1
|
Zhou Y, Tian J, Jiang H, Han M, Wang Y, Lu J. Phylogeography and demographic history of macaques, fascicularis species group, in East Asia: Inferred from multiple genomic markers. Mol Phylogenet Evol 2024; 194:108042. [PMID: 38401812 DOI: 10.1016/j.ympev.2024.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Climate changes at larger scales have influenced dispersal and range shifts of many taxa in East Asia. The fascicularis species group of macaques is composed of four species and is widely distributed in Southeast and East Asia. However, its phylogeography and demographic histories are currently poorly understood. Herein, we assembled autosomal, mitogenome, and Y-chromosome data for 106 individuals, and combined them with 174 mtDNA dloop haplotypes of this species group, with particular focus on the demographic histories and dispersal routes of Macaca fuscata, M. cyclopis, and M. mulatta. The results showed: (1) three monophyletic clades for M. fuscata, M. cyclopis, and M. mulatta based on the multiple genomics analyses; (2) the disparate demographic trajectories of the three species after their split ∼1.0 Ma revealed that M. cyclopis and M. fuscata were derived from an ancestral M. mulatta population; (3) the speciation time of M. cyclopis was later than that of M. fuscata, and their divergence time occurred at the beginning of "Ryukyu Coral Sea Stage" (1.0-0.2 Ma) when the East China Sea land bridge was completely submerged by the sea level rose; and (4) the three parallel rivers (Nujiang, Lancangjiang, and Jinshajiang) of Southwestern China divided M. mulatta into Indian and Chinese genetic populations ∼200 kya. These results shed light on understanding not only the evolutionary history of the fascicularis species group but also the formation mechanism of faunal diversity in East Asia during the Pleistocene.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jundong Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Mengya Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuwei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China
| | - Jiqi Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Muñoz-Ramírez CP, Colin N, Canales-Aguirre CB, Manosalva A, López-Rodríguez R, Sukumaran J, Górski K. Species tree analyses and speciation-based species delimitation support new species in the relict catfish family Diplomystidae and provide insights on recent glacial history in Patagonia. Mol Phylogenet Evol 2023; 189:107932. [PMID: 37751827 DOI: 10.1016/j.ympev.2023.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
Diplomystidae is an early-diverged family of freshwater catfish endemic to southern South America. We have recently collected five juvenile specimens belonging to this family from the Bueno River Basin, a basin which the only previous record was a single juvenile specimen collected in 1996. This finding confirms the distribution of the family further South in northern Patagonia, but poses new questions about the origin of this population in an area with a strong glacial history. We used phylogenetic analyses to evaluate three different hypotheses that could explain the origin of this population in the basin. First, the population could have originated in Atlantic basins (East of the Andes) and dispersed to the Bueno Basin after the Last Glacial Maximum (LGM) via river reversals, as it has been proposed for other population of Diplomystes as well as for other freshwater species from Patagonia. Second, the population could have originated in the geographically close Valdivia Basin (West of the Andes) and dispersed south to its current location in the Bueno Basin. Third, regardless of its geographic origin (West or East of the Andes), the Bueno Basin population could have a longer history in the basin, surviving in situ through the LGM. In addition, we conducted species delimitation analyses using a recently developed method that uses a protracted model of speciation. Our goal was to test the species status of the Bueno Basin population along with another controversial population in Central Chile (Biobío Basin), which appeared highly divergent in previous studies with mtDNA. The phylogenetic analyses showed that the population from the Bueno Basin is more related to Atlantic than to Pacific lineages, although with a deep divergence that predated the LGM, supporting in situ survival rather than postglacial dispersal. In addition, these analyses also showed that the species D. nahuelbutaensis is polyphyletic, supporting the need for a taxonomic reevaluation. The species delimitation analyses supported two new species which are described using molecular diagnostic characters: Diplomystes arratiae sp. nov. from the Biobío, Carampangue, and Laraquete basins, maintaining D. nahuelbutaensis valid only for the Imperial Basin, and Diplomystes habitae sp. nov. from the Bueno Basin. This study greatly increases the number of species within both the family Diplomystidae and Patagonia, and contributes substantially to the knowledge of the evolution of southern South American freshwater biodiversity during its glacial history. Given the important contribution to the phylogenetic diversity of the family, we recommend a high conservation priority for both new species. Finally, this study highlights an exemplary scenario where species descriptions based only on DNA data are particularly valuable, bringing additional elements to the ongoing debate on DNA-based taxonomy.
