1
|
Li Z, Wang Q, Knebel D, Veit D, Ulrich Y. Division of labour in colony defence in a clonal ant. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230270. [PMID: 40109105 PMCID: PMC11969388 DOI: 10.1098/rstb.2023.0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/04/2024] [Accepted: 08/27/2024] [Indexed: 03/22/2025] Open
Abstract
Division of labour (DOL) plays a key role across all scales of biological organization, but how its expression varies across contexts is still poorly understood. Here, we measure DOL in a crucial task, colony defence, in a social insect that affords precise experimental control over individual and colony traits, the clonal raider ant (Ooceraea biroi). We find that DOL in defence behaviour emerges within colonies of near-identical workers, likely reflecting variation in individual response thresholds, and that it increases with colony size. Additionally, colonies with pupae show higher defence levels than those without brood. However, we do not find evidence for a behavioural syndrome linking defence with exploration and activity, as previously reported in other systems. By showing how colony composition and size affect group response to potential threats, our findings highlight the role of the social context in shaping DOL.This article is part of the theme issue 'Division of labour as key driver of social evolution'.
Collapse
Affiliation(s)
- Zimai Li
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena07743, Germany
| | - Qi Wang
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena07743, Germany
| | - Daniel Knebel
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
- Max Planck Institute for the History of Science, Berlin14195, Germany
| | - Daniel Veit
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Yuko Ulrich
- Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|
2
|
Grobbelaar A, Osthoff G, du Preez I, Deacon F. First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes ( Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study. Metabolites 2024; 14:586. [PMID: 39590822 PMCID: PMC11596133 DOI: 10.3390/metabo14110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study provides the first insights to the fecal metabolome of the giraffe (Giraffa camelopardalis). By using untargeted metabolomics via gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS), this study primarily aims to provide results of the impact that external stimuli, such as supplemental feeding (SF) practices, seasonal variation and sex, might have on the fecal metabolome composition of healthy, free-roaming giraffes. METHODS Untargeted GCxGC/TOF-MS analysis was applied to the feces collected from thirteen giraffes (six males and seven females) from six different locations within the central Free State Province of South Africa over a period of two years. Statistical analysis of the generated data was used to identify the metabolites that were significantly different between the giraffes located in environments that provided SF and others where the giraffes only fed on the natural available vegetation. The same metabolomics analysis was used to investigate metabolite concentrations that were significantly different between the wet and dry seasons for a single giraffe male provided with SF over the two-year period, as well as for age and sex differences. RESULTS A total of 2042 features were detected from 26 giraffe fecal samples. Clear variations between fecal metabolome profiles were confirmed, with higher levels of amino acid-related and carbohydrate-related metabolites for giraffes receiving SF. In addition, a separation between the obtained profiles of samples collected from a single adult male giraffe during the wet and dry seasons was identified. Differences, such as higher levels of carbohydrate-related metabolites and organic compounds during the wet season were noted. Distinct variations in profiles were also identified for the metabolites from fecal samples collected from the six males and seven females, with higher concentrations in carbohydrate-related metabolites and alkanes for female giraffes comparatively. CONCLUSIONS This is the first study to investigate the composition of the fecal metabolome of free-roaming giraffes, as well as the effects that external factors, such as environmental exposures, feeding practices, seasonal variations, age and sex, have on it. This novel use of fecal metabolomics assists in developing non-invasive techniques to determine giraffe populations' health that do not require additional stressors such as capture, restraint and blood collection. Ultimately, such non-invasive advances are beneficial towards the conservation of wildlife species on a larger scale.
Collapse
Affiliation(s)
- Andri Grobbelaar
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Gernot Osthoff
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Ilse du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
| | - Francois Deacon
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| |
Collapse
|
3
|
Kay T, Motes-Rodrigo A, Royston A, Richardson TO, Stroeymeyt N, Keller L. Ant social network structure is highly conserved across species. Proc Biol Sci 2024; 291:20240898. [PMID: 39079671 PMCID: PMC11288679 DOI: 10.1098/rspb.2024.0898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024] Open
Abstract
The ecological success of social insects makes their colony organization fascinating to scientists studying collective systems. In recent years, the combination of automated behavioural tracking and social network analysis has deepened our understanding of many aspects of colony organization. However, because studies have typically worked with single species, we know little about interspecific variation in network structure. Here, we conduct a comparative network analysis across five ant species from five subfamilies, separated by more than 100 Myr of evolution. We find that social network structure is highly conserved across subfamilies. All species studied form modular networks, with two social communities, a similar distribution of individuals between the two communities, and equivalent mapping of task performance onto the communities. Against this backdrop of organizational similarity, queens of the different species occupied qualitatively distinct network positions. The deep conservation of the two community structure implies that the most fundamental behavioural division of labour in social insects is between workers that stay in the nest to rear brood, and those that leave the nest to forage. This division has parallels across the animal kingdom in systems of biparental care and probably represents the most readily evolvable form of behavioural division of labour.
