1
|
Norouzy N, Zabihihesari A, Rezai P. Simultaneous high-throughput particle-bacteria separation and solution exchange via in-plane and out-of-plane parallelization of microfluidic centrifuges. BIOMICROFLUIDICS 2024; 18:054107. [PMID: 39345266 PMCID: PMC11435783 DOI: 10.1063/5.0215930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
Inertial microfluidic devices have gained attention for point-of-need (PoN) sample preparation. Yet, devices capable of simultaneous particle-bacteria solution exchange and separation are low in throughput, hindering their applicability to PoN settings. This paper introduces a microfluidic centrifuge for high-throughput solution exchange and separation of microparticles, addressing the need for processing large sample volumes at elevated flow rates. The device integrates Dean flow recirculation and inertial focusing of microparticles within 24 curved microchannels assembled in a three-layer configuration via in-plane and out-of-plane parallelization. We studied solution exchange and particle migration using singleplex and duplex samples across devices with varying curve numbers (2-curve, 8-curve, and 24-curve). Processing 5 and 10 μm microparticles at flow rates up to 16.8 ml/min achieved a solution exchange efficiency of 96.69%. In singleplex solutions, 10 and 5 μm particles selectively migrated to inner and outer outlets, demonstrating separation efficiencies of 99.7% and 90.3%, respectively. With duplex samples, sample purity was measured to be 93.4% and 98.6% for 10 and 5 μm particles collected from the inner and the outer outlets, respectively. Application of our device in biological assays was shown by performing duplex experiments where 10 μm particles were isolated from Salmonella bacterial suspension with purity of 97.8% while increasing the state-of-the-art particle solution exchange and separation throughput by 16 folds. This parallelization enabled desirable combinations of high throughput, low-cost, and scalability, without compromising efficiency and purity, paving the way for sample preparation at the PoN in the future.
Collapse
Affiliation(s)
- Nima Norouzy
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Alireza Zabihihesari
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St., Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
2
|
Misra I, Kumaran V. Microfluidic mixing by magnetic particles: Progress and prospects. BIOMICROFLUIDICS 2024; 18:041501. [PMID: 39206143 PMCID: PMC11349378 DOI: 10.1063/5.0211204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Microfluidic systems have enormous potential for enabling point-of-care diagnostics due to a number of advantages, such as low sample volumes, small footprint, low energy requirements, uncomplicated setup, high surface-to-volume ratios, cost-effectiveness, etc. However, fluid mixing operations are constrained by molecular diffusion since the flow is usually in the laminar regime. The slow nature of molecular diffusion is a technological barrier to implementing fluid transformations in a reasonable time. In this context, magnetically actuated micro-mixers of different sizes, shapes, materials, and actuation techniques provide a way to enhance fluid mixing in microfluidic devices. In this paper, we review the currently existing micro-mixing technologies. From a fundamental perspective, the different magnetization models for permanent and induced dipoles are discussed. The single-particle dynamics in steady and oscillating magnetic fields is studied in order to determine the flow generated and the torque exerted on the fluid due to the magnetic particles. The effect of particle interactions, both magnetic and hydrodynamic, is examined.
