1
|
Harrison SL, Sutton GP, Herrel A, Deeming DC. Estimated and in vivo measurements of bite force demonstrate exceptionally large bite forces in parrots (Psittaciformes). J Anat 2025; 246:299-315. [PMID: 39315554 PMCID: PMC11737312 DOI: 10.1111/joa.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Jaw morphology and function determine the range of dietary items that an organism can consume. Bite force is a function of the force exerted by the jaw musculature and applied via the skeleton. Bite force has been studied in a wide range of taxa using various methods, including direct measurement, or calculation from skulls or jaw musculature. Data for parrots (Psittaciformes), considered to have strong bites, are rare. This study calculated bite force for a range of parrot species of differing sizes using a novel method that relied on forces calculated using the area of jaw muscles measured in situ and their masses. The values for bite force were also recorded in vivo using force transducers, allowing for a validation of the dissection-based models. The analysis investigated allometric relationships between measures of body size and calculated bite force. Additionally, the study examined whether a measure of a muscle scar could be a useful proxy to estimate bite force in parrots. Bite force was positively allometric relative to body and skull mass, with macaws having the strongest bite recorded to date for a bird. Calculated values for bite force were not statistically different from measured values. Muscle scars from the adductor muscle attachment on the mandible can be used to accurately predict bite force in parrots. These results have implications for how parrots process hard food items and how bite forces are estimated in other taxa using morphological characteristics of the jaw musculature.
Collapse
Affiliation(s)
- Shannon L. Harrison
- School of Natural Sciences, University of LincolnJoseph Banks LaboratoriesLincolnUK
| | - Gregory P. Sutton
- School of Natural Sciences, University of LincolnJoseph Banks LaboratoriesLincolnUK
| | - Anthony Herrel
- Département Adaptations du Vivant, Bâtiment d'Anatomie ComparéeUMR 7179 C.N.R.S/M.N.H.N.ParisFrance
- Department of Biology, Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
- Department of BiologyUniversity of AntwerpWilrijkBelgium
- Naturhistorisches Museum BernBernSwitzerland
| | - D. Charles Deeming
- School of Natural Sciences, University of LincolnJoseph Banks LaboratoriesLincolnUK
| |
Collapse
|
2
|
Falkingham PL. Reconstructing dinosaur locomotion. Biol Lett 2025; 21:20240441. [PMID: 39809325 PMCID: PMC11732409 DOI: 10.1098/rsbl.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Dinosaur locomotor biomechanics are of major interest. Locomotion of an animal affects many, if not most, aspects of life reconstruction, including behaviour, performance, ecology and appearance. Yet locomotion is one aspect of non-avian dinosaurs that we cannot directly observe. To shed light on how dinosaurs moved, we must draw from multiple sources of evidence. Extant taxa provide the basic principles of locomotion, bracket soft-tissue reconstructions and provide validation data for methods and hypotheses applied to dinosaurs. The skeletal evidence itself can be used directly to reconstruct posture, range of motion and mass (segment and whole-body). Building on skeletal reconstructions, musculoskeletal models inform muscle function and form the basis of simulations to test hypotheses of locomotor performance. Finally, fossilized footprints are our only direct record of motion and can provide important snapshots of extinct animals, shedding light on speed, gait and posture. Building confident reconstructions of dinosaur locomotion requires evidence from all four sources of information. This review explores recent work in these areas, with a methodological focus.
Collapse
Affiliation(s)
- Peter L. Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
Zhang Y, Herbert RD, Bilston LE, Bolsterlee B. Three-dimensional architecture and moment arms of human rotator cuff muscles in vivo: Interindividual, intermuscular, and intramuscular variations. J Anat 2024; 245:258-270. [PMID: 38690607 PMCID: PMC11259750 DOI: 10.1111/joa.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
The human rotator cuff consists of four muscles, each with a complex, multipennate architecture. Despite the functional and clinical importance, the architecture of the human rotator cuff has yet to be clearly described in humans in vivo. The purpose of this study was to investigate the intramuscular, intermuscular, and interindividual variations in architecture and moment arms of the human rotator cuff. Muscle volumes, fascicle lengths, physiological cross-sectional areas (PCSAs), pennation angles, and moment arms of all four rotator cuff muscles were measured from mDixon and diffusion tensor imaging (DTI) scans of the right shoulders of 20 young adults. In accordance with the most detailed dissections available to date, we found substantial intramuscular variation in fascicle length (coefficients of variation (CVs) ranged from 26% to 40%) and pennation angles (CVs ranged from 56% to 62%) in all rotator cuff muscles. We also found substantial intermuscular and interindividual variations in muscle volumes, but relatively consistent mean fascicle lengths, pennation angles, and moment arms (CVs for all ≤17%). Moreover, when expressed as a proportion of total rotator cuff muscle volume, the volumes of individual rotator cuff muscles were highly consistent between individuals and sexes (CVs ≤16%), suggesting that rotator cuff muscle volumes scale uniformly, at least in a younger population without musculoskeletal problems. Together, these data indicate limited interindividual and intermuscular variability in architecture, which may simplify scaling routines for musculoskeletal models. However, the substantial intramuscular variation in architecture questions the validity of previously reported mean architectural parameters to adequately describe rotator cuff function.
