1
|
Cuaresma DCN, Ito H, Arima H, Yoshimura J, Morita S, Okabe T. Threshold fertility for the avoidance of extinction under critical conditions. PLoS One 2025; 20:e0322174. [PMID: 40305458 PMCID: PMC12043152 DOI: 10.1371/journal.pone.0322174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
The developed countries now face a low fertility crisis. The replacement level fertility (RLF) is conventionally considered to be 2.1 children per woman, in which demographic stochasticity arising from random variations in individual offspring numbers is ignored. However, the importance of demographic stochasticity casts doubts on the adequacy of the replacement level fertility of 2.1, especially in a small population. Here, we investigate the extinction threshold for the fertility rate of a sexually reproducing population caused by demographic stochasticity. The results indicate that the fertility rate should exceed 2.7 to avoid extinction. The extinction threshold is reduced by a female-biased sex ratio. We argue that the present results explain the observed phenomena of female-biased births under severe conditions as an effective way to avoid extinction. Furthermore, since fertility rates are below this threshold in developed countries, family lineages of almost all individuals are destined to go extinct eventually.
Collapse
Affiliation(s)
- Diane Carmeliza N. Cuaresma
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Institute of Mathematical Sciences and Physics, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Hiromu Ito
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Arima
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jin Yoshimura
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Marine Biosystems Research Center, Chiba University, Chiba, Japan
| | - Satoru Morita
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takuya Okabe
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
2
|
Randell AM, Salia S, Fowler LF, Aung T, Puts DA, Swift-Gallant A. A meta-analysis of sex differences in neonatal rodent ultrasonic vocalizations and the implication for the preclinical maternal immune activation model. Biol Sex Differ 2025; 16:4. [PMID: 39863873 PMCID: PMC11762899 DOI: 10.1186/s13293-025-00685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As the earliest measure of social communication in rodents, ultrasonic vocalizations (USVs) in response to maternal separation are critical in preclinical research on neurodevelopmental disorders (NDDs). While sex differences in both USV production and behavioral outcomes are reported, many studies overlook sex as a biological variable in preclinical NDD models. We aimed to evaluate sex differences in USV call parameters and determine if USVs are differently impacted based on sex in the preclinical maternal immune activation (MIA) model. Results indicate that sex differences in USVs vary with developmental stage and are more pronounced in MIA offspring. Specifically, developmental stage is a moderator of sex differences in USV call duration, with control females emitting longer calls than males in early development (up to postnatal day [PND] 8), but this pattern reverses after PND8. MIA leads to a reduction in call numbers for females compared to same-sex controls in early development, with a reversal post-PND8. MIA decreased call duration and increased total call duration in males, but unlike females, developmental stage did not influence these differences. In males, MIA effects varied by species, with decreased call numbers in rats but increased call numbers in mice. MIA timing (gestational day ≤ 12.5 vs. > 12.5) did not significantly affect results. Our findings highlight the importance of considering sex, developmental timing, and species in USVs research. We discuss how analyzing USV call types and incorporating sex as a biological variable can enhance our understanding of neonatal ultrasonic communication and its translational value in NDD research.
Collapse
Affiliation(s)
- Alison M Randell
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Stephanie Salia
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Lucas F Fowler
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| | - Toe Aung
- Department of Psychology and Counseling, Immaculata University, Immaculata, PA, USA
| | - David A Puts
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Ashlyn Swift-Gallant
- Department of Psychology, Memorial University of Newfoundland and Labrador, St. John's NL, Canada
| |
Collapse
|
3
|