Collapse
Affiliation(s)
- Carlos P Muñoz-Ramírez
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - Nicole Colin
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Cristian B Canales-Aguirre
- Centro i∼mar, Universidad de Los Lagos, Camino a Chinquihue 6 km, Puerto Montt, Chile; Núcleo Milenio INVASAL, Concepción, Chile
| | - Aliro Manosalva
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, Chile
| | - Ruby López-Rodríguez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Konrad Górski
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| |
Collapse
|
3
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
4
|
Dallaire X, Normandeau É, Mainguy J, Tremblay J, Bernatchez L, Moore J. Genomic data support management of anadromous Arctic Char fisheries in Nunavik by highlighting neutral and putatively adaptive genetic variation. Evol Appl 2021; 14:1880-1897. [PMID: 34295370 PMCID: PMC8287999 DOI: 10.1111/eva.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
Distinguishing neutral and adaptive genetic variation is one of the main challenges in investigating processes shaping population structure in the wild, and landscape genomics can help identify signatures of adaptation to contrasting environments. Arctic Char (Salvelinus alpinus) is an anadromous salmonid and the most harvested fish species by Inuit people, including in Nunavik (Québec, Canada), one of the most recently deglaciated regions in the world. Unlike many other anadromous salmonids, Arctic Char occupy coastal habitats near their natal rivers during their short marine phase restricted to the summer ice-free period. Our main objective was to document putatively neutral and adaptive genomic variation in anadromous Arctic Char populations from Nunavik and bordering regions to inform local fisheries management. We used genotyping by sequencing (GBS) to genotype 18,112 filtered single nucleotide polymorphisms (SNP) in 650 individuals from 23 sampling locations along >2000 km of coastline. Our results reveal a hierarchical genetic structure, whereby neighboring hydrographic systems harbor distinct populations grouped by major oceanographic basins: Hudson Bay, Hudson Strait, Ungava Bay, and Labrador Sea. We found genetic diversity and differentiation to be consistent both with the expected postglacial recolonization history and with patterns of isolation-by-distance reflecting contemporary gene flow. Results from three gene-environment association methods supported the hypothesis of local adaptation to both freshwater and marine environments (strongest associations with sea surface and air temperatures during summer and salinity). Our results support a fisheries management strategy at a regional scale, and other implications for hatchery projects and adaptation to climate change are discussed.
Collapse
Affiliation(s)
- Xavier Dallaire
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Centre d’Études Nordiques (CEN)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
| | - Julien Mainguy
- Ministère des Forêts, de la Faune et des ParcsQuébecQCCanada
| | - Jean‐Éric Tremblay
- Département de Biologie, Université LavalQuébecQCCanada
- Ministère des Forêts, de la Faune et des ParcsQuébecQCCanada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| | - Jean‐Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Centre d’Études Nordiques (CEN)Université LavalQuébecQCCanada
- Département de Biologie, Université LavalQuébecQCCanada
| |
Collapse
|
5
|
Valdez L, D’Elía G. Genetic Diversity and Demographic History of the Shaggy Soft-Haired Mouse Abrothrix hirta (Cricetidae; Abrotrichini). Front Genet 2021; 12:642504. [PMID: 33841502 PMCID: PMC8024643 DOI: 10.3389/fgene.2021.642504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic information on species can inform decision making regarding conservation of biodiversity since the response of organisms to changing environments depend, in part, on their genetic makeup. Territories of central-southern Chile and Argentina have undergone a varying degree of impact during the Quaternary, where the response of local fauna and flora was rather species-specific. Here, we focus on the sigmodontine rodent Abrothrix hirta, distributed from 35° S in Chile and Argentina to northern Tierra del Fuego. Based on 119,226 transcriptome-derived SNP loci from 46 individuals of A. hirta, we described the geographic distribution of the genetic diversity of this species using a maximum likelihood tree, principal component and admixture analyses. We also addressed the demographic history of the main intraspecific lineages of A. hirta using GADMA. We found that A. hirta exhibited four allopatric intraspecific lineages. Three main genetic groups were identified by a Principal Component Analysis and by Ancestry analysis. The demographic history of A. hirta was characterized by recent population stability for populations at the northernmost part of the range, while southern populations experienced a recent population expansion.