Collapse
Affiliation(s)
- Yilan Zhang
- Neuroscience Research Australia (NeuRA)RandwickNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Robert D. Herbert
- Neuroscience Research Australia (NeuRA)RandwickNew South WalesAustralia
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lynne E. Bilston
- Neuroscience Research Australia (NeuRA)RandwickNew South WalesAustralia
- School of Clinical Medicine, Faculty of Medicine & HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA)RandwickNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- School of Mechanical, Medical and Process EngineeringQueensland University of TechnologyBrisbaneQueenslandAustralia
| |
Collapse
|
4
|
Anderson L, Brassey C, Pond S, Bates K, Sellers WI. Investigating the quadrupedal abilities of Scutellosaurus lawleri and its implications for locomotor behavior evolution among dinosaurs. Anat Rec (Hoboken) 2023; 306:2514-2536. [PMID: 36896818 DOI: 10.1002/ar.25189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
A reversion to secondary quadrupedality is exceptionally rare in nature, yet the convergent re-evolution of this locomotor style occurred at least four separate times within Dinosauria. Facultative quadrupedality, an intermediate state between obligate bipedality and obligate quadrupedality, may have been an important transitional step in this locomotor shift, and is proposed for a range of basal ornithischians and sauropodomorphs. Advances in virtual biomechanical modeling and simulation have allowed for the investigation of limb anatomy and function in a range of extinct dinosaurian species, yet this technique has not been widely applied to explore facultatively quadrupedal gait generation. This study places its focus on Scutellosaurus, a basal thyreophoran that has previously been described as both an obligate biped and a facultative quadruped. The functional anatomy of the musculoskeletal system (myology, mass properties, and joint ranges of motion) has been reconstructed using extant phylogenetic bracketing and comparative anatomical datasets. This information was used to create a multi-body dynamic locomotor simulation that demonstrates that whil quadrupedal gaits were physically possible, they did not outperform bipedal gaits is any tested metric. Scutellosaurus cannot therefore be described as an obligate biped, but we would predict its use of quadrupedality would be very rare, and perhaps restricted to specific activities such as foraging. This finding suggests that basal thyreophorans are still overwhelmingly bipedal but is perhaps indicative of an adaptive pathway for later evolution of quadrupedality.
Collapse
|
5
|
Macaulay S, Hoehfurtner T, Cross SRR, Marek RD, Hutchinson JR, Schachner ER, Maher AE, Bates KT. Decoupling body shape and mass distribution in birds and their dinosaurian ancestors. Nat Commun 2023; 14:1575. [PMID: 36949094 PMCID: PMC10033513 DOI: 10.1038/s41467-023-37317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
It is accepted that non-avian theropod dinosaurs, with their long muscular tails and small forelimbs, had a centre-of-mass close to the hip, while extant birds, with their reduced tails and enlarged wings have their mass centred more cranially. Transition between these states is considered crucial to two key innovations in the avian locomotor system: crouched bipedalism and powered flight. Here we use image-based models to challenge this dichotomy. Rather than a phylogenetic distinction between 'dinosaurian' and 'avian' conditions, we find terrestrial versus volant taxa occupy distinct regions of centre-of-mass morphospace consistent with the disparate demands of terrestrial bipedalism and flight. We track this decoupled evolution of body shape and mass distribution through bird evolution, including the origin of centre-of-mass positions more advantageous for flight and major reversions coincident with terrestriality. We recover modularity in the evolution of limb proportions and centre-of-mass that suggests fully crouched bipedalism evolved after powered flight.
