1
|
Mullinax SR, Darby AM, Gupta A, Chan P, Smith BR, Unckless RL. A suite of selective pressures supports the maintenance of alleles of a Drosophila immune peptide. eLife 2025; 12:RP90638. [PMID: 40445192 PMCID: PMC12124834 DOI: 10.7554/elife.90638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
The innate immune system provides hosts with a crucial first line of defense against pathogens. While immune genes are often among the fastest evolving genes in the genome, in Drosophila, antimicrobial peptides (AMPs) are notable exceptions. Instead, AMPs may be under balancing selection, such that over evolutionary timescales, multiple alleles are maintained in populations. In this study, we focus on the Drosophila AMP Diptericin A, which has a segregating amino acid polymorphism associated with differential survival after infection with the Gram-negative bacteria Providencia rettgeri. Diptericin A also helps control opportunistic gut infections by common Drosophila gut microbes, especially those of Lactobacillus plantarum. In addition to genotypic effects on gut immunity, we also see strong sex-specific effects that are most prominent in flies without functional diptericin A. To further characterize differences in microbiomes between different diptericin genotypes, we used 16S metagenomics to look at the microbiome composition. We used both lab-reared and wild-caught flies for our sequencing and looked at overall composition as well as the differential abundance of individual bacterial families. Overall, we find flies that are homozygous for one allele of diptericin A are better equipped to survive a systemic infection from P. rettgeri, but in general have a shorter lifespans after being fed common gut commensals. Our results suggest a possible mechanism for the maintenance of genetic variation of diptericin A through the complex interactions of sex, systemic immunity, and the maintenance of the gut microbiome.
Collapse
Affiliation(s)
- Sarah R Mullinax
- Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Andrea M Darby
- Department of Entomology, Cornell UniversityIthacaUnited States
| | - Anjali Gupta
- Department of Ecology and Evolutionary Biology, University of KansasLawrenceUnited States
| | - Patrick Chan
- Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Brittny R Smith
- Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Robert L Unckless
- Department of Molecular Biosciences, University of KansasLawrenceUnited States
| |
Collapse
|
2
|
Seal S, Basu DN, Ghosh K, Ramachandran A, Kutum R, Shelke T, Gupta I, Khan I. Pathogen growth and virulence dynamics drive the host evolution against coinfections. Proc Natl Acad Sci U S A 2025; 122:e2412124122. [PMID: 40267133 PMCID: PMC12054814 DOI: 10.1073/pnas.2412124122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/22/2025] [Indexed: 04/25/2025] Open
Abstract
The occurrence of coinfections, where hosts are simultaneously infected by multiple pathogens, is widespread in nature and has significant negative impacts on global health. In humans, over one-sixth of the world's population is affected by coinfections, contributing to several diseases. However, despite the broad ecological relevance and impact on global health, most biomedical research has focused on understanding interactions between a single host and a single pathogen. The extent to which coinfections could impact host adaptation and immune system evolution, particularly in comparison to infections by single pathogens, thus remains largely unknown. Also, what roles do individual pathogen species play in this evolutionary process? To address these questions, in this study, we combined theoretical modeling and experimental validation in a model insect Tribolium castaneum evolving against two coinfecting bacterial pathogens with contrasting growth (e.g., fast- vs slow-growing) and virulence (fast- vs slow-killing) dynamics. Our findings show that fast-growing pathogens causing rapid mortality surges (i.e., fast-acting) can effectively limit the host's adaptive success against coinfections. While hosts rapidly evolved better survival against slow-growing bacteria causing long-lasting infections, adaptation against coinfections was significantly delayed and resembled the slow rate of adaptation against fast-acting pathogens. Finally, RNAseq analyses revealed that the observed delay in adaptation was associated with the limited scopes for suitable immune modulations against fast-acting pathogens. They might also be costly and pleiotropic (e.g., phenoloxidase activity), posing challenges for further immunomodulation and slowing adaptation. Our study thus highlights how individual pathogens' growth and virulence dynamics critically regulate adaptive responses against coinfections.
