1
|
Zhang M, Wang Y, Yang X, Yang Y, Yu F, Yi X. Global Avian Frugivore-Fruit Trait Matching Decreases Toward the Tropics. GLOBAL CHANGE BIOLOGY 2025; 31:e70180. [PMID: 40202823 DOI: 10.1111/gcb.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/15/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025]
Abstract
Trait matching, the phenomenon where ecological interactions are mediated by compatibility, constitutes a cornerstone of frugivore-fruit interaction network dynamics. Given that biotic interactions have long been hypothesized to be more intense or specialized in the tropics, the intensity of trait matching patterns might likewise exhibit a latitudinal gradient in frugivory networks, yet this remains unverified. Here, we established a dataset encompassing 200 avian frugivorous networks to explore the relationships between the body mass and gape size of frugivore birds and fruit traits (size and color) on a global scale. Our results indicated that frugivore traits were closely associated with fruit traits regardless of the climate, demonstrating a biotic match between the two counterparts. We detected a significant decrease in frugivore-fruit trait matching toward the tropics, which challenges prevailing concepts considering the high biodiversity therein. Our structural equation modeling clarified that latitude and temperature exert an indirect influence on trait matching by affecting gape size and fruit traits. These discoveries emphasize the impact of the latitudinal gradient of temperature in driving the observed patterns of trait matching. The weaker trait matching in tropical regions may suggest more complex interactions therein and also highlights the potential for altered network structures amid global climate change.
Collapse
Affiliation(s)
- Mingming Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Zhengzhou, China
| | - Yang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xifu Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yueqin Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
2
|
Yu F, Zhang M, Yang Y, Wang Y, Yi X. Seed size and dispersal mode select mast seeding in perennial plants. Integr Zool 2025; 20:171-185. [PMID: 39048928 DOI: 10.1111/1749-4877.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Reproduction by perennial plants varies from being relatively constant over years to the production of massive and synchronous seed crops at irregular intervals, a reproductive strategy called mast seeding. The sources of interspecific differences in the extent of interannual variation in seed production are largely unknown. We conducted a global meta-analysis of animal-dispersed species to quantify how the interannual variability in seed crops produced by plants can be explained by the seed mass, dispersal mode, phylogeny, and climate. Phylogenetic analysis indicated that the interannual variations in seed production and seed mass tended to be similar in related species due to their shared evolution. The interannual variation in seed production was 1.22 times higher in synzoochorous species dispersed by scatter-hoarders compared with endozoochorous species dispersed by frugivores. Furthermore, the production of small seeds was associated with higher interannual variation in seed production, although synzoochorous species produced larger seeds than endozoochorous species. Precipitation rather than temperature had a significant positive effect on the interannual variation in seed production. The seed mass and dispersal mode contributed more to the interannual variation in seed production than phylogeny, climate, and fruit type. Our findings support a long-standing hypothesis that interspecific variation in the masting intensity is largely shaped by interactions between plants and animals.
Collapse
Affiliation(s)
- Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Mingming Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, China
| | - Yueqin Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Yang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
3
|
Brunton-Martin A, Wood J, Gaskett AC. Evidence for adaptation of colourful truffle-like fungi for birds in Aotearoa-New Zealand. Sci Rep 2024; 14:18908. [PMID: 39143118 PMCID: PMC11324954 DOI: 10.1038/s41598-024-67333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Propagule dispersal is a crucial aspect of the survival and reproduction of sessile organisms, such as plants and fungi. As such, the colours of fleshy fruits serve as a visual cue for animal dispersers. However, little is known about how, or whether, specific traits of fungal fruiting bodies, such as colour or shape, attract animal dispersers, and additionally the identities of fungal dispersers are poorly understood. Globally, most truffle-like fungi are dull-coloured, subterranean, and likely have scents that are attractive to mammalian dispersers. In Aotearoa-New Zealand, however, brightly coloured truffle-like fungi that emerge from the forest floor have seemingly proliferated. This proliferation has prompted the hypothesis that they are adapted to dispersal by a bird-dominated fauna. In our study, we used the literature and citizen science data (GBIF) to explore whether colourful species occur at a higher proportion of the total truffle-like fungi flora in Aotearoa-New Zealand than elsewhere in the world. In addition, we tested for a relationship between biotic factors (avian frugivory and forest cover) and abiotic factors (precipitation, radiation, and temperature) and the prevalence of brightly coloured truffle-like fungi across the world. The most colourful truffle-like fungi are in three defined regions: Australia, South and Central America and the Caribbean, and Aotearoa-NZ. Potential dispersers and the environment both relate to the distribution of truffle-like fungi: we found that increasing levels of frugivory were associated with higher proportions of colourful truffle-like fungi. This finding provides new insights into drivers of certain fungal traits, and their interactions between birds and fungi. Unique ecosystems, such as Aotearoa-NZ's bird-dominated biota, provide fascinating opportunities to explore how plants and fungi interact with the sensory systems of animals.