Collapse
Affiliation(s)
- I. Misra
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| | - V. Kumaran
- Chemical Engineering Department, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Williams DE, Li W, Chandrasekhar M, Corazza CMOW, Deijs GS, Djoko L, Govind B, Jose E, Kwon YJ, Lowe T, Panchal A, Reshef G, Vargas MJT, Simpson MC. Lab on a bead with oscillatory centrifugal microfluidics for fast and complete mixing enables fast and accurate biomedical assays. Sci Rep 2024; 14:8637. [PMID: 38622241 PMCID: PMC11018808 DOI: 10.1038/s41598-024-58720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Rapid mixing and precise timing are key for accurate biomedical assay measurement, particularly when the result is determined as the rate of a reaction: for example rapid immunoassay in which the amount of captured target is kinetically determined; determination of the concentration of an enzyme or enzyme substrate; or as the final stage in any procedure that involves a capture reagent when an enzyme reaction is used as the indicator. Rapid mixing and precise timing are however difficult to achieve in point-of-care devices designed for small sample volumes and fast time to result. By using centrifugal microfluidics and transposing the reaction surface from a chamber to a single mm-scale bead we demonstrate an elegant and easily manufacturable solution. Reagents (which may be, for example, an enzyme, enzyme substrate, antibody or antigen) are immobilised on the surface of a single small bead (typically 1-2 mm in diameter) contained in a cylindrical reaction chamber subjected to periodically changing rotational accelerations which promote both mixing and uniform mass-transfer to the bead surface. The gradient of Euler force across the chamber resulting from rotational acceleration of the disc, dΩdisc/dt, drives circulation of fluid in the chamber. Oscillation of Euler force by oscillation of rotational acceleration with period, T, less than that of the hydrodynamic relaxation time of the fluid, folds the fluid streamlines. Movement of the bead in response to the fluid and the changing rotational acceleration provides a dynamically changing chamber shape, further folding and expanding the fluid. Bead rotation and translation driven by fluid flow and disc motion give uniformity of reaction over the surface. Critical parameters for mixing and reaction uniformity are the ratio of chamber radius to bead radius, rchamber/rbead, and the product Trchamber(dΩdisc/dt), of oscillation period and Euler force gradient across the fluid. We illustrate application of the concept using the reaction of horse radish peroxidase (HRP) immobilised on the bead surface with its substrate tetramethylbenzidine (TMB) in solution. Acceleration from rest to break a hydrophobic valve provided precise timing for TMB contact with the bead. Solution uniformity from reaction on the surface of the bead in volumes 20-50 uL was obtained in times of 2.5 s or less. Accurate measurement of the amount of surface-bound HRP by model fitting to the measured kinetics of colour development at 10 s intervals is demonstrated.
Collapse
Affiliation(s)
- David E Williams
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Wei Li
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | | | | | - Gerrit Sjoerd Deijs
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Lionel Djoko
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Bhavesh Govind
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Ellen Jose
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Yong Je Kwon
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Tiffany Lowe
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Anil Panchal
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Gabrielle Reshef
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - Matheus J T Vargas
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand
| | - M Cather Simpson
- Orbis Diagnostics Ltd, 14 West St, Eden Terrace, Auckland, 1010, New Zealand.
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
4
|
Merkens S, Tollan C, De Salvo G, Bejtka K, Fontana M, Chiodoni A, Kruse J, Iriarte-Alonso MA, Grzelczak M, Seifert A, Chuvilin A. Toward sub-second solution exchange dynamics in flow reactors for liquid-phase transmission electron microscopy. Nat Commun 2024; 15:2522. [PMID: 38514605 PMCID: PMC10957994 DOI: 10.1038/s41467-024-46842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Liquid-phase transmission electron microscopy is a burgeoning experimental technique for monitoring nanoscale dynamics in a liquid environment, increasingly employing microfluidic reactors to control the composition of the sample solution. Current challenges comprise fast mass transport dynamics inside the central nanochannel of the liquid cell, typically flow cells, and reliable fixation of the specimen in the limited imaging area. In this work, we present a liquid cell concept - the diffusion cell - that satisfies these seemingly contradictory requirements by providing additional on-chip bypasses to allow high convective transport around the nanochannel in which diffusive transport predominates. Diffusion cell prototypes are developed using numerical mass transport models and fabricated on the basis of existing two-chip setups. Important hydrodynamic parameters, i.e., the total flow resistance, the flow velocity in the imaging area, and the time constants of mixing, are improved by 2-3 orders of magnitude compared to existing setups. The solution replacement dynamics achieved within seconds already match the mixing timescales of many ex-situ scenarios, and further improvements are possible. Diffusion cells can be easily integrated into existing liquid-phase transmission electron microscopy workflows, provide correlation of results with ex-situ experiments, and can create additional research directions addressing fast nanoscale processes.
Collapse
Affiliation(s)
- Stefan Merkens
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain.
- Department of Physics, Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia-San Sebastián, Spain.