Huang F, Niu P, Wang J, Suo J, Zhang L, Wang J, Fang D, Gao Q. Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring. Vet Sci 2024; 11:572. [PMID: 39591346 PMCID: PMC11598928 DOI: 10.3390/vetsci11110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the selective effect of the reproductive tract mucus in cows that have consistently produced offspring of a single sex on X/Y spermatozoa. We collected mucus from the reproductive tract of cows that had given calvings to offspring of the same sex, or alternated between sexes, for more than five consecutive calvings. We evaluated the pH of reproductive tract mucus. Subsequently, we conducted a spermatozoa penetration assay; the proportions of X and Y spermatozoa after penetration were then identified by dual TaqMan qPCR and flow cytometry. This was followed by in vitro fertilization and embryo sex determination experiments. Immediately afterwards, computer-aided spermatozoa analysis was employed to analyze the spermatozoa that had penetrated through different types of mucus in the reproductive tract. The analysis indicated that the reproductive tract mucus of cows consistently producing male or female calves exhibited selectivity towards X/Y spermatozoa. The differences in the pH values of the reproductive tract mucus among cows continuously producing male calves, those continuously producing female calves, and those alternately giving birth to male and female calves were not significant (p ≥ 0.05). The outcome of dual TaqMan qPCR for cows consistently producing male calves was Y: 79.29 ± 4.28% vs. X: 21.67 ± 4.53%; for cows consistently producing female calves, the equation was Y: 25.05 ± 4.88% vs. X: 75.34 ± 5.13%. The results of flow cytometry processing revealed the following proportions: for cows consistently producing male calves: Y: 83.33 ± 5.52% vs. X: 17.23 ± 4.74%; for cows consistently producing female calves: Y: 24.81 ± 4.13% vs. X: 76.64 ± 4.21%. The outcomes of embryo sex determination for cows consistently producing male calves were as follows: male embryos vs. female embryos (79.60 ± 2.87% vs. 21.07 ± 2.51%); for cows consistently producing female calves, the outcomes for male embryos vs. female embryos were 25.58 ± 3.96% vs. 75.63 ± 3.55%. Computer-aided analysis revealed that the concentration of spermatozoa penetrating the reproductive tract mucus in cows alternating between male and female calves (9.09 ± 0.72 million/mL) was significantly higher than that in cows consistently producing male calves (6.01 ± 1.19 million/mL) and cows consistently producing female calves (5.61 ± 0.60 million/mL). There were no significant differences in spermatozoa motility, the proportion of progressive motile spermatozoa, and curvilinear, straight-line, and average path velocities. Collectively, these findings indicate that the reproductive tract mucus of cows consistently producing offspring of a single sex exhibits selectivity towards either X or Y spermatozoa. This finding is of great significance for studying the impact of maternal factors on offspring sex.
Collapse
Affiliation(s)
- Fei Huang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Peng Niu
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Jiajia Suo
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Jie Wang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Di Fang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Qinghua Gao
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Alar 843300, China
| |
Collapse
|
4
|
Crowther C, Adams CIM, Fondren A, Janzen FJ. Adult Sex-Ratio Bias Does Not Lead to Detectable Adaptive Offspring Sex Allocation Via Nest-Site Choice in a Turtle With Temperature-Dependent Sex Determination. Ecol Evol 2024; 14:e70543. [PMID: 39539677 PMCID: PMC11560344 DOI: 10.1002/ece3.70543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Sex-ratio theory predicts that parents can optimise their fitness by producing offspring of the rare sex, yet there is a dearth of empirical evidence for adaptive sex allocation in response to the adult sex ratio (ASR). This is concerning, as anthropogenic disruption of the sex ratios of reproductive individuals threatens to cause demographic collapse in animal populations. Species with environmental sex determination (ESD) are especially at risk but may possess the capacity to adaptively influence offspring sex via control over the developmental environment. For example, reptiles with temperature-dependent sex determination (TSD) could conceivably choose nest sites with thermal characteristics that produce offspring of the rare sex. To test this hypothesis, we seeded three secure outdoor ponds with different sex ratios (~M:F 3:1, 1:1, and 1:3) of adult painted turtles (Chrysemys picta), a reptile species with TSD. We then quantified nesting traits that could influence nest temperature and thus offspring sex ratio, including nesting date, nest depth, and nest canopy cover. We found no directional relationship between the ASR treatments and any measured nest traits and thus rejected our hypothesis. Interestingly, increased maternal body size was associated with reduced nest canopy cover, and this trend was more pronounced in the biased ASR treatments. If adaptive sex allocation occurs in this system, it instead may manifest via maternal epigenetic predisposition of offspring sex or in response to a phenomenon other than the ASR.