Collapse
Affiliation(s)
- Tomas Kay
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alba Motes-Rodrigo
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Arthur Royston
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Chen J, Guo X, Charbonneau D, Azizi A, Fewell J, Kang Y. Dynamics of Information Flow and Task Allocation of Social Insect Colonies: Impacts of Spatial Interactions and Task Switching. Bull Math Biol 2024; 86:50. [PMID: 38581473 DOI: 10.1007/s11538-024-01280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2024] [Indexed: 04/08/2024]
Abstract
Models of social interaction dynamics have been powerful tools for understanding the efficiency of information spread and the robustness of task allocation in social insect colonies. How workers spatially distribute within the colony, or spatial heterogeneity degree (SHD), plays a vital role in contact dynamics, influencing information spread and task allocation. We used agent-based models to explore factors affecting spatial heterogeneity and information flow, including the number of task groups, variation in spatial arrangements, and levels of task switching, to study: (1) the impact of multiple task groups on SHD, contact dynamics, and information spread, and (2) the impact of task switching on SHD and contact dynamics. Both models show a strong linear relationship between the dynamics of SHD and contact dynamics, which exists for different initial conditions. The multiple-task-group model without task switching reveals the impacts of the number and spatial arrangements of task locations on information transmission. The task-switching model allows task-switching with a probability through contact between individuals. The model indicates that the task-switching mechanism enables a dynamical state of task-related spatial fidelity at the individual level. This spatial fidelity can assist the colony in redistributing their workforce, with consequent effects on the dynamics of spatial heterogeneity degree. The spatial fidelity of a task group is the proportion of workers who perform that task and have preferential walking styles toward their task location. Our analysis shows that the task switching rate between two tasks is an exponentially decreasing function of the spatial fidelity and contact rate. Higher spatial fidelity leads to more agents aggregating to task location, reducing contact between groups, thus making task switching more difficult. Our results provide important insights into the mechanisms that generate spatial heterogeneity and deepen our understanding of how spatial heterogeneity impacts task allocation, social interaction, and information spread.
Collapse
Affiliation(s)
- Jun Chen
- Simon A. Levin Mathematical and Computational Modeling Sciences Center, Arizona State University, 1031 Palm Walk, Tempe, AZ, 85281, USA
| | - Xiaohui Guo
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Asma Azizi
- Department of Mathematics, Kennesaw State University, Marrieta, GA, 30060, USA
| | - Jennifer Fewell
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Yun Kang
- Sciences and Mathematics Faculty, College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, 85212, USA.
| |
Collapse
|
5
|
Lin MR, Guo X, Azizi A, Fewell JH, Milner F. Mechanistic modeling of alarm signaling in seed-harvester ants. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5536-5555. [PMID: 38872547 DOI: 10.3934/mbe.2024244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Ant colonies demonstrate a finely tuned alarm response to potential threats, offering a uniquely manageable empirical setting for exploring adaptive information diffusion within groups. To effectively address potential dangers, a social group must swiftly communicate the threat throughout the collective while conserving energy in the event that the threat is unfounded. Through a combination of modeling, simulation, and empirical observations of alarm spread and damping patterns, we identified the behavioral rules governing this adaptive response. Experimental trials involving alarmed ant workers (Pogonomyrmex californicus) released into a tranquil group of nestmates revealed a consistent pattern of rapid alarm propagation followed by a comparatively extended decay period [1]. The experiments in [1] showed that individual ants exhibiting alarm behavior increased their movement speed, with variations in response to alarm stimuli, particularly during the peak of the reaction. We used the data in [1] to investigate whether these observed characteristics alone could account for the swift mobility increase and gradual decay of alarm excitement. Our self-propelled particle model incorporated a switch-like mechanism for ants' response to alarm signals and individual variations in the intensity of speed increased after encountering these signals. This study aligned with the established hypothesis that individual ants possess cognitive abilities to process and disseminate information, contributing to collective cognition within the colony (see [2] and the references therein). The elements examined in this research support this hypothesis by reproducing statistical features of the empirical speed distribution across various parameter values.
