1
|
Hazelaar ST, Wang C, de Wagter C, Muijres FT, de Croon GCHE, Yedutenko M. Bioinspired adaptive visual servoing control for quadrotors. BIOINSPIRATION & BIOMIMETICS 2025; 20:036014. [PMID: 40239692 DOI: 10.1088/1748-3190/adcdde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
Since every flight ends in a landing and every landing is a potential crash, deceleration during landing is one of the most critical flying maneuvers. Here we implement a recently-discovered insect visual-guided landing strategy in which the divergence of optical flow is regulated in a step-wise fashion onboard a quadrotor for the task of visual servoing. This approach was shown to be a powerful tool for understanding challenges encountered by visually-guided flying systems. We found that landing on a relatively small target requires mitigation of the noise with adaptive low-pass filtering, while compensation for the delays introduced by this filter requires open-loop forward accelerations to switch from divergence setpoint. Both implemented solutions are consistent with insect physiological properties. Our study evaluates the challenges of visual-based navigation for flying insects. It highlights the benefits and feasibility of the switching divergence strategy that allows for faster and safer landings in the context of robotics.
Collapse
Affiliation(s)
- Sander T Hazelaar
- Micro Air Laboratory, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Chenyao Wang
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - Christophe de Wagter
- Micro Air Laboratory, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Florian T Muijres
- Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - Guido C H E de Croon
- Micro Air Laboratory, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Matthew Yedutenko
- Micro Air Laboratory, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
2
|
Li S, Liu F, Dong X, Xiang J, Li D, Chirarattananon P, Tu Z. Reciprocal actuation core and modular robotic limbs for flying, swimming and running. COMMUNICATIONS ENGINEERING 2025; 4:71. [PMID: 40223019 PMCID: PMC11994817 DOI: 10.1038/s44172-025-00404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Investigations into animal locomotion across diverse environments have highlighted the universal applicability of adjustable reciprocal motion, offering insights into simplifying actuation systems for multi-modal robots. However, achieving unified and efficient reciprocal motion with environmental adaptability in miniature robotic systems is challenging due to constraints of size, weight, and the need for controlled degree of freedom. Here, we present the UniCore, a miniature unified actuation platform capable of flying, swimming, and running with modular appendages. This platform features bio-inspired motor-spring resonance actuation systems, with a central controller that generates four adjustable reciprocal control signals based on a central pattern generator model. Performance validation demonstrates UniCore's proficiency in achieving three distinct modes of locomotion, underscoring the effectiveness of reciprocal motion for the locomotion of both animals and machines. All in all, this work demonstrates the potential of a unified reciprocal actuation platform to eliminate morphological and actuation redundancies commonly found in existing multi-modal robots, paving the way for more efficient and versatile miniature robotic systems.
Collapse
Affiliation(s)
- Song Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Fangyuan Liu
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Xin Dong
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, China
| | - Jinwu Xiang
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, China
| | - Daochun Li
- School of Aeronautic Science and Engineering, Beihang University, Beijing, China.
| | - Pakpong Chirarattananon
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- Centre for Nature-inspired Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Zhan Tu
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, China.
- Institution of Unmanned System, Beihang University, Beijing, China.
| |
Collapse
|
3
|
Wang G. RL-CWtrans Net: multimodal swimming coaching driven via robot vision. Front Neurorobot 2024; 18:1439188. [PMID: 39205877 PMCID: PMC11349712 DOI: 10.3389/fnbot.2024.1439188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
In swimming, the posture and technique of athletes are crucial for improving performance. However, traditional swimming coaches often struggle to capture and analyze athletes' movements in real-time, which limits the effectiveness of coaching. Therefore, this paper proposes RL-CWtrans Net: a robot vision-driven multimodal swimming training system that provides precise and real-time guidance and feedback to swimmers. The system utilizes the Swin-Transformer as a computer vision model to effectively extract the motion and posture features of swimmers. Additionally, with the help of the CLIP model, the system can understand natural language instructions and descriptions related to swimming. By integrating visual and textual features, the system achieves a more comprehensive and accurate information representation. Finally, by employing reinforcement learning to train an intelligent agent, the system can provide personalized guidance and feedback based on multimodal inputs. Experimental results demonstrate significant advancements in accuracy and practicality for this multimodal robot swimming coaching system. The system is capable of capturing real-time movements and providing immediate feedback, thereby enhancing the effectiveness of swimming instruction. This technology holds promise.
