, Schook MW, Benard MF. Exposure to artificial light at night during the larval stage has delayed effects on juvenile corticosterone concentration in American toads, Anaxyrus americanus. Gen Comp Endocrinol 2020; 295:113508. [PMID: 32442544 DOI: 10.1016/j.ygcen.2020.113508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 02/02/2023]
Abstract
Artificial Light At Night (ALAN) is an environmental stressor that can disrupt individual physiology and ecological interactions. Hormones such as corticosterone are often responsible for mediating an organism's response to environmental stressors. We investigated whether ALAN was associated with a corticosterone response and whether it exacerbated the effects of another common stressor, predation. We tested for consumptive, non-consumptive, and physiological effects of ALAN and predator presence (dragonfly larvae) on a widespread amphibian, the American toad (Anaxyrus americanus). We found predators had consumptive (decreased survival) and non-consumptive (decreased growth) effects on larval toads. ALAN did not affect larval toads nor did it interact with the predator treatment to increase larval toad predation. Despite the consumptive and non-consumptive effects of predators, neither predators nor ALAN affected corticosterone concentration in the larval and metamorph life-stages. In contrast to studies in other organisms, we did not find any evidence that suggested ALAN alters predator-prey interactions between dragonfly larvae and toads. However, there was an inverse relationship between corticosterone and survival that was exacerbated by exposure to ALAN when predators were absent. Additionally, larval-stage exposure to ALAN increased corticosterone concentration in juvenile toads. Our results suggest the physiological effects of ALAN may not be demonstrated until later life-stages.
Collapse
Affiliation(s)
- Kacey L Cope
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, USA.
| | - Mandi W Schook
- Cleveland Metroparks Zoo, 4200 Wildlife Way, Cleveland, OH 44109, USA; Disney's Animals, Science and Environment, 1200 East Savannah Circle, Bay Lake, FL, USA.
| | - Michael F Benard
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, USA.
| |
Collapse
|
12
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
13
|
Halfwerk W, van Oers K. Anthropogenic noise impairs foraging for cryptic prey via cross-sensory interference. Proc Biol Sci 2020; 287:20192951. [PMID: 32259473 DOI: 10.1098/rspb.2019.2951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Anthropogenic noise levels are globally rising with profound impacts on ecosystems and the species that live in them. Masking or distraction by noise can interfere with relevant sounds and thereby impact ecological interactions between individuals of the same or different species. Predator-prey dynamics are particularly likely to be influenced by rising noise levels, with important population- and community-level consequences, as species may differentially adapt to noise disturbance. Acoustic noise can, however, also impair the use of visual information by animals through the process of cross-sensory interference, possibly impacting species interactions that have so far been largely ignored by noise impact studies. Here, we assessed how noise affected the performance of great tit (Parus major) foraging on cryptic prey. Birds trained individually to search for paper moths differing in the level of camouflage with the test background were tested in the presence and absence of noise. We found that noise significantly increased approach and attack latencies, but that the effect depended on the level of crypsis. Noise increased latencies for cryptic prey targets, but not for conspicuous and colour-matched prey targets. Our results show that noise can interfere with the processing of visual information, particularly in difficult tasks such as separating objects from a similar looking background. These results have important ecological and evolutionary implications as they demonstrate how globally rising anthropogenic noise levels can influence the arms race between predators and prey across sensory domains.
Collapse
Affiliation(s)
- Wouter Halfwerk
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
14
|
Castaneda E, Leavings VR, Noss RF, Grace MK. The effects of traffic noise on tadpole behavior and development. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractTraffic noise is known to negatively affect many wildlife species by interfering with foraging behavior. Frogs often lay their eggs in roadside ditches because they are predator-free, but it is possible that traffic noise could reduce the survival and fitness of tadpoles, creating an ecological trap. In a series of lab experiments, we tested whether traffic noise has a negative impact on tadpole feeding behavior, whether this is mediated by changes in tadpole activity, and whether there is any impact on tadpole growth rate or metamorphosis. Traffic noise exposure significantly reduced the amount of food consumed by Cuban Treefrog (Osteopilus septentrionalis) tadpoles. Traffic noise exposure also increased the activity level of both Southern Toad (Anaxyrus terrestris) and Cuban Treefrog tadpoles, which could possibly make them more noticeable to predators in the wild. However, these behavioral changes were not associated with changes in growth rate or timing of metamorphosis. We caution, however, that this study aimed to isolate the specific impact of traffic noise, and did not investigate other road effects that may be damaging to tadpoles.