Collapse
Affiliation(s)
- Claudia Crowther
- Departments of Fisheries and Wildlife & Integrative Biology, W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
| | - Clare I. M. Adams
- Coastal People Southern SkiesVictoria University of Wellington Te Herenga WakaWellingtonNew Zealand
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Andy Fondren
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| | - Fredric J. Janzen
- Departments of Fisheries and Wildlife & Integrative Biology, W.K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
5
|
Firman RC, André GI, Hadlow JH, Simmons LW. Intergenerational response to sperm competition risk in an invasive mammal. Proc Biol Sci 2023; 290:20222452. [PMID: 37122257 PMCID: PMC10130712 DOI: 10.1098/rspb.2022.2452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Studies of socially mediated phenotypic plasticity have demonstrated adaptive male responses to the 'competitive' environment. Despite this, whether variation in the paternal social environment also influences offspring reproductive potential in an intergenerational context has not yet been examined. Here, we studied the descendants of wild-caught house mice, a destructive pest species worldwide, to address this knowledge gap. We analysed traits that define a 'competitive' phenotype in the sons of males (sires) that had been exposed to either a high-male density (competitive) or high-female density (non-competitive) environment. We report disparate reproductive strategies among the sires: high-male density led to a phenotype geared for competition, while high-female density led to a phenotype that would facilitate elevated mating frequency. Moreover, we found that the competitive responses of sires persisted in the subsequent generation, with the sons of males reared under competition having elevated sperm quality. As all sons were reared under common-garden conditions, variation in their reproductive phenotypes could only have arisen via nongenetic inheritance. We discuss our results in relation to the adaptive advantage of preparing sons for sperm competition and suggest that intergenerational plasticity is a previously unconsidered aspect in invasive mammal fertility control.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Gonçalo Igreja André
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Jessica H Hadlow
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
6
|
Facultative and persistent offspring sex-ratio bias in relation to the social environment in cooperatively breeding red-winged fairy-wrens (Malurus elegans). Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Females should facultatively bias offspring sex ratio when fitness returns vary among sexes. In cooperative breeders, where individuals help raise others’ young, overproducing the philopatric sex will be adaptive when helpers are absent, whereas overproducing the dispersive sex may be adaptive to reduce intrasexual competition. Thus, fitness returns are expected to vary with the social environment. However, any offspring sex-ratio biases may also result from consistent among-female differences (e.g. quality) and/or environmental variables (e.g. food availability). Yet, few studies have disentangled facultative from persistent biases. We investigated offspring sex-ratio biases in relation to the social environment in cooperatively breeding red-winged fairy-wrens (Malurus elegans). Repeated observations of the same females over nine years allowed for disentanglement of facultative from persistent biases. Females without help did not overproduce daughters, despite female helpers being associated with higher fledgling survival (resource enhancement hypothesis). Instead, females without helpers facultatively overproduced sons —the slower dispersing sex— thereby ensuring long-term helper availability. Furthermore, offspring sex ratio was not biased towards the rarer sex of helpers present in the group or population (resource competition hypothesis). However, females with sex-biased helping produced similarly skewed offspring sex ratios. This among-female association may not be surprising, because helpers are previous seasons’ offspring. Thus, in addition to facultative responses to prevailing social conditions, we found evidence for persistent biases among females. This could potentially explain previous evidence for resource competition/enhancement that have typically been interpreted as facultative responses, highlighting the need for a within-female approach to better understand the adaptiveness of sex-ratio biases.
Significance statement
Under certain conditions, females may benefit from producing a biased offspring sex ratio, but evidence for such effects in vertebrates is weak and inconsistent. Here, using observations of the same females under different social conditions, we show that cooperatively breeding red-winged fairy-wrens facultatively biased offspring sex ratio towards sons when living in pairs, thereby ensuring the availability of a workforce to assist in raising future offspring. However, biased offspring sex ratio patterns may also be the result of consistent differences among females. Indeed, we also found evidence for such patterns and suggest that this could be an explanation for previous findings which are often interpreted as facultative responses.
Collapse
|
7
|
Marques V, Riaño G, Carretero MA, Silva‐Rocha I, Rato C. Sex determination and optimal development in the Moorish gecko,
Tarentola mauritanica. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valéria Marques
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
| | - Gabriel Riaño
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
| | - Miguel A. Carretero
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
- Department of Biology Faculty of Sciences of the University of Porto Porto Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Iolanda Silva‐Rocha
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| | - Catarina Rato
- CIBIO – Research Centre in Biodiversity and Genetic Resources Universidade do Porto Vila do Conde Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning CIBIO Vairão Portugal
| |
Collapse
|
8
|
Naidu SJ, Arangasamy A, Selvaraju S, Binsila BK, Reddy IJ, Ravindra JP, Bhatta R. Maternal influence on the skewing of offspring sex ratio: a review. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Lambert MR, Ezaz T, Skelly DK. Sex-Biased Mortality and Sex Reversal Shape Wild Frog Sex Ratios. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.756476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Population sex ratio is a key demographic factor that influences population dynamics and persistence. Sex ratios can vary across ontogeny from embryogenesis to death and yet the conditions that shape changes in sex ratio across ontogeny are poorly understood. Here, we address this issue in amphibians, a clade for which sex ratios are generally understudied in wild populations. Ontogenetic sex ratio variation in amphibians is additionally complicated by the ability of individual tadpoles to develop a phenotypic (gonadal) sex opposite their genotypic sex. Because of sex reversal, the genotypic and phenotypic sex ratios of entire cohorts and populations may also contrast. Understanding proximate mechanisms underlying phenotypic sex ratio variation in amphibians is important given the role they play in population biology research and as model species in eco-toxicological research addressing toxicant impacts on sex ratios. While researchers have presumed that departures from a 50:50 sex ratio are due to sex reversal, sex-biased mortality is an alternative explanation that deserves consideration. Here, we use a molecular sexing approach to track genotypic sex ratio changes from egg mass to metamorphosis in two independent green frog (Rana clamitans) populations by assessing the genotypic sex ratios of multiple developmental stages at each breeding pond. Our findings imply that genotypic sex-biased mortality during tadpole development affects phenotypic sex ratio variation at metamorphosis. We also identified sex reversal in metamorphosing cohorts. However, sex reversal plays a relatively minor and inconsistent role in shaping phenotypic sex ratios across the populations we studied. Although we found that sex-biased mortality influences sex ratios within a population, our study cannot say at this time whether sex-biased mortality is responsible for sex ratio variation across populations. Our results illustrate how multiple processes shape sex ratio variation in wild populations and the value of testing assumptions underlying how we understand sex in wild animal populations.