Collapse
Affiliation(s)
- Amy Brunton-Martin
- Ecosystems and Conservation, Manaaki Whenua Landcare Research, Lincoln, 7640, New Zealand.
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jamie Wood
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Anne C Gaskett
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Gómez-Devia L, Nevo O. Effects of temperature gradient on functional fruit traits: an elevation-for-temperature approach. BMC Ecol Evol 2024; 24:94. [PMID: 38982367 PMCID: PMC11232184 DOI: 10.1186/s12862-024-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Fruit traits mediate animal-plant interactions and have to a large degree evolved to match the sensory capacities and morphology of their respective dispersers. At the same time, fruit traits are affected by local environmental factors, which may affect frugivore-plant trait match. Temperature has been identified as a major factor with a strong effect on the development of fruits, which is of serious concern because of the rising threat of global warming. Nonetheless, this primarily originates from studies on domesticated cultivars in often controlled environments. Little is known on the effect of rising temperatures on fruit traits of wild species and the implications this could have to seed dispersal networks, including downstream consequences to biodiversity and ecosystem functioning. In a case study of five plant species from eastern Madagascar, we addressed this using the elevation-for-temperature approach and examined whether a temperature gradient is systematically associated with variation in fruit traits relevant for animal foraging and fruit selection. We sampled across a gradient representing a temperature gradient of 1.5-2.6 °C, corresponding to IPCC projections. The results showed that in most cases there was no significant effect of temperature on the traits evaluated, although some species showed different effects, particularly fruit chemical profiles. This suggests that in these species warming within this range alone is not likely to drive substantial changes in dispersal networks. While no systemic effects were found, the results also indicate that the effect of temperature on fruit traits differs across species and may lead to mismatches in specific animal-plant interactions.
Collapse
Affiliation(s)
- Laura Gómez-Devia
- German Centre for Integrative Biodiversity Research (iDiv) , Halle-Jena-Leipzig, Germany.
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
- Technische Universität Dresden, Dresden, Germany.
| | - Omer Nevo
- German Centre for Integrative Biodiversity Research (iDiv) , Halle-Jena-Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
5
|
Cui J, Zhang Y, Guo J, Wu N, Zhou Y. Conflicting selection pressures on seed size and germination caused by carnivorous seed dispersers. Integr Zool 2023; 18:799-816. [PMID: 37394984 DOI: 10.1111/1749-4877.12743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Plants produce nutritious, fleshy fruits that attract various animals to facilitate seed dispersal and recruitment dynamic. Species-specific differential selection of seed size by multiple frugivorous disperser assemblages may affect the subsequent germination of the ingested seeds. However, there is little empirical evidence supporting this association. In the present study, we documented conflicting selection pressures exerted on seed size and germination by five frugivorous carnivores on a mammal-dispersed pioneer tree, the date-plum persimmon (Diospyros lotus), in a subtropical forest. Fecal analyses revealed that these carnivores acted as primary seed dispersers of D. lotus. We also observed that seed sizes were selected based on body mass and were species-specific, confirming the "gape limitation" hypothesis; three small carnivores (the masked palm civet Paguma larvata, yellow-throated marten Martes flavigula, and Chinese ferret-badger Melogale moschata) significantly preferred to disperse smaller seeds in comparison with control seeds obtained directly from wild plants whereas the largest Asiatic black bears (Ursus thibetanus) ingested larger seeds. Seeds dispersed by medium-sized hog badgers (Arctonyx albogularis) were not significantly different from control seeds. However, regarding the influence of gut passage on seed germination, three arboreal dispersal agents (martens, civets, and bears) enhanced germination success whereas terrestrial species (ferret-badgers and hog badgers) inhibited the germination process compared with undigested control seeds. These conflicting selection pressures on seed size and germination may enhance the heterogeneity of germination dynamics and thus increase species fitness through diversification of the regeneration niche. Our results advance our understanding of seed dispersal mechanisms and have important implications for forest recruitment and ecosystem dynamics.
Collapse
Affiliation(s)
- Jifa Cui
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| | - Yaqian Zhang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| | - Jinyu Guo
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| | - Nan Wu
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| | - Youbing Zhou
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, China
| |
Collapse
|
6
|
Palacio FX, Ordano M. Urbanization shapes phenotypic selection of fruit traits in a seed-dispersal mutualism. Evolution 2023; 77:1769-1779. [PMID: 37128948 DOI: 10.1093/evolut/qpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Urbanization is currently one of the trademarks of the Anthropocene, accelerating evolutionary processes and reshaping ecological interactions over short time scales. Species interactions represent a fundamental pillar of diversity that is being altered globally by anthropogenic change. Urban environments, despite their potential impact, have seldom been studied in relation to how they shape natural selection of phenotypic traits in multispecies interactions. Using a seed-dispersal mutualism as a study system, we estimated the regime and magnitude of phenotypic selection exerted by frugivores on fruit and seed traits across three plant populations with different degrees of urbanization (urban, semiurban, and rural). Urbanization weakened phenotypic selection via an indirect positive impact on fruit production and fitness and, to a lesser extent, through a direct positive effect on species visitation rates. Our results show that urban ecosystems may affect multifarious selection of traits in the short term and highlight the role of humans in shaping eco-evolutionary dynamics of multispecies interactions.