Collapse
Affiliation(s)
- Guanlin Wang
- Faculty of Education, University of Macau, Macau, Macau SAR, China
| |
Collapse
|
4
|
Menzies JAC, Maia Chagas A, Baden T, Alonso CR. A microRNA that controls the emergence of embryonic movement. eLife 2024; 13:RP95209. [PMID: 38869942 PMCID: PMC11175612 DOI: 10.7554/elife.95209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene - which we term Movement Modulator (Motor) - as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.
Collapse
Affiliation(s)
- Jonathan AC Menzies
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - André Maia Chagas
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Tom Baden
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Claudio R Alonso
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| |
Collapse
|
5
|
Chellapurath M, Khandelwal PC, Schulz AK. Bioinspired robots can foster nature conservation. Front Robot AI 2023; 10:1145798. [PMID: 37920863 PMCID: PMC10619165 DOI: 10.3389/frobt.2023.1145798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
We live in a time of unprecedented scientific and human progress while being increasingly aware of its negative impacts on our planet's health. Aerial, terrestrial, and aquatic ecosystems have significantly declined putting us on course to a sixth mass extinction event. Nonetheless, the advances made in science, engineering, and technology have given us the opportunity to reverse some of our ecosystem damage and preserve them through conservation efforts around the world. However, current conservation efforts are primarily human led with assistance from conventional robotic systems which limit their scope and effectiveness, along with negatively impacting the surroundings. In this perspective, we present the field of bioinspired robotics to develop versatile agents for future conservation efforts that can operate in the natural environment while minimizing the disturbance/impact to its inhabitants and the environment's natural state. We provide an operational and environmental framework that should be considered while developing bioinspired robots for conservation. These considerations go beyond addressing the challenges of human-led conservation efforts and leverage the advancements in the field of materials, intelligence, and energy harvesting, to make bioinspired robots move and sense like animals. In doing so, it makes bioinspired robots an attractive, non-invasive, sustainable, and effective conservation tool for exploration, data collection, intervention, and maintenance tasks. Finally, we discuss the development of bioinspired robots in the context of collaboration, practicality, and applicability that would ensure their further development and widespread use to protect and preserve our natural world.
Collapse
Affiliation(s)
- Mrudul Chellapurath
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Pranav C. Khandelwal
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute of Flight Mechanics and Controls, University of Stuttgart, Stuttgart, Germany
| | - Andrew K. Schulz
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
6
|
Webster-Wood VA, Guix M, Xu NW, Behkam B, Sato H, Sarkar D, Sanchez S, Shimizu M, Parker KK. Biohybrid robots: recent progress, challenges, and perspectives. BIOINSPIRATION & BIOMIMETICS 2022; 18:015001. [PMID: 36265472 DOI: 10.1088/1748-3190/ac9c3b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Mechanical Engineering, Biomedical Engineering (by courtesy), McGowan Institute of Regenerative Medicine, Carnegie Mellon University, Pittsburgh, PA 15116, United States of America
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nicole W Xu
- Laboratories for Computational Physics and Fluid Dynamics, U.S. Naval Research Laboratory, Code 6041, Washington, DC, United States of America
| | - Bahareh Behkam
- Department of Mechanical Engineering, Institute for Critical Technology and Applied Science, Blacksburg, VA 24061, United States of America
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 65 Nanyang Drive, Singapore, 637460, Singapore
| | - Deblina Sarkar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Samuel Sanchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Avda. Lluis Companys 23, 08010 Barcelona, Spain
| | - Masahiro Shimizu
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-machi, Toyonaka, Osaka, Japan
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|