| | - Christopher Tollan
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
| | - Giuseppe De Salvo
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
- Department of Physics, Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia-San Sebastián, Spain
| | - Katarzyna Bejtka
- Center for Sustainable Future Technologies@Polito, Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, TO, Italy
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Marco Fontana
- Center for Sustainable Future Technologies@Polito, Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, TO, Italy
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Angelica Chiodoni
- Center for Sustainable Future Technologies@Polito, Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, TO, Italy
| | - Joscha Kruse
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Maiara Aime Iriarte-Alonso
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
- TECNIPESA IDENTIFICACION SL, Parque Empresarial Zuatzu, Edificio Donosti 1-3, 20018, Donostia-San Sebastián, Spain
| | - Marek Grzelczak
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - Andreas Seifert
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Andrey Chuvilin
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| |
Collapse
|
5
|
Palmese LL, LeValley PJ, Pradhan L, Parsons AL, Oakey JS, Abraham M, D'Addio SM, Kloxin AM, Liang Y, Kiick KL. Injectable liposome-containing click hydrogel microparticles for release of macromolecular cargos. SOFT MATTER 2024; 20:1736-1745. [PMID: 38288734 PMCID: PMC10880143 DOI: 10.1039/d3sm01009k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/16/2023] [Indexed: 02/22/2024]
Abstract
Hydrogel microparticles ranging from 0.1-100 μm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 μm and 82 ± 25 μm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.
Collapse
Affiliation(s)
- Luisa L Palmese
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Paige J LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Lina Pradhan
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Amanda L Parsons
- Chemical and Biomedical Engineering, University of Wyoming, Laramie, WY, USA
| | - John S Oakey
- Chemical and Biomedical Engineering, University of Wyoming, Laramie, WY, USA
| | - Mathew Abraham
- Translational Imaging, Merck & Co., Inc., West Point, PA, USA
| | - Suzanne M D'Addio
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, USA.
| | - April M Kloxin
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Yingkai Liang
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, USA.
| | - Kristi L Kiick
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Papadopoulos C, Larue AE, Toulouze C, Mokhtari O, Lefort J, Libert E, Assémat P, Swider P, Malaquin L, Davit Y. A versatile micromodel technology to explore biofilm development in porous media flows. LAB ON A CHIP 2024; 24:254-271. [PMID: 38059908 DOI: 10.1039/d3lc00293d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Bacterial biofilms that grow in porous media are critical to ecosystem processes and applications ranging from soil bioremediation to bioreactors for treating wastewater or producing value-added products. However, understanding and engineering the complex phenomena that drive the development of biofilms in such systems remains a challenge. Here we present a novel micromodel technology to explore bacterial biofilm development in porous media flows. The technology consists of a set of modules that can be combined as required for any given experiment and conveniently tuned for specific requirements. The core module is a 3D-printed micromodel where biofilm is grown into a perfusable porous substrate. High-precision additive manufacturing, in particular stereolithography, is used to fabricate porous scaffolds with precisely controlled architectures integrating flow channels with diameters down to several hundreds of micrometers. The system is instrumented with: ultraviolet-C light-emitting diodes; on-line measurements of oxygen consumption and pressure drop across the porous medium; camera and spectrophotometric cells for the detection of biofilm detachment events at the outlet. We demonstrate how this technology can be used to study the development of Pseudomonas aeruginosa biofilm for several days within a network of flow channels. We find complex dynamics whereby oxygen consumption reaches a steady-state but not the pressure drop, which instead features a permanent regime with large fluctuations. We further use X-ray computed microtomography to image the spatial distribution of biofilms and computational fluid dynamics to link biofilm development with local flow properties. By combining the advantages of additive manufacturing for the creation of reproducible 3D porous microarchitectures with the flow control and instrumentation accuracy of microfluidics, our system provides a platform to study the dynamics of biofilm development in 3D porous media and to rapidly test new concepts in process engineering.
Collapse
Affiliation(s)
- Christos Papadopoulos
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
- LAAS-CNRS, CNRS & Université de Toulouse, 31400 Toulouse, France
| | - Anne Edith Larue
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
- Transverse Lab, 271 rue des Fontaines, 31300 Toulouse, France
| | - Clara Toulouze
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Omar Mokhtari
- Physikalisches Institut, Universität Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland
| | - Julien Lefort
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Emmanuel Libert
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Pauline Assémat
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Pascal Swider
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| | - Laurent Malaquin
- LAAS-CNRS, CNRS & Université de Toulouse, 31400 Toulouse, France
| | - Yohan Davit
- Institut de Mécanique des Fluides (IMFT), CNRS & Université de Toulouse, 31400 Toulouse, France.