Collapse
Affiliation(s)
- Facundo X Palacio
- Sección Ornitología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Yerba Buena, Argentina
| |
Collapse
|
7
|
Hernandez JO, Naeem M, Zaman W. How Does Changing Environment Influence Plant Seed Movements as Populations of Dispersal Vectors Decline? PLANTS (BASEL, SWITZERLAND) 2023; 12:1462. [PMID: 37050088 PMCID: PMC10097094 DOI: 10.3390/plants12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Plants differ widely in their ability to find tolerable climatic ranges through seed dispersal, depending on their life-history traits and habitat characteristics. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review on seed dispersal mechanisms was conducted to elucidate plant seed movements amid changing environments. Here, the highest relative count of studies was found in Spain (16.47%), followed by Brazil (14.12%), and the USA (14.12%). The megadiverse, hotspot countries (e.g., Philippines, Vietnam, Myanmar, India, and Indonesia) and Africa (Tanzania, South Africa, Democratic Republic of the Congo) have very low to no data about the reviewed topic. The effects of land use changes, habitat degradation/disturbances, climate, and extreme weather conditions on seed dispersal mechanisms and agents had the highest share of studies across topics and countries. Plant diversity and distribution of anemochorous, endozoochorous, epizoochorous, hydrochorous, myrmecochorous, and ornithochorous species are seriously affected by changing environments due to altered long-distance seed dispersal. The fruit types commonly associated with endozoochory and ornithochory are species with achene, capsule, drupe, fleshy, and nut fruits/seeds, whereas achene, capsule, samara/winged seeds are associated with anemochory. The present review provides a summary of evidence on how plants are affected by climate change as populations of dispersal vectors decline. Finally, recommendations for further study were made based on the identified knowledge gaps.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Bühlmann I, Gossner MM. Invasive Drosophila suzukii outnumbers native controphics and causes substantial damage to fruits of forest plants. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.87319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Impacts of biological invasions are diverse and can have far-reaching consequences for ecosystems. The spotted wing drosophila, Drosophila suzukii, is a major invasive pest of fruits, which negatively affects fruit and wine production. However, little is known about the ecological impact of this fly species on more natural ecosystems it has invaded, such as forests. In this study, we investigated the use of potential host plants by D. suzukii at 64 sites in different forest communities in Switzerland from mid-June to mid-October 2020. We examined more than 12,000 fruits for egg deposits of D. suzukii to assess its direct impact on the plants. We recorded symptoms of fruit decay after egg deposition to determine if D. suzukii attacks trigger fruit decay. In addition, we monitored the drosophilid fauna with cup traps baited with apple cider vinegar, as we expected that D. suzukii would outnumber and potentially outcompete native controphics, especially other drosophilids. Egg deposits of D. suzukii were found on the fruits of 31 of the 39 potential host plant species studied, with 18 species showing an attack rate > 50%. Overall, fruits of Cotoneaster divaricatus (96%), Atropa bella-donna (91%), Rubus fruticosus corylifolius aggr. (91%), Frangula alnus (85%) and Sambucus nigra (83%) were attacked particularly frequently, resulting also in high predicted attack probabilities that varied among forest communities. Later and longer fruiting, black fruit colour, larger fruit size and higher pulp pH all positively affected attack rates. More than 50% of the plant species showed severe symptoms of decay after egg deposition, with higher pulp sugar content leading to more severe symptoms. The high fruit attack rate observed was reflected in a high abundance and dominance of D. suzukii in trap catches, independent of forest community and elevation. Drosophila suzukii was by far the most abundant species, accounting for 86% (81,395 individuals) of all drosophilids. The abundance of D. suzukii was negatively associated with the abundance of the native drosophilids. Our results indicate that the invasive D. suzukii competes strongly with other frugivorous species and that its presence might have far-reaching ecosystem-level consequences. The rapid decay of fruits attacked by D. suzukii leads to a loss of resources and may disrupt seed-dispersal mutualisms through the reduced consumption of fruits by dispersers such as birds.
Collapse
|
9
|
Fruit secondary metabolites shape seed dispersal effectiveness. Trends Ecol Evol 2021; 36:1113-1123. [PMID: 34509316 DOI: 10.1016/j.tree.2021.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Plant secondary metabolites (PSMs) play a central role in seed dispersal and fruit defense, with potential for large impacts on plant fitness and demography. Yet because PSMs can have multiple interactive functions across seed dispersal stages, we must systematically study their effects to determine the net consequences for plant fitness. To tackle this issue, we integrate the role of fruit PSMs into the seed dispersal effectiveness (SDE) framework. We describe PSM effects on the quantity and quality of animal-mediated seed dispersal, both in pairwise interactions and diverse disperser communities, as well as trade-offs that occur across dispersal stages. By doing so, this review provides structure to a rapidly growing field and yields insights into a critical process shaping plant populations.
Collapse
|