1
|
Barrett R, Stein LR. Short-term heat waves have long-term consequences for parents and offspring in stickleback. Behav Ecol 2024; 35:arae036. [PMID: 38779597 PMCID: PMC11110458 DOI: 10.1093/beheco/arae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Extreme temperature events, such as heat waves, can have lasting effects on the behavior, physiology, and reproductive success of organisms. Here, we examine the impact of short-term exposure to a simulated heat wave on condition, parental care, and reproductive success in a population of threespine stickleback (Gasterosteus aculeatus), a small fish with exclusive paternal care, currently experiencing regular heat waves. Males were either exposed to a simulated heat wave (23 °C) for 5 d or held at an ideal temperature (18 °C). Following this 5-d treatment, all males were transferred to 18 °C, where they completed a full parenting cycle. Offspring were raised at 18 °C. We found that while mass and body condition were unaffected in males exposed to a heat wave, cortisol responses were dampened across the nesting cycle compared to control males. In addition, heat wave males had longer latency for eggs to hatch, lower hatching success, and showed lower levels of parental care behavior compared to control males. Offspring of heat wave males had lower body condition, affecting swimming performance. Altogether, our results highlight the long-term impact that even short-term events can have on reproductive success, parental behavior, and subsequent generations, providing insight into population responses to rapid environmental change.
Collapse
Affiliation(s)
- Rachel Barrett
- School of Biological Sciences, 730 Van Vleet Oval, Rm 314, University of Oklahoma, Norman, OK, United States
| | - Laura R Stein
- School of Biological Sciences, 730 Van Vleet Oval, Rm 314, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
2
|
Lin X, Yin J, Wang Y, Yao J, Li QQ, Latzel V, Bossdorf O, Zhang YY. Environment-induced heritable variations are common in Arabidopsis thaliana. Nat Commun 2024; 15:4615. [PMID: 38816460 PMCID: PMC11139905 DOI: 10.1038/s41467-024-49024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Parental or ancestral environments can induce heritable phenotypic changes, but whether such environment-induced heritable changes are a common phenomenon remains unexplored. Here, we subject 14 genotypes of Arabidopsis thaliana to 10 different environmental treatments and observe phenotypic and genome-wide gene expression changes over four successive generations. We find that all treatments caused heritable phenotypic and gene expression changes, with a substantial proportion stably transmitted over all observed generations. Intriguingly, the susceptibility of a genotype to environmental inductions could be predicted based on the transposon abundance in the genome. Our study thus challenges the classic view that the environment only participates in the selection of heritable variation and suggests that the environment can play a significant role in generating of heritable variations.
Collapse
Affiliation(s)
- Xiaohe Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yifan Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jing Yao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vit Latzel
- Institute of Botany of the CAS, Zamek 1, 252 43, Pruhonice, Czech Republic
| | - Oliver Bossdorf
- Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Bonzi LC, Spinks RK, Donelson JM, Munday PL, Ravasi T, Schunter C. Timing-specific parental effects of ocean warming in a coral reef fish. Proc Biol Sci 2024; 291:20232207. [PMID: 38772423 DOI: 10.1098/rspb.2023.2207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/04/2024] [Indexed: 05/23/2024] Open
Abstract
Population and species persistence in a rapidly warming world will be determined by an organism's ability to acclimate to warmer conditions, especially across generations. There is potential for transgenerational acclimation but the importance of ontogenetic timing in the transmission of environmentally induced parental effects remains mostly unknown. We aimed to disentangle the effects of two critical ontogenetic stages (juvenile development and reproduction) to the new-generation acclimation potential, by exposing the spiny chromis damselfish Acanthochromis polyacanthus to simulated ocean warming across two generations. By using hepatic transcriptomics, we discovered that the post-hatching developmental environment of the offspring themselves had little effect on their acclimation potential at 2.5 months of life. Instead, the developmental experience of parents increased regulatory RNA production and protein synthesis, which could improve the offspring's response to warming. Conversely, parental reproduction and offspring embryogenesis in warmer water elicited stress response mechanisms in the offspring, with suppression of translation and mitochondrial respiration. Mismatches between parental developmental and reproductive temperatures deeply affected offspring gene expression profiles, and detrimental effects were evident when warming occurred both during parents' development and reproduction. This study reveals that the previous generation's developmental temperature contributes substantially to thermal acclimation potential during early life; however, exposure at reproduction as well as prolonged heat stress will likely have adverse effects on the species' persistence.