| |
Collapse
|
7
|
Honda K, Fujiwara K, Hasegawa K, Kaneko A, Abe Y. Coalescence and mixing dynamics of droplets in acoustic levitation by selective colour imaging and measurement. Sci Rep 2023; 13:19590. [PMID: 37949912 PMCID: PMC10638323 DOI: 10.1038/s41598-023-46008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Acoustic levitation is well-suited to 'lab-on-a-drop' contactless chemical analysis of droplets. Rapid mixing is of fundamental importance in lab-on-a-drop platforms and many other applications involving droplet manipulation. Small droplets, however, have low Reynolds numbers; thus, mixing via turbulence is not possible. Inducing surface oscillation is effective in this regard, however, the relationship between internal flow and mixing dynamics of droplets remains unclear. In this study, we conducted a set of simultaneous optical measurements to assess both the flow field and the distribution of fluid components within acoustically levitated droplets. To achieve this, we developed a technique to selectively separate fluorescent particles within each fluid, permitting the measurement of the concentration field based on the data from the discrete particle distribution. This approach revealed a relationship between the mixing process and the internal flow caused by surface oscillation. Thus, the internal flow induced by surface oscillation could enhance droplet mixing. Our findings will be conducive to the application and further development of lab-on-a-drop devices.
Collapse
Affiliation(s)
- Kota Honda
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Kota Fujiwara
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Koji Hasegawa
- Department of Mechanical Engineering, Kogakuin University, Tokyo, 163-8677, Japan
| | - Akiko Kaneko
- Institute of Systems and Information Engineering, University of Tsukuba, Tsukuba, 305-8573, Japan.
| | - Yutaka Abe
- Professor Emeritus, University of Tsukuba, Tsukuba, 305-8573, Japan
| |
Collapse
|
8
|
Goel S, Pillai DS. Reduced-Order Model for Surfactant-Laden Electrified Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15177-15188. [PMID: 37852302 DOI: 10.1021/acs.langmuir.3c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A comprehensive understanding of the physics of electrowetting of a surfactant-laden droplet is important for applications in rapid healthcare diagnostics. A majority of biological samples examined during point-of-care (POC) diagnostics are biofluids with dissolved surfactants, such as the respiratory droplets containing protein (mucin) and surfactant molecules like dipalmitoylphosphatidylcholine. The presence of these surfactant molecules is anticipated to have a significant impact on the performance of electrowetting-based POC diagnostic devices. A reduced-order model is developed using the weighted residual integral boundary layer theory for the electrowetting of a surfactant-laden sessile droplet in a parallel plate electrode configuration. Thin film evolution equations are obtained for the fluid-fluid interface, the surfactant concentration, the depth-integrated flow rate, and the interfacial charge density. We show that the presence of surfactants opposes and decreases the strength of the electrohydrodynamic flow due to Marangoni stress-driven convection. The droplet then responds to an AC field with a suppressed amplitude of oscillation and the same mean deformation as that under DC forcing. Thus, low-frequency AC forcing with a suitable surfactant can plausibly be employed as a viable alternative to more energy-intensive high-frequency AC forcing.
Collapse
Affiliation(s)
- Shreyank Goel
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Dipin S Pillai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
9
|
Platt JA, Penny SG, Smith TA, Chen TC, Abarbanel HDI. Constraining chaos: Enforcing dynamical invariants in the training of reservoir computers. CHAOS (WOODBURY, N.Y.) 2023; 33:103107. [PMID: 37788385 DOI: 10.1063/5.0156999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 10/05/2023]
Abstract
Drawing on ergodic theory, we introduce a novel training method for machine learning based forecasting methods for chaotic dynamical systems. The training enforces dynamical invariants-such as the Lyapunov exponent spectrum and the fractal dimension-in the systems of interest, enabling longer and more stable forecasts when operating with limited data. The technique is demonstrated in detail using reservoir computing, a specific kind of recurrent neural network. Results are given for the Lorenz 1996 chaotic dynamical system and a spectral quasi-geostrophic model of the atmosphere, both typical test cases for numerical weather prediction.