Collapse
Affiliation(s)
- Srijan Seal
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Dipendra Nath Basu
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Kripanjali Ghosh
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Aryan Ramachandran
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Rintu Kutum
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| | - Triveni Shelke
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi110016, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi110016, India
| | - Imroze Khan
- Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana131029, India
| |
Collapse
|
3
|
Sarkar S, Shit B, Bose J, De S, Kawecki TJ, Khan I. Evolutionary History With Chronic Malnutrition Enhances Pathogen Susceptibility at Older Ages. Ecol Evol 2025; 15:e71070. [PMID: 40190800 PMCID: PMC11968410 DOI: 10.1002/ece3.71070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Juvenile malnutrition is a global public health concern that negatively impacts the development and maturation of the immune system, leading to increased susceptibility to infectious diseases. Such adverse effects on immunity might increase with ageing, worsening disease conditions later in life. Furthermore, malnutrition may persist across generations, imposing strong natural selection to survive the nutrient shortage. However, it is unclear how the evolutionary history of ancestral generations with chronic malnutrition could influence pathogen resistance and infection susceptibility, as well as their age-specific changes in extant generations. To address this, we used Drosophila melanogaster populations adapted to chronic juvenile malnutrition and exposed them to a bacterial pathogen, Providencia rettgeri, during their early and late adulthood. Surprisingly, we observed that in populations adapted to chronic malnutrition, young flies survived infection better by tolerating the infection, while control flies displayed higher infection susceptibility despite carrying a similar pathogen load. However, this pattern in post-infection survival is reversed with ageing. There was no change in pathogen resistance, but evolved flies succumbed more to infection than control flies regardless of the input infection doses. Our study thus revealed new evolutionary insights into the development of contrasting early-late-life immune strategies and age-specific vulnerabilities to infection as a function of early-life malnutrition.
Collapse
Affiliation(s)
- Saubhik Sarkar
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Biswajit Shit
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Joy Bose
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Souvik De
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Imroze Khan
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| |
Collapse
|
4
|
Martin LE, Ruiz M, Hillyer JF. Senescence of humoral antimicrobial immunity occurs in infected mosquitoes when the temperature is higher. J Exp Biol 2024; 227:jeb248149. [PMID: 39319457 DOI: 10.1242/jeb.248149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Mosquitoes cannot use metabolism to regulate their body temperature and therefore climate warming is altering their physiology. Mosquitoes also experience a physiological decline with aging, a phenomenon called senescence. Because both high temperature and aging are detrimental to mosquitoes, we hypothesized that high temperatures accelerate senescence. Here, we investigated how temperature and aging, independently and interactively, shape the antimicrobial immune response of the mosquito Anopheles gambiae. Using a zone-of-inhibition assay that measures the antimicrobial activity of hemolymph, we found that antimicrobial activity increases following infection. Moreover, in infected mosquitoes, antimicrobial activity weakens as the temperature rises to 32°C, and antimicrobial activity increases from 1 to 5 days of age and stabilizes with further aging. Importantly, in E. coli-infected mosquitoes, higher temperature causes an aging-dependent decline in antimicrobial activity. Altogether, this study demonstrates that higher temperature can accelerate immune senescence in infected mosquitoes, thereby interactively shaping their ability to fight an infection.
Collapse
Affiliation(s)
- Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Monzerrat Ruiz
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
5
|
Somé BM, Guissou E, Da DF, Richard Q, Choisy M, Yameogo KB, Hien DF, Yerbanga RS, Ouedraogo GA, Dabiré KR, Djidjou-Demasse R, Cohuet A, Lefèvre T. Mosquito ageing modulates the development, virulence and transmission potential of pathogens. Proc Biol Sci 2024; 291:20232097. [PMID: 38166422 PMCID: PMC10762442 DOI: 10.1098/rspb.2023.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/04/2024] Open
Abstract
Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate-pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission. Females of Anopheles coluzzii, a major malaria vector, belonging to three age classes (4-, 8- and 12-day-old), were experimentally infected with Plasmodium falciparum field isolates. Our findings revealed reduced competence in 12-day-old mosquitoes, characterized by lower oocyst/sporozoite rates and intensities compared with younger mosquitoes. Despite shorter median longevities in older age classes, infected 12-day-old mosquitoes exhibited improved survival, suggesting that the infection might act as a fountain of youth for older mosquitoes specifically. The timing of sporozoite appearance in the salivary glands remained consistent across mosquito age classes, with an extrinsic incubation period of approximately 13 days. Integrating these results into an epidemiological model revealed a lower vectorial capacity for older mosquitoes compared with younger ones, albeit still substantial owing to extended longevity in the presence of infection. Considering age heterogeneity provides valuable insights for ecological and epidemiological studies, informing targeted control strategies to mitigate pathogen transmission.