Collapse
Affiliation(s)
- L C Bonzi
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong , Hong Kong
| | - R K Spinks
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville 4810, Australia
- Blue Carbon Section, Department of Climate Change, Energy, the Environment and Water, Australian Government , Brisbane 4000, Australia
| | - J M Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville 4810, Australia
- College of Science and Engineering, James Cook University , Townsville 4810, Australia
| | - P L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville 4810, Australia
- College of Science and Engineering, James Cook University , Townsville 4810, Australia
| | - T Ravasi
- ARC Centre of Excellence for Coral Reef Studies, James Cook University , Townsville 4810, Australia
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University , Okinawa 904-0495, Japan
| | - C Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong , Hong Kong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong , Hong Kong
| |
Collapse
|
4
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Halali S, Saastamoinen M. Exploring links between climatic predictability and the evolution of within- and transgenerational plasticity. Ecol Evol 2022; 12:e9662. [PMID: 36619708 PMCID: PMC9798148 DOI: 10.1002/ece3.9662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/20/2022] [Accepted: 11/19/2022] [Indexed: 12/30/2022] Open
Abstract
In variable environments, phenotypic plasticity can increase fitness by providing tight environment-phenotype matching. However, adaptive plasticity is expected to evolve only when the future selective environment can be predicted based on the prevailing conditions. That is, the juvenile environment should be predictive of the adult environment (within-generation plasticity) or the parental environment should be predictive of the offspring environment (transgenerational plasticity). Moreover, the environmental predictability can also shape transient responses such as stress response in an adaptive direction. Here, we test links between environmental predictability and the evolution of adaptive plasticity by combining time series analyses and a common garden experiment using temperature as a stressor in a temperate butterfly (Melitaea cinxia). Time series analyses revealed that across season fluctuations in temperature over 48 years are overall predictable. However, within the growing season, temperature fluctuations showed high heterogeneity across years with low autocorrelations and the timing of temperature peaks were asynchronous. Most life-history traits showed strong within-generation plasticity for temperature and traits such as body size and growth rate broke the temperature-size rule. Evidence for transgenerational plasticity, however, was weak and detected for only two traits each in an adaptive and non-adaptive direction. We suggest that the low predictability of temperature fluctuations within the growing season likely disfavors the evolution of adaptive transgenerational plasticity but instead favors strong within-generation plasticity.
Collapse
Affiliation(s)
- Sridhar Halali
- Research Centre for Ecological Change, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Marjo Saastamoinen
- Research Centre for Ecological Change, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
6
|
Earhart ML, Blanchard TS, Harman AA, Schulte PM. Hypoxia and High Temperature as Interacting Stressors: Will Plasticity Promote Resilience of Fishes in a Changing World? THE BIOLOGICAL BULLETIN 2022; 243:149-170. [PMID: 36548973 DOI: 10.1086/722115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractDetermining the resilience of a species or population to climate change stressors is an important but difficult task because resilience can be affected both by genetically based variation and by various types of phenotypic plasticity. In addition, most of what is known about organismal responses is for single stressors in isolation, but environmental change involves multiple environmental factors acting in combination. Here, our goal is to summarize what is known about phenotypic plasticity in fishes in response to high temperature and low oxygen (hypoxia) in combination across multiple timescales, to ask how much resilience plasticity may provide in the face of climate change. There are relatively few studies investigating plasticity in response to these environmental stressors in combination; but the available data suggest that although fish have some capacity to adjust their phenotype and compensate for the negative effects of acute exposure to high temperature and hypoxia through acclimation or developmental plasticity, compensation is generally only partial. There is very little known about intergenerational and transgenerational effects, although studies on each stressor in isolation suggest that both positive and negative impacts may occur. Overall, the capacity for phenotypic plasticity in response to these two stressors is highly variable among species and extremely dependent on the specific context of the experiment, including the extent and timing of stressor exposure. This variability in the nature and extent of plasticity suggests that existing phenotypic plasticity is unlikely to adequately buffer fishes against the combined stressors of high temperature and hypoxia as our climate warms.
Collapse
|
7
|
Yin J, Lin X, Yao J, Li QQ, Zhang Y. Genotypic variation of transgenerational plasticity can be explained by environmental predictability at origins. OIKOS 2022. [DOI: 10.1111/oik.09006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| | - Xiaohe Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| | - Jing Yao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
- Graduate College of Biomedical Sciences, Western Univ. of Health Sciences Pomona CA USA
| | - Yuan‐Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen Univ. Xiamen Fujian China
| |
Collapse
|