Collapse
|
15
|
Hammond TT, Vo M, Burton CT, Surber LL, Lacey EA, Smith JE. Physiological and behavioral responses to anthropogenic stressors in a human-tolerant mammal. J Mammal 2019. [DOI: 10.1093/jmammal/gyz134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
As humans continue to alter natural habitats, many wild animals are facing novel suites of environmental stimuli. These changes, including increased human–wildlife interactions, may exert sublethal impacts on wildlife such as alterations in stress physiology and behavior. California ground squirrels (Otospermophilus beecheyi) occur in human-modified as well as more pristine environments, where they face a variety of anthropogenic and naturally occurring threats. This makes this species a valuable model for examining the effects of diverse challenges on the physiology and behavior of free-living mammals. To explore potential sublethal effects of habitat modification on O. beecheyi, we compared body masses, behaviors, and fecal glucocorticoid metabolite (FGM) levels for free-living squirrels in human-disturbed versus undisturbed habitats. Prior to these analyses, we validated the use of FGMs in this species by exposing captive O. beecheyi to pharmacological and handling challenges; both challenges produced significant increases in FGMs in the study animals. While FGM responses were repeatable within captive individuals, responses by free-living animals were more variable, perhaps reflecting a greater range of life-history traits and environmental conditions within natural populations of squirrels. Animals from our human-disturbed study site had significantly higher FGMs, significantly lower body masses, and were significantly less behaviorally reactive to humans than those from our more pristine study site. Thus, despite frequent exposure of California ground squirrels to human impacts, anthropogenic stressors appear to influence stress physiology and other phenotypic traits in this species. These findings suggest that even human-tolerant mammalian species may experience important sublethal consequences due to human modifications of natural habitats.
Collapse
Affiliation(s)
- Talisin T Hammond
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Minnie Vo
- Biology Department, Mills College, Oakland, CA, USA
| | | | | | - Eileen A Lacey
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
16
|
Tennessen JB, Parks SE, Swierk L, Reinert LK, Holden WM, Rollins-Smith LA, Walsh KA, Langkilde T. Frogs adapt to physiologically costly anthropogenic noise. Proc Biol Sci 2018; 285:20182194. [PMID: 30464067 PMCID: PMC6253376 DOI: 10.1098/rspb.2018.2194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
Human activities impose novel pressures on amphibians, which are experiencing unprecedented global declines, yet population-level responses are poorly understood. A growing body of literature has revealed that noise is an anthropogenic stressor that impacts ecological processes spanning subcellular to ecosystem levels. These consequences can impose novel selective pressures on populations, yet whether populations can adapt to noise is unknown. We tested for adaptation to traffic noise, a widespread sensory 'pollutant'. We collected eggs of wood frogs (Rana sylvatica) from populations from different traffic noise regimes, reared hatchlings under the same conditions, and tested frogs for differences in sublethal fitness-relevant effects of noise. We show that prolonged noise impaired production of antimicrobial peptides associated with defence against disease. Additionally, noise and origin site interacted to impact immune and stress responses. Noise exposure altered leucocyte production and increased baseline levels of the stress-relevant glucocorticoid, corticosterone, in frogs from quiet sites, but noise-legacy populations were unaffected. These results suggest noise-legacy populations have adapted to avoid fitness-relevant physiological costs of traffic noise. These findings advance our understanding of the consequences of novel soundscapes and reveal a pathway by which anthropogenic disturbance can enable adaptation to novel environments.
Collapse
Affiliation(s)
- Jennifer B Tennessen
- Department of Biology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Susan E Parks
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Lindsey Swierk
- Department of Biology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
- School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, CT 06511, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232, USA
| | - Whitney M Holden
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, A-5301 Medical Center North, Nashville, TN 37232, USA
| | - Koranda A Walsh
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Tracy Langkilde
- Department of Biology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|