Collapse
Affiliation(s)
- Jason A Platt
- Department of Physics, University of California San Diego, San Diego, California 92093, USA
| | - Stephen G Penny
- Sofar Ocean, 28 Pier Annex, San Francisco, California 94105, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Timothy A Smith
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, USA
- Physical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, USA
| | - Tse-Chun Chen
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, USA
| | - Henry D I Abarbanel
- Department of Physics, University of California San Diego, San Diego, California 92093, USA
- Marine Physical Laboratory, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Goel S, Pillai DS. Electrokinetic Thin-Film Model for Electrowetting: The Role of Bulk Charges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13076-13089. [PMID: 37656921 DOI: 10.1021/acs.langmuir.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The electrowetting behavior of a charge-carrying sessile droplet is relevant to applications such as point-of-care diagnostics. Often biomedical assays involve droplets that contain charged molecules such as dissolved ions, proteins, and DNA. In this work, we develop a reduced-order electrokinetic model for electrowetting of such a charge-carrying droplet under a parallel-plate electrode configuration. An inertial-lubrication model based on the weighted residual integral boundary layer (WRIBL) technique is used to obtain evolution equations that describe the spatiotemporal evolution of the fluid-air interface and the depth-integrated flow rate. The solutions to the evolution equations are obtained numerically by using the spectral collocation method. We investigate the role of domain and surface charges, characterized by the Debye length, on droplet wetting. Under low relaxation timescales, both droplet deformation and wetting alteration under an AC field are shown to be equivalent to that under a root-mean-square (RMS) DC field. We show that an electrolytic sessile droplet can exhibit a larger deformation in comparison to the two asymptotic limits of a perfect conductor and a perfect dielectric droplet, corresponding, respectively, to very low and high Debye lengths. The effects of several other parameters such as the inherent equilibrium wettability, permittivity ratio, and electric field strength are also investigated.
Collapse
Affiliation(s)
- Shreyank Goel
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Dipin S Pillai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
11
|
Stehnach MR, Henshaw RJ, Floge SA, Guasto JS. Multiplexed microfluidic screening of bacterial chemotaxis. eLife 2023; 12:e85348. [PMID: 37486823 PMCID: PMC10365836 DOI: 10.7554/elife.85348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/15/2023] [Indexed: 07/26/2023] Open
Abstract
Microorganism sensing of and responding to ambient chemical gradients regulates a myriad of microbial processes that are fundamental to ecosystem function and human health and disease. The development of efficient, high-throughput screening tools for microbial chemotaxis is essential to disentangling the roles of diverse chemical compounds and concentrations that control cell nutrient uptake, chemorepulsion from toxins, and microbial pathogenesis. Here, we present a novel microfluidic multiplexed chemotaxis device (MCD) which uses serial dilution to simultaneously perform six parallel bacterial chemotaxis assays that span five orders of magnitude in chemostimulant concentration on a single chip. We first validated the dilution and gradient generation performance of the MCD, and then compared the measured chemotactic response of an established bacterial chemotaxis system (Vibrio alginolyticus) to a standard microfluidic assay. Next, the MCD's versatility was assessed by quantifying the chemotactic responses of different bacteria (Psuedoalteromonas haloplanktis, Escherichia coli) to different chemoattractants and chemorepellents. The MCD vastly accelerates the chemotactic screening process, which is critical to deciphering the complex sea of chemical stimuli underlying microbial responses.
Collapse
Affiliation(s)
- Michael R Stehnach
- Department of Mechanical Engineering, Tufts University, Medford, United States
| | - Richard J Henshaw
- Department of Mechanical Engineering, Tufts University, Medford, United States
| | - Sheri A Floge
- Department of Biology, Wake Forest University, Winston-Salem, United States
| | - Jeffrey S Guasto
- Department of Mechanical Engineering, Tufts University, Medford, United States
| |
Collapse
|
12
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
13
|
Continuous, green, and room-temperature synthesis of silver nanowires in a helically-coiled millifluidic reactor. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Gupta D, Nyande BW, Thomas KM, Li F, Mak AT, Lakerveld R. Induced-Charge Electroosmosis for Rapid Mixing of Reactive Precipitation Systems to Obtain Small and Uniform Particles. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Pre-equilibrium biosensors as an approach towards rapid and continuous molecular measurements. Nat Commun 2022; 13:7072. [PMID: 36400792 PMCID: PMC9674706 DOI: 10.1038/s41467-022-34778-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 11/07/2022] [Indexed: 11/20/2022] Open
Abstract
Almost all biosensors that use ligand-receptor binding operate under equilibrium conditions. However, at low ligand concentrations, the equilibration with the receptor (e.g., antibodies and aptamers) becomes slow and thus equilibrium-based biosensors are inherently limited in making measurements that are both rapid and sensitive. In this work, we provide a theoretical foundation for a method through which biosensors can quantitatively measure ligand concentration before reaching equilibrium. Rather than only measuring receptor binding at a single time-point, the pre-equilibrium approach leverages the receptor's kinetic response to instantaneously quantify the changing ligand concentration. Importantly, by analyzing the biosensor output in frequency domain, rather than in the time domain, we show the degree to which noise in the biosensor affects the accuracy of the pre-equilibrium approach. Through this analysis, we provide the conditions under which the signal-to-noise ratio of the biosensor can be maximized for a given target concentration range and rate of change. As a model, we apply our theoretical analysis to continuous insulin measurement and show that with a properly selected antibody, the pre-equilibrium approach could make the continuous tracking of physiological insulin fluctuations possible.