Collapse
Affiliation(s)
- Bernard M. Somé
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Edwige Guissou
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
- Ecole Normale Supérieure, BP 376 Koudougou, Burkina Faso
| | - Dari F. Da
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
| | - Quentin Richard
- IMAG, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Marc Choisy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 700000, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Koudraogo B. Yameogo
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Domombabele FdS. Hien
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S. Yerbanga
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Georges A. Ouedraogo
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Kounbobr R. Dabiré
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| | - Thierry Lefèvre
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| |
Collapse
|
6
|
Zhou SO, Arunkumar R, Irfan A, Ding SD, Leitão AB, Jiggins FM. The evolution of constitutively active humoral immune defenses in Drosophila populations under high parasite pressure. PLoS Pathog 2024; 20:e1011729. [PMID: 38206983 PMCID: PMC10807768 DOI: 10.1371/journal.ppat.1011729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Both constitutive and inducible immune mechanisms are employed by hosts for defense against infection. Constitutive immunity allows for a faster response, but it comes with an associated cost that is always present. This trade-off between speed and fitness costs leads to the theoretical prediction that constitutive immunity will be favored where parasite exposure is frequent. We selected populations of Drosophila melanogaster under high parasite pressure from the parasitoid wasp Leptopilina boulardi. With RNA sequencing, we found the evolution of resistance in these populations was associated with them developing constitutively active humoral immunity, mediated by the larval fat body. Furthermore, these evolved populations were also able to induce gene expression in response to infection to a greater level, which indicates an overall more activated humoral immune response to parasitization. The anti-parasitoid immune response also relies on the JAK/STAT signaling pathway being activated in muscles following infection, and this induced response was only seen in populations that had evolved under high parasite pressure. We found that the cytokine Upd3, which induces this JAK/STAT response, is being expressed by immature lamellocytes. Furthermore, these immune cells became constitutively present when populations evolved resistance, potentially explaining why they gained the ability to activate JAK/STAT signaling. Thus, under intense parasitism, populations evolved resistance by increasing both constitutive and induced immune defenses, and there is likely an interplay between these two forms of immunity.
Collapse
Affiliation(s)
- Shuyu Olivia Zhou
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ramesh Arunkumar
- Section of population genetics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Amina Irfan
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Alexandre B. Leitão
- Champalimaud Foundation, Champalimaud Centre of the Unknown, Lisbon, Portugal
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
El-Saadi MI, MacMillan HA, Ferguson LV. Cold-induced immune activation in chill-susceptible insects. CURRENT OPINION IN INSECT SCIENCE 2023:101054. [PMID: 37207832 DOI: 10.1016/j.cois.2023.101054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Chilling injuries in chill-susceptible insects, like the model dipteran Drosophila melanogaster, have been well-documented as a consequence of stressful low temperature exposures. Cold stress also causes upregulation of genes in the insect immune pathways, some of which are also upregulated following other forms of sterile stress. The adaptive significance and underlying mechanisms surrounding cold-induced immune activation, however, are still unclear. Here, we review recent work on the roles of ROS, DAMPs, and AMPs in insect immune signalling or function. Using this emerging knowledge, we propose a conceptual model linking biochemical and molecular causes of immune activation to its consequences during and following cold stress.
Collapse
Affiliation(s)
- Mahmoud I El-Saadi
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
| | - Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada, B4P 2R6
| |
Collapse
|