Collapse
Affiliation(s)
- Michael R Lin
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe 85281, USA
| | - Xiaohui Guo
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7632706, Israel
| | - Asma Azizi
- Department of Mathematics, Kennesaw State University, Marietta 30062, USA
| | | | - Fabio Milner
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe 85281, USA
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe 85287, USA
| |
Collapse
|
6
|
Liu C, Feng T. Unraveling the forces shaping foraging dynamics in harvester ant colonies: Recruitment efficiency and environmental variability. Math Biosci 2024; 371:109182. [PMID: 38521454 DOI: 10.1016/j.mbs.2024.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
The collective foraging behavior of ant colonies is a central focus in behavioral ecology. This paper enhances the classical model of foraging dynamics in harvester ant colonies by introducing a nonlinear recruitment rate and considering environmental variability. Initially, we analyze the existence and stability of steady states in the deterministic model. The results suggest that an increase in mean recruitment time can reduce the foraging threshold, leading to both forward and backward bifurcations. Furthermore, both average recruitment time and the interference intensity of recruiters impact the number of workers in each subgroup. Subsequently, we conduct an analysis of the long-term and transient dynamics of collective foraging in random environments, providing sufficient conditions for the colony to sustain foraging activity. The findings emphasize the scene-dependent impact of environmental stochasticity on foraging dynamics. When ant colonies deterministically cease foraging, environmental stochasticity may unexpectedly prolong the foraging state. Conversely, when colonies deterministically persist in foraging, environmental stochasticity may disrupt this continuity. Additionally, the effect of environmental stochasticity on foraging status varies with the initial worker size. Sizes near the boundary of the basin of attraction between non-foraging and foraging states exhibit greater sensitivity to environmental stochasticity, and sufficiently large stochasticity can impact foraging dynamics across a broader range of initial worker sizes. These findings underscore the intricate interplay between intrinsic factors (e.g., recruitment efficiency and interference intensity) and extrinsic factors (e.g., environmental stochasticity) in shaping the collective foraging dynamics of ant colonies.
Collapse
Affiliation(s)
- Chenbo Liu
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, PR China.
| | - Tao Feng
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
7
|
Harris BA, Stevens DR, Mathis KA. The effect of urbanization and temperature on thermal tolerance, foraging performance, and competition in cavity-dwelling ants. Ecol Evol 2024; 14:e10923. [PMID: 38384820 PMCID: PMC10880040 DOI: 10.1002/ece3.10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Human disturbance including rapid urbanization and increased temperatures can have profound effects on the ecology of local populations. Eusocial insects, such as ants, have adapted to stressors of increasing temperature and urbanization; however, these evolutionary responses are not consistent among populations across geographic space. Here we asked how urbanization and incubation temperature influence critical thermal maximum (CTmax) and various ecologically relevant behaviors in three ant species in urban and rural locations in Worcester, MA, USA. We did this by incubating colonies of three species of cavity dwelling ant (Aphaenogaster picea, Tapinoma sessile, and Temnothorax longispinosus) from 2 habitat types (Rural and Urban), for 60-days at multiple temperatures. We found that incubation temperature, urbanization, and species of ant all significantly affected overall colony critical thermal maximum. We also found that recruitment time, colonization time, and defense response were significantly affected by incubation temperature and varied between species of ant, while recruitment and colonization time were additionally affected by urbanization. These variable changes in performance and competitive traits across species suggest that responses to urbanization and shifting temperatures are not universal across species. Changes in behavioral responses caused by urbanization may disrupt biodiversity, creating unusual competitive environments as a consequence of natural adaptations and cause both direct and indirect mechanisms for which human disturbance can lead to local species extinction.
Collapse
Affiliation(s)
| | - Dale R. Stevens
- Clark UniversityWorcesterMassachusettsUSA
- Bucknell UniversityLewisburgPennsylvaniaUSA
| | | |
Collapse
|