Collapse
|
16
|
Brito MSCA, Matos J, Torres MVL, Fonte CP, Dias MM, Lopes JCB, Santos RJ. Rheokinematics for Product Development – Formulation Screening in Rotational Rheometers. AIChE J 2022. [DOI: 10.1002/aic.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Margarida S. C. A. Brito
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE‐LCM), Universidade do Porto, Faculdade de Engenharia Porto Portugal
| | - Joana Matos
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE‐LCM), Universidade do Porto, Faculdade de Engenharia Porto Portugal
| | - Marina V. L. Torres
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE‐LCM), Universidade do Porto, Faculdade de Engenharia Porto Portugal
| | - Claudio P. Fonte
- Department of Chemical Engineering & Analytical Science The University of Manchester Manchester UK
| | - Madalena M. Dias
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE‐LCM), Universidade do Porto, Faculdade de Engenharia Porto Portugal
| | - José Carlos B. Lopes
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE‐LCM), Universidade do Porto, Faculdade de Engenharia Porto Portugal
- CoLAB NET4CO2 UPTEC Asprela II, Rua Júlio de Matos Porto Portugal
| | - Ricardo J. Santos
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE‐LCM), Universidade do Porto, Faculdade de Engenharia Porto Portugal
| |
Collapse
|
17
|
Christov IC. Soft hydraulics: from Newtonian to complex fluid flows through compliant conduits. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:063001. [PMID: 34678790 DOI: 10.1088/1361-648x/ac327d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic devices manufactured from soft polymeric materials have emerged as a paradigm for cheap, disposable and easy-to-prototype fluidic platforms for integrating chemical and biological assays and analyses. The interplay between the flow forces and the inherently compliant conduits of such microfluidic devices requires careful consideration. While mechanical compliance was initially a side-effect of the manufacturing process and materials used, compliance has now become a paradigm, enabling new approaches to microrheological measurements, new modalities of micromixing, and improved sieving of micro- and nano-particles, to name a few applications. This topical review provides an introduction to the physics of these systems. Specifically, the goal of this review is to summarize the recent progress towards a mechanistic understanding of the interaction between non-Newtonian (complex) fluid flows and their deformable confining boundaries. In this context, key experimental results and relevant applications are also explored, hand-in-hand with the fundamental principles for their physics-based modeling. The key topics covered include shear-dependent viscosity of non-Newtonian fluids, hydrodynamic pressure gradients during flow, the elastic response (deformation and bulging) of soft conduits due to flow within, the effect of cross-sectional conduit geometry on the resulting fluid-structure interaction, and key dimensionless groups describing the coupled physics. Open problems and future directions in this nascent field of soft hydraulics, at the intersection of non-Newtonian fluid mechanics, soft matter physics, and microfluidics, are noted.
Collapse
Affiliation(s)
- Ivan C Christov
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
18
|
Berry J, Peaudecerf FJ, Masters NA, Neeves KB, Goldstein RE, Harper MT. An "occlusive thrombosis-on-a-chip" microfluidic device for investigating the effect of anti-thrombotic drugs. LAB ON A CHIP 2021; 21:4104-4117. [PMID: 34523623 PMCID: PMC8547327 DOI: 10.1039/d1lc00347j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 05/03/2023]
Abstract
Cardiovascular disease remains one of the world's leading causes of death. Myocardial infarction (heart attack) is triggered by occlusion of coronary arteries by platelet-rich thrombi (clots). The development of new anti-platelet drugs to prevent myocardial infarction continues to be an active area of research and is dependent on accurately modelling the process of clot formation. Occlusive thrombi can be generated in vivo in a range of species, but these models are limited by variability and lack of relevance to human disease. Although in vitro models using human blood can overcome species-specific differences and improve translatability, many models do not generate occlusive thrombi. In those models that do achieve occlusion, time to occlusion is difficult to measure in an unbiased and objective manner. In this study we developed a simple and robust approach to determine occlusion time of a novel in vitro microfluidic assay. This highlighted the potential for occlusion to occur in thrombosis microfluidic devices through off-site coagulation, obscuring the effect of anti-platelet drugs. We therefore designed a novel occlusive thrombosis-on-a-chip microfluidic device that reliably generates occlusive thrombi at arterial shear rates by quenching downstream coagulation. We further validated our device and methods by using the approved anti-platelet drug, eptifibatide, recording a significant difference in the "time to occlude" in treated devices compared to control conditions. These results demonstrate that this device can be used to monitor the effect of antithrombotic drugs on time to occlude, and, for the first time, delivers this essential data in an unbiased and objective manner.