Collapse
Affiliation(s)
- Sophie Macaulay
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Tatjana Hoehfurtner
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Department of Life Sciences, School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK
| | - Samuel R R Cross
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Ryan D Marek
- Department of Cell & Development Biology, Division of Biosciences, University College London, Anatomy Building, Gower Street, London, WC1E 6BT, UK
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, AL9 7TA, UK
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Alice E Maher
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
6
|
Dempsey M, Maidment SCR, Hedrick BP, Bates KT. Convergent evolution of quadrupedality in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics. Proc Biol Sci 2023; 290:20222435. [PMID: 36722082 PMCID: PMC9890092 DOI: 10.1098/rspb.2022.2435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The secondary evolution of quadrupedality from bipedal ancestry is a rare evolutionary transition in tetrapods yet occurred convergently at least three times within ornithischian dinosaurs. Despite convergently evolving quadrupedal gait, ornithischians exhibited variable anatomy, particularly in the forelimbs, which underwent a major functional change from assisting in foraging and feeding in bipeds to becoming principal weight-bearing components of the locomotor system in quadrupeds. Here, we use three-dimensional multi-body dynamics models to demonstrate quantitatively that different quadrupedal ornithischian clades evolved distinct forelimb musculature, particularly around the shoulder. We find that major differences in glenohumeral abduction-adduction and long axis rotation muscle leverages were key drivers of mechanical disparity, thereby refuting previous hypotheses about functional convergence in major clades. Elbow muscle leverages were also disparate across the major ornithischian lineages, although high elbow extension muscle leverages were convergent between most quadrupeds. Unlike in ornithischian hind limbs, where differences are more closely tied to functional similarity than phylogenetic relatedness, mechanical disparity in ornithischian forelimbs appears to have been shaped primarily by phylogenetic constraints. Differences in ancestral bipedal taxa within each clade may have resulted in disparate ecomorphological constraints on the evolutionary pathways driving divergence in their quadrupedal descendants.
Collapse
Affiliation(s)
- Matthew Dempsey
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Brandon P. Hedrick
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
7
|
Wynd B, Abdala F, Nesbitt SJ. Ontogenetic growth in the crania of Exaeretodon argentinus (Synapsida: Cynodontia) captures a dietary shift. PeerJ 2022; 10:e14196. [PMID: 36299507 PMCID: PMC9590418 DOI: 10.7717/peerj.14196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/15/2022] [Indexed: 01/26/2023] Open
Abstract
Background An ontogenetic niche shift in vertebrates is a common occurrence where ecology shifts with morphological changes throughout growth. How ecology shifts over a vertebrate's lifetime is often reconstructed in extant species-by combining observational and skeletal data from growth series of the same species-because interactions between organisms and their environment can be observed directly. However, reconstructing shifts using extinct vertebrates is difficult and requires well-sampled growth series, specimens with relatively complete preservation, and easily observable skeletal traits associated with ecologies suspected to change throughout growth, such as diet. Methods To reconstruct ecological changes throughout the growth of a stem-mammal, we describe changes associated with dietary ecology in a growth series of crania of the large-bodied (∼2 m in length) and herbivorous form, Exaeretodon argentinus (Cynodontia: Traversodontidae) from the Late Triassic Ischigualasto Formation, San Juan, Argentina. Nearly all specimens were deformed by taphonomic processes, so we reconstructed allometric slope using a generalized linear mixed effects model with distortion as a random effect. Results Under a mixed effects model, we find that throughout growth, E. argentinus reduced the relative length of the palate, postcanine series, orbits, and basicranium, and expanded the relative length of the temporal region and the height of the zygomatic arch. The allometric relationship between the zygomatic arch and temporal region with the total length of the skull approximate the rate of growth for feeding musculature. Based on a higher allometric slope, the zygoma height is growing relatively faster than the length of the temporal region. The higher rate of change in the zygoma may suggest that smaller individuals had a crushing-dominated feeding style that transitioned into a chewing-dominated feeding style in larger individuals, suggesting a dietary shift from possible faunivory to a more plant-dominated diet. Dietary differentiation throughout development is further supported by an increase in sutural complexity and a shift in the orientation of microwear anisotropy between small and large individuals of E. argentinus. A developmental transition in the feeding ecology of E. argentinus is reflective of the reconstructed dietary transition across Gomphodontia, wherein the earliest-diverging species are inferred as omnivorous and the well-nested traversodontids are inferred as herbivorous, potentially suggesting that faunivory in immature individuals of the herbivorous Traversodontidae may be plesiomorphic for the clade.