Collapse
|
10
|
Barra T, Viblanc VA, Saraux C, Murie JO, Dobson FS. Parental investment in the Columbian ground squirrel: empirical tests of sex allocation models. Ecology 2021; 102:e03479. [PMID: 34270793 DOI: 10.1002/ecy.3479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 11/09/2022]
Abstract
Parental allocation of resources into male or female offspring and differences in the balance of offspring sexes in natural populations are central research topics in evolutionary ecology. Fisher (Fisher, R. A. 1930. The genetical theory of natural selection, Clarendon Press, Oxford, UK) identified frequency-dependent selection as the mechanism responsible for an equal investment in the sexes of offspring at the end of parental care. Three main theories have been proposed for explaining departures from Fisherian sex ratios in light of variation in environmental (social) and individual (maternal condition) characteristics. The Trivers-Willard model (Trivers, R., and D. Willard. 1973. Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90-92) of male-biased sex allocation by mothers in the best body condition is based on the competitive ability of male offspring for future access to mates and thus superior reproduction. The local resource competition model is based on competitive interactions in matrilines, as occur in many mammal species, where producing sons reduces future intrasexual competition with daughters. A final model invokes advantages of maintaining matrilines for philopatric females, despite any increased competition among females. We used 29 yr of pedigree and demographic data to evaluate these hypotheses in the Colombian ground squirrel (Urocitellus columbianus), a semisocial species characterized by strong female philopatry. Overall, male offspring were heavier than female offspring at birth and at weaning, suggesting a higher production cost. With more local kin present, mothers in the best condition biased their offspring sex ratio in favor of males, and mothers in poor condition biased offspring sex ratio in favor of females. Without co-breeding close kin, the pattern was reversed, with mothers in the best condition producing more daughters, and mothers in poor condition producing more sons. Our results do not provide strong support for any of the single-factor models of allocation to the sexes of offspring, but rather suggest combined influences of relative maternal condition and matriline dominance on offspring sex ratio.
Collapse
Affiliation(s)
- Thibaut Barra
- Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, Strasbourg, 67000, France
| | - Vincent A Viblanc
- Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, Strasbourg, 67000, France
| | - Claire Saraux
- Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, Strasbourg, 67000, France
| | - Jan O Murie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - F Stephen Dobson
- Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, CNRS, UMR 7178, Strasbourg, 67000, France.,Department of Biological Sciences, Auburn University, 311 Funchess Hall, Auburn, Alabama, 36849, USA
| |
Collapse
|
11
|
Augstenová B, Pensabene E, Veselý M, Kratochvíl L, Rovatsos M. Are Geckos Special in Sex Determination? Independently Evolved Differentiated ZZ/ZW Sex Chromosomes in Carphodactylid Geckos. Genome Biol Evol 2021; 13:evab119. [PMID: 34051083 PMCID: PMC8290109 DOI: 10.1093/gbe/evab119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Amniotes possess astonishing variability in sex determination ranging from environmental sex determination (ESD) to genotypic sex determination (GSD) with highly differentiated sex chromosomes. Geckos are one of the few amniote groups with substantial variability in sex determination. What makes them special in this respect? We hypothesized that the extraordinary variability of sex determination in geckos can be explained by two alternatives: 1) unusual lability of sex determination, predicting that the current GSD systems were recently formed and are prone to turnovers; and 2) independent transitions from the ancestral ESD to later stable GSD, which assumes that geckos possessed ancestrally ESD, but once sex chromosomes emerged, they remain stable in the long term. Here, based on genomic data, we document that the differentiated ZZ/ZW sex chromosomes evolved within carphodactylid geckos independently from other gekkotan lineages and remained stable in the genera Nephrurus, Underwoodisaurus, and Saltuarius for at least 15 Myr and potentially up to 45 Myr. These results together with evidence for the stability of sex chromosomes in other gekkotan lineages support more our second hypothesis suggesting that geckos do not dramatically differ from the evolutionary transitions in sex determination observed in the majority of the amniote lineages.