Collapse
Affiliation(s)
- Jess Berry
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - François J Peaudecerf
- Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicole A Masters
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Keith B Neeves
- Department of Bioengineering, Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, Hemophilia and Thrombosis Center, University of Colorado Denver|Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
19
|
Antognoli M, Stoecklein D, Galletti C, Brunazzi E, Di Carlo D. Optimized design of obstacle sequences for microfluidic mixing in an inertial regime. LAB ON A CHIP 2021; 21:3910-3923. [PMID: 34636817 DOI: 10.1039/d1lc00483b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mixing is a basic but challenging step to achieve in high throughput microfluidic applications such as organic synthesis or production of particles. A common approach to improve micromixer performance is to devise a single component that enhances mixing through optimal convection, and then sequence multiple such units back-to-back to enhance overall mixing at the end of the sequence. However, the mixing units are often optimized only for the initial non-mixed fluid composition, which is no longer the input condition for each subsequent unit. Thus, there is no guarantee that simply repeating a single mixing unit will achieve optimally mixed fluid flow at the end of the sequence. In this work, we analyzed sequences of 20 cylindrical obstacles, or pillars, to optimize the mixing in the inertial regime (where mixing is more difficult due to higher Péclet number) by managing their interdependent convection operations on the composition of the fluid. Exploiting a software for microfluidic design optimization called FlowSculpt, we predicted and optimized the interfacial stretching of two co-flowing fluids, neglecting diffusive effects. We were able to quickly design three different optimal pillar sequences through a space of 3220 possible combinations of pillars. As proof of concept, we tested the new passive mixer designs using confocal microscopy and full 3D CFD simulations for high Péclet numbers (Pe ≈ O(105-6)), observing fluid flow shape and mixing index at several cross-sections, reaching mixing efficiencies around 80%. Furthermore, we investigated the effect of the inter-pillar spacing on the most optimal design, quantifying the tradeoff between mixing performance and hydraulic resistance. These micromixer designs and the framework for the design in inertial regimes can be used for various applications, such as lipid nanoparticle fabrication which has been of great importance in vaccine scale up during the pandemic.
Collapse
Affiliation(s)
- Matteo Antognoli
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, Pisa 56122, Italy
| | - Daniel Stoecklein
- Department of Mechanical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, 47803, USA
| | - Chiara Galletti
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, Pisa 56122, Italy
| | - Elisabetta Brunazzi
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, Pisa 56122, Italy
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA, 90055, USA.
| |
Collapse
|
20
|
Liao Y, Mechulam Y, Lassalle-Kaiser B. A millisecond passive micromixer with low flow rate, low sample consumption and easy fabrication. Sci Rep 2021; 11:20119. [PMID: 34635693 PMCID: PMC8505571 DOI: 10.1038/s41598-021-99471-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Fast mixing of small volumes of solutions in microfluidic devices is essential for an accurate control and observation of the dynamics of a reaction in biological or chemical studies. It is often, however, a challenging task, as the Reynolds number (Re) in microscopic devices is typically < 100. In this report, we detail a novel mixer based on the “staggered herring bone” (SHB) pattern and “split-recombination” strategies with an optimized geometry, the periodic rotation of the flow structure can be controlled and recombined in a way that the vortices and phase shifts of the flow induce intertwined lamellar structures, thus increasing the contact surface and enhancing mixing. The optimization improves the mixing while using a low flow rate, hence a small volume for mixing and moderate pressure drops. The performances of the patterns were first simulated using COMSOL Multiphysics under different operating conditions. The simulation indicates that at very low flow rate (1–12 µL·min−1) and Re (3.3–40), as well as a very small working volume (~ 3 nL), a very good mixing (~ 98%) can be achieved in the ms time range (4.5–78 ms). The most promising design was then visualized experimentally, showing results that are consistent with the outcomes of the simulations. Importantly, the devices were fabricated using a classical soft-lithography method, as opposed to additive manufacturing often used to generate complex mixing structures. This new device minimizes the sample consumption and could therefore be applied for studies using precious samples.