Collapse
Affiliation(s)
- Lourdes Valdez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Guillermo D’Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Colección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Peng J, Rajeevan H, Kubatko L, RoyChoudhury A. A fast likelihood approach for estimation of large phylogenies from continuous trait data. Mol Phylogenet Evol 2021; 161:107142. [PMID: 33713799 DOI: 10.1016/j.ympev.2021.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/15/2020] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Abstract
Despite the recent availability of large-scale genomic data for many individuals, few methods for phylogenetic inference are both computationally efficient and highly accurate for trees with hundreds of taxa. Model-based methods such as those developed in the maximum likelihood and Bayesian frameworks are especially time-consuming, as they involve both computationally intensive calculations on fixed phylogenies and searches through the space of possible phylogenies, and they are known to scale poorly with the addition of taxa. Here, we propose a fast approximation to the maximum likelihood estimator that directly uses continuous trait data, such as allele frequency data. The approximation works by first computing the maximum likelihood estimates of some internal branch lengths, and then inferring the tree-topology using these estimates. Our approach is more computationally efficient than existing methods for such data while still achieving comparable accuracy. This method is innovative in its use of the mathematical properties of tree-topologies for inference, and thus serves as a useful addition to the collection of methods available for estimating phylogenies from continuous trait data.
Collapse
Affiliation(s)
- Jing Peng
- Division of Biostatistics, College of Public Health, The Ohio State University, United States; Department of Statistics, The Ohio State University, United States
| | | | - Laura Kubatko
- Department of Statistics, The Ohio State University, United States; Department of Evolution, Ecology and Organismal Biology, The Ohio State University, United States.
| | - Arindam RoyChoudhury
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, Cornell University, United States
| |
Collapse
|
7
|
Historical and Contemporary Diversity of Galaxiids in South America: Biogeographic and Phylogenetic Perspectives. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12080304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Galaxiid fishes from South America are represented by three genera (Aplochiton, Brachygalaxias and Galaxias) and eight species. Their genetic patterns have been studied over the last two decades to disentangle how historical and contemporary processes influenced their biogeographic distribution and phylogeographic patterns. Here we review and synthesize this body of work. Phylogeographic approaches reveal the important role played by orogeny and the expansion/melting of glacial ice during the Quaternary. Populations retreated to glacial refugia during glacial times and some systems experienced drainage reversals from the Atlantic to the Pacific following deglaciation. Although most species expanded their populations and increased their genetic diversity during the Holocene, the introduction of salmonids and the construction of dams are likely to lead to a decline in genetic diversity for at least some species. An improvement in our understanding of the processes that influenced historical and contemporary diversity patterns among galaxiid and other native fishes in South America is necessary for addressing the cumulative and synergistic impacts of human activity on this unique freshwater fauna.