Collapse
Affiliation(s)
- Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Eleonora Pensabene
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Milan Veselý
- Department of Zoology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Douhard M, Geffroy B. Males can adjust offspring sex ratio in an adaptive fashion through different mechanisms. Bioessays 2021; 43:e2000264. [PMID: 33594712 DOI: 10.1002/bies.202000264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/15/2023]
Abstract
Sex allocation research has primarily focused on offspring sex-ratio adjustment by mothers. Yet, fathers also benefit from producing more of the sex with greater fitness returns. Here, we review the state-of-the art in the study of male-driven sex allocation and, counter to the current paradigm, we propose that males can adaptively influence offspring sex ratio through a wide variety of mechanisms. This includes differential production and motility of X- versus Y-bearing sperms in mammals, variation in seminal fluid composition in haplo-diploid invertebrates, and epigenetic mechanisms in some fish and lizards exhibiting environmental sex determination. Conflicts of interest between mothers and fathers over offspring sex ratios can emerge, although many more studies are needed in this area. While many studies of sex allocation have focused on adaptive explanations with little attention to mechanisms, and vice versa, the integration of these two topics is essential for understanding male-driven sex allocation.
Collapse
Affiliation(s)
- Mathieu Douhard
- Laboratoire de Biométrie & Biologie Evolutive, Université Lyon 1, Villeurbanne, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Palavas-Les-Flots, France
| |
Collapse
|
13
|
Firman RC. Of mice and women: advances in mammalian sperm competition with a focus on the female perspective. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200082. [PMID: 33070720 DOI: 10.1098/rstb.2020.0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although initially lagging behind discoveries being made in other taxa, mammalian sperm competition is now a productive and advancing field of research. Sperm competition in mammals is not merely a 'sprint-race' between the gametes of rival males, but rather a race over hurdles; those hurdles being the anatomical and physiological barriers provided by the female reproductive tract, as well as the egg and its vestments. With this in mind, in this review, I discuss progress in the field while focusing on the female perspective. I highlight ways by which sperm competition can have positive effects on female reproductive success and discuss how competitive outcomes are not only owing to dynamics between the ejaculates of rival males, but also attributable to mechanisms by which female mammals bias paternity toward favourable sires. Drawing on examples across different species-from mice to humans-I provide an overview of the accumulated evidence which firmly establishes that sperm competition is a key selective force in the evolution of male traits and detail how females can respond to increased sperm competitiveness with increased egg resistance to fertilization. I also discuss evidence for facultative responses to the sperm competition environment observed within mammal species. Overall, this review identifies shortcomings in our understanding of the specific mechanisms by which female mammals 'select' sperm. More generally, this review demonstrates how, moving forward, mammals will continue to be effective animal models for studying both evolutionary and facultative responses to sperm competition. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
14
|
Firman RC, Tedeschi JN, Garcia-Gonzalez F. Sperm sex ratio adjustment in a mammal: perceived male competition leads to elevated proportions of female-producing sperm. Biol Lett 2020; 16:20190929. [PMID: 32486939 DOI: 10.1098/rsbl.2019.0929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammal sex allocation research has focused almost exclusively on maternal traits, but it is now apparent that fathers can also influence offspring sex ratios. Parents that produce female offspring under conditions of intense male-male competition can benefit with greater assurance of maximized grand-parentage. Adaptive adjustment in the sperm sex ratio, for example with an increase in the production of X-chromosome bearing sperm (CBS), is one potential paternal mechanism for achieving female-biased sex ratios. Here, we tested this mechanistic hypothesis by varying the risk of male-male competition that male house mice perceived during development, and quantifying sperm sex ratios at sexual maturity. Our analyses revealed that males exposed to a competitive 'risk' produced lower proportions of Y-CBS compared to males that matured under 'no risk' of competition. We also explored whether testosterone production was linked to sperm sex ratio variation, but found no evidence to support this. We discuss our findings in relation to the adaptive value of sperm sex ratio adjustments and the role of steroid hormones in socially induced sex allocation.
Collapse
Affiliation(s)
- Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jamie N Tedeschi
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.,Estacion Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|