Collapse
Affiliation(s)
- Yuanyuan Liao
- Synchrotron SOLEIL, l'Orme des Merisiers, 91192, Gif-sur-Yvette, France. .,IamFluidics BV, High Tech Factory, De Veldmaat 17, 7522 NM, Enschede, The Netherlands.
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau Cedex, France
| | | |
Collapse
|
21
|
Chiesa E, Greco A, Riva F, Dorati R, Conti B, Modena T, Genta I. Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics 2021; 13:1565. [PMID: 34683858 PMCID: PMC8539066 DOI: 10.3390/pharmaceutics13101565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Hyaluronic acid-based nanoparticles (HA NPs) can be used to deliver a protein cargo to cells overexpressing HA receptors such as CD44 since they combine the low toxicity of the carrier and the retention of the protein integrity with the receptor-mediated internalization. HA properties play a crucial but sometimes unclear role in managing the formation and stability of the meshwork, cell interactions, and ultimately the protein entrapment efficacy. Nowadays, microfluidic is an innovative technology that allows to overcome limits linked to the NPs production, guaranteeing reproducibility and control of individual batches. Taking advantage of this technique, in this research work, the role of HA weight average molecular weight (Mw) in NPs formation inside a microfluidic device has been specifically faced. Based on the relationship between polymer Mw and solution viscosity, a methodological approach has been proposed to ensure critical quality attributes (size of 200 nm, PDI ≤ 0.3) to NPs made by HA with different Mw (280, 540, 710 and 820 kDa). The feasibility of the protein encapsulation was demonstrated by using Myoglobin, as a model neutral protein, with an encapsulation efficiency always higher than 50%. Lastly, all NPs samples were successfully internalized by CD44-expressing cells.
Collapse
Affiliation(s)
- Enrica Chiesa
- Department of Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Antonietta Greco
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, 27100 Pavia, Italy;
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (A.G.); (R.D.); (B.C.); (T.M.)
| |
Collapse
|
22
|
Peyravian N, Malekzadeh Kebria M, Kiani J, Brouki Milan P, Mozafari M. CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3164. [PMID: 34207502 PMCID: PMC8226447 DOI: 10.3390/ma14123164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Identifying new and even more precise technologies for modifying and manipulating selectively specific genes has provided a powerful tool for characterizing gene functions in basic research and potential therapeutics for genome regulation. The rapid development of nuclease-based techniques such as CRISPR/Cas systems has revolutionized new genome engineering and medicine possibilities. Additionally, the appropriate delivery procedures regarding CRISPR/Cas systems are critical, and a large number of previous reviews have focused on the CRISPR/Cas9-12 and 13 delivery methods. Still, despite all efforts, the in vivo delivery of the CAS gene systems remains challenging. The transfection of CRISPR components can often be inefficient when applying conventional delivery tools including viral elements and chemical vectors because of the restricted packaging size and incompetency of some cell types. Therefore, physical methods such as microfluidic systems are more applicable for in vitro delivery. This review focuses on the recent advancements of microfluidic systems to deliver CRISPR/Cas systems in clinical and therapy investigations.
Collapse
Affiliation(s)
- Noshad Peyravian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maziar Malekzadeh Kebria
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran; (N.P.); (M.M.K.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
23
|
Yim E, Bouillant A, Gallaire F. Buoyancy-driven convection of droplets on hot nonwetting surfaces. Phys Rev E 2021; 103:053105. [PMID: 34134341 DOI: 10.1103/physreve.103.053105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/03/2021] [Indexed: 11/07/2022]
Abstract
The global linear stability of a water drop on hot nonwetting surfaces is studied. The droplet is assumed to have a static shape and the surface tension gradient is neglected. First, the nonlinear steady Boussinesq equation is solved to obtain the axisymmetric toroidal base flow. Then, the linear stability analysis is