Collapse
|
8
|
Victoriano PF, Muñoz-Ramírez CP, Canales-Aguirre CB, Jara A, Vera-Escalona I, Burgos-Careaga T, Muñoz-Mendoza C, Habit EM. Contrasting evolutionary responses in two co-distributed species of Galaxias (Pisces, Galaxiidae) in a river from the glaciated range in Southern Chile. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200632. [PMID: 32874654 PMCID: PMC7428232 DOI: 10.1098/rsos.200632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 05/05/2023]
Abstract
Life-history traits are among the most important factors affecting population abundance and genetic diversity of species. Here, we analysed the genetic patterns of two Galaxias species with different life-history traits to investigate how these biological differences impacted their evolution in the Valdivia River basin, Southern Chile. We analysed mitochondrial DNA (mtDNA) sequences from 225 individuals of Galaxias maculatus and 136 of G. platei to compare patterns of genetic diversity, structure and demographic growth across the basin. Galaxias maculatus presented higher genetic diversity and higher genetic structure than G. platei. Demographic analyses showed G. maculatus kept a higher population size over time, with a signal of demographic expansion in the last 250 kyr. Whereas Galaxias platei, exhibited lower, but constant population size over time. Furthermore, haplotype networks revealed higher lineage diversity in G. maculatus with a tendency to occupy different areas of the basin. Coalescent simulations ruled out that genetic differences between species could be explained by stochastic processes (genetic drift), suggesting species-specific biological differences as responsible for the observed genetic differences. We discuss how differences in life-history traits and past glaciations interact to shape the evolutionary history of the two Galaxias species.
Collapse
Affiliation(s)
- P. F. Victoriano
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Authors for correspondence: P. F. Victoriano e-mail:
| | - C. P. Muñoz-Ramírez
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
- Authors for correspondence: C. P. Muñoz-Ramírez e-mail:
| | - C. B. Canales-Aguirre
- Centro i∼mar, Universidad de Los Lagos, Camino Chinquihue Km 7, Puerto Montt, Chile
- Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - A. Jara
- Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - I. Vera-Escalona
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - T. Burgos-Careaga
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - C. Muñoz-Mendoza
- Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - E. M. Habit
- Unidad de Sistemas Acuáticos, Centro de Ciencias Ambientales Eula-Chile, Universidad de Concepción, Concepcion, Chile
| |
Collapse
|
9
|
Ruzzante DE, Simons AP, McCracken GR, Habit E, Walde SJ. Multiple drainage reversal episodes and glacial refugia in a Patagonian fish revealed by sequenced microsatellites. Proc Biol Sci 2020; 287:20200468. [PMID: 32486985 PMCID: PMC7341911 DOI: 10.1098/rspb.2020.0468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rise of the southern Andes and the Quaternary glacial cycles influenced the landscape of Patagonia, affecting the phylogeographic and biogeographic patterns of its flora and fauna. Here, we examine the phylogeography of the freshwater fish, Percichthys trucha, using 53 sequenced microsatellite DNA markers. Fish (n= 835) were collected from 16 river systems (46 locations) spanning the species range on both sides of the Andes. Eleven watersheds drain to the Pacific, five of which are trans-Andean (headwaters east of Andes). The remaining five drainages empty into the Atlantic. Three analytical approaches (neighbour-joining tree, hierarchical AMOVAs, Structure) revealed evidence of historic drainage reversals: fish from four of the five trans-Andean systems (Puelo, Futalaufquen/Yelcho, Baker, Pascua) exhibited greater genetic similarity with Atlantic draining systems than with Pacific systems with headwaters west of Andes. Present-day drainage (Pacific versus Atlantic) explained only 5% of total genetic variance, while ancestral drainage explained nearly 27% of total variance. Thus, the phylogeographic structure of P. trucha is consistent with episodes of drainage reversal in multiple systems and suggests a major role for deglaciation in the genetic and indeed the geographical distribution of P. trucha in Patagonia. The study emphasizes the significant role of historical processes in the current pattern of genetic diversity and differentiation in a fish from a southern temperate region.
Collapse
Affiliation(s)
- Daniel E Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Annie P Simons
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Evelyn Habit
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, Concepción, Chile
| | - Sandra J Walde
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|