Collapse
Affiliation(s)
- Brenen Wynd
- Department of Geosciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Fernando Abdala
- CONICET-Fundación Miguel Lillo, Unidad Ejecutora Lillo, San Miguel de Tucumán, Tucumán, Argentina
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sterling J. Nesbitt
- Department of Geosciences, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
8
|
Cuff AR, Wiseman ALA, Bishop PJ, Michel KB, Gaignet R, Hutchinson JR. Anatomically grounded estimation of hindlimb muscle sizes in Archosauria. J Anat 2022; 242:289-311. [PMID: 36206401 PMCID: PMC9877486 DOI: 10.1111/joa.13767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, active movement is driven by muscle forces acting on bones, either directly or through tendinous insertions. There has been much debate over how muscle size and force are reflected by the muscular attachment areas (AAs). Here we investigate the relationship between the physiological cross-sectional area (PCSA), a proxy for the force production of the muscle, and the AA of hindlimb muscles in Nile crocodiles and five bird species. The limbs were held in a fixed position whilst blunt dissection was carried out to isolate the individual muscles. AAs were digitised using a point digitiser, before the muscle was removed from the bone. Muscles were then further dissected and fibre architecture was measured, and PCSA calculated. The raw measures, as well as the ratio of PCSA to AA, were studied and compared for intra-observer error as well as intra- and interspecies differences. We found large variations in the ratio between AAs and PCSA both within and across species, but muscle fascicle lengths are conserved within individual species, whether this was Nile crocodiles or tinamou. Whilst a discriminant analysis was able to separate crocodylian and avian muscle data, the ratios for AA to cross-sectional area for all species and most muscles can be represented by a single equation. The remaining muscles have specific equations to represent their scaling, but equations often have a relatively high success at predicting the ratio of muscle AA to PCSA. We then digitised the muscle AAs of Coelophysis bauri, a dinosaur, to estimate the PCSAs and therefore maximal isometric muscle forces. The results are somewhat consistent with other methods for estimating force production, and suggest that, at least for some archosaurian muscles, that it is possible to use muscle AA to estimate muscle sizes. This method is complementary to other methods such as digital volumetric modelling.
Collapse
Affiliation(s)
- Andrew R. Cuff
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK,Human Anatomy Resource CentreUniversity of LiverpoolLiverpoolUK
| | - Ashleigh L. A. Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK
| | - Peter J. Bishop
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK,Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA,Geosciences ProgramQueensland MuseumBrisbaneQueenslandAustralia
| | - Krijn B. Michel
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK
| | - Raphäelle Gaignet
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesRoyal Veterinary CollegeHatfieldUK
| |
Collapse
|
9
|
Marcé-Nogué J. One step further in biomechanical models in palaeontology: a nonlinear finite element analysis review. PeerJ 2022; 10:e13890. [PMID: 35966920 PMCID: PMC9373974 DOI: 10.7717/peerj.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 01/19/2023] Open
Abstract
Finite element analysis (FEA) is no longer a new technique in the fields of palaeontology, anthropology, and evolutionary biology. It is nowadays a well-established technique within the virtual functional-morphology toolkit. However, almost all the works published in these fields have only applied the most basic FEA tools i.e., linear materials in static structural problems. Linear and static approximations are commonly used because they are computationally less expensive, and the error associated with these assumptions can be accepted. Nonetheless, nonlinearities are natural to be used in biomechanical models especially when modelling soft tissues, establish contacts between separated bones or the inclusion of buckling results. The aim of this review is to, firstly, highlight the usefulness of non-linearities and secondly, showcase these FEA tool to researchers that work in functional morphology and biomechanics, as non-linearities can improve their FEA models by widening the possible applications and topics that currently are not used in palaeontology and anthropology.
Collapse
Affiliation(s)
- Jordi Marcé-Nogué
- Department of Mechanical Engineering, Universitat Rovira i Virgili Tarragona, Tarragona, Catalonia, Spain
- Institut Català de Paleontologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
10
|
Charles J, Kissane R, Hoehfurtner T, Bates KT. From fibre to function: are we accurately representing muscle architecture and performance? Biol Rev Camb Philos Soc 2022; 97:1640-1676. [PMID: 35388613 PMCID: PMC9540431 DOI: 10.1111/brv.12856] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022]
Abstract
The size and arrangement of fibres play a determinate role in the kinetic and energetic performance of muscles. Extrapolations between fibre architecture and performance underpin our understanding of how muscles function and how they are adapted to power specific motions within and across species. Here we provide a synopsis of how this 'fibre to function' paradigm has been applied to understand muscle design, performance and adaptation in animals. Our review highlights the widespread application of the fibre to function paradigm across a diverse breadth of biological disciplines but also reveals a potential and highly prevalent limitation running through past studies. Specifically, we find that quantification of muscle architectural properties is almost universally based on an extremely small number of fibre measurements. Despite the volume of research into muscle properties, across a diverse breadth of research disciplines, the fundamental assumption that a small proportion of fibre measurements can accurately represent the architectural properties of a muscle has never been quantitatively tested. Subsequently, we use a combination of medical imaging, statistical analysis, and physics-based computer simulation to address this issue for the first time. By combining diffusion tensor imaging (DTI) and deterministic fibre tractography we generated a large number of fibre measurements (>3000) rapidly for individual human lower limb muscles. Through statistical subsampling simulations of these measurements, we demonstrate that analysing a small number of fibres (n < 25) typically used in previous studies may lead to extremely large errors in the characterisation of overall muscle architectural properties such as mean fibre length and physiological cross-sectional area. Through dynamic musculoskeletal simulations of human walking and jumping, we demonstrate that recovered errors in fibre architecture characterisation have significant implications for quantitative predictions of in-vivo dynamics and muscle fibre function within a species. Furthermore, by applying data-subsampling simulations to comparisons of muscle function in humans and chimpanzees, we demonstrate that error magnitudes significantly impact both qualitative and quantitative assessment of muscle specialisation, potentially generating highly erroneous conclusions about the absolute and relative adaption of muscles across species and evolutionary transitions. Our findings have profound implications for how a broad diversity of research fields quantify muscle architecture and interpret muscle function.
Collapse
Affiliation(s)
- James Charles
- Structure and Motion Lab, Comparative Biomedical SciencesRoyal Veterinary CollegeHawkshead LaneHatfieldHertfordshireAL9 7TAU.K.
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Roger Kissane
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| | - Tatjana Hoehfurtner
- School of Life SciencesUniversity of Lincoln, Joseph Banks LaboratoriesGreen LaneLincolnLN6 7DLU.K.
| | - Karl T. Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical SciencesUniversity of LiverpoolThe William Henry Duncan Building, 6 West Derby StreetLiverpoolL7 8TXU.K.
| |
Collapse
|
11
|
Herbst EC, Meade LE, Lautenschlager S, Fioritti N, Scheyer TM. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36039284 DOI: 10.5061/dryad.qjq2bvqk2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.
Collapse
Affiliation(s)
- Eva C Herbst
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Niccolo Fioritti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Torsten M Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Herbst EC, Meade LE, Lautenschlager S, Fioritti N, Scheyer TM. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36039284 DOI: 10.6084/m9.figshare.c.6145965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.
Collapse
Affiliation(s)
- Eva C Herbst
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Luke E Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Niccolo Fioritti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Torsten M Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Herbst EC, Meade LE, Lautenschlager S, Fioritti N, Scheyer TM. A toolbox for the retrodeformation and muscle reconstruction of fossil specimens in Blender. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220519. [PMID: 36039284 PMCID: PMC9399692 DOI: 10.1098/rsos.220519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Accurate muscle reconstructions can offer new information on the anatomy of fossil organisms and are also important for biomechanical analysis (multibody dynamics and finite-element analysis (FEA)). For the sake of simplicity, muscles are often modelled as point-to-point strands or frustra (cut-off cones) in biomechanical models. However, there are cases in which it is useful to model the muscle morphology in three dimensions, to better examine the effects of muscle shape and size. This is especially important for fossil analyses, where muscle force is estimated from the reconstructed muscle morphology (rather than based on data collected in vivo). The two main aims of this paper are as follows. First, we created a new interactive tool in the free open access software Blender to enable interactive three-dimensional modelling of muscles. This approach can be applied to both palaeontological and human biomechanics research to generate muscle force magnitudes and lines of action for FEA. Second, we provide a guide on how to use existing Blender tools to reconstruct distorted or incomplete specimens. This guide is aimed at palaeontologists but can also be used by anatomists working with damaged specimens or to test functional implication of hypothetical morphologies.
Collapse
Affiliation(s)
- Eva C. Herbst
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Luke E. Meade
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan Lautenschlager
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Niccolo Fioritti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Torsten M. Scheyer
- Palaeontological Institute and Museum, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Demuth OE, Wiseman ALA, van Beesel J, Mallison H, Hutchinson JR. Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa. Sci Rep 2022; 12:3358. [PMID: 35233027 PMCID: PMC8888607 DOI: 10.1038/s41598-022-07074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Biomechanical models and simulations of musculoskeletal function rely on accurate muscle parameters, such as muscle masses and lines of action, to estimate force production potential and moment arms. These parameters are often obtained through destructive techniques (i.e., dissection) in living taxa, frequently hindering the measurement of other relevant parameters from a single individual, thus making it necessary to combine multiple specimens and/or sources. Estimating these parameters in extinct taxa is even more challenging as soft tissues are rarely preserved in fossil taxa and the skeletal remains contain relatively little information about the size or exact path of a muscle. Here we describe a new protocol that facilitates the estimation of missing muscle parameters (i.e., muscle volume and path) for extant and extinct taxa. We created three-dimensional volumetric reconstructions for the hindlimb muscles of the extant Nile crocodile and extinct stem-archosaur Euparkeria, and the shoulder muscles of an extant gorilla to demonstrate the broad applicability of this methodology across living and extinct animal clades. Additionally, our method can be combined with surface geometry data digitally captured during dissection, thus facilitating downstream analyses. We evaluated the estimated muscle masses against physical measurements to test their accuracy in estimating missing parameters. Our estimated muscle masses generally compare favourably with segmented iodine-stained muscles and almost all fall within or close to the range of observed muscle masses, thus indicating that our estimates are reliable and the resulting lines of action calculated sufficiently accurately. This method has potential for diverse applications in evolutionary morphology and biomechanics.
Collapse
Affiliation(s)
- Oliver E Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK.
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - Ashleigh L A Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Julia van Beesel
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Heinrich Mallison
- Zoological Museum, University of Hamburg, Hamburg, Germany
- Palaeo3D, Rain am Lech, Germany
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
15
|
Bates KT, Wang L, Dempsey M, Broyde S, Fagan MJ, Cox PG. Back to the bones: do muscle area assessment techniques predict functional evolution across a macroevolutionary radiation? J R Soc Interface 2021; 18:20210324. [PMID: 34283941 PMCID: PMC8292018 DOI: 10.1098/rsif.2021.0324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Measures of attachment or accommodation area on the skeleton are a popular means of rapidly generating estimates of muscle proportions and functional performance for use in large-scale macroevolutionary studies. Herein, we provide the first evaluation of the accuracy of these muscle area assessment (MAA) techniques for estimating muscle proportions, force outputs and bone loading in a comparative macroevolutionary context using the rodent masticatory system as a case study. We find that MAA approaches perform poorly, yielding large absolute errors in muscle properties, bite force and particularly bone stress. Perhaps more fundamentally, these methods regularly fail to correctly capture many qualitative differences between rodent morphotypes, particularly in stress patterns in finite-element models. Our findings cast doubts on the validity of these approaches as means to provide input data for biomechanical models applied to understand functional transitions in the fossil record, and perhaps even in taxon-rich statistical models that examine broad-scale macroevolutionary patterns. We suggest that future work should go back to the bones to test if correlations between attachment area and muscle size within homologous muscles across a large number of species yield strong predictive relationships that could be used to deliver more accurate predictions for macroevolutionary and functional studies.
Collapse
Affiliation(s)
- Karl T Bates
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Linjie Wang
- Department of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Matthew Dempsey
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Sarah Broyde
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Michael J Fagan
- Department of Engineering, University of Hull, Hull HU6 7RX, UK
| | - Philip G Cox
- Department of Archaeology, University of York, PalaeoHub, Wentworth Way, Heslington, York YO10 5DD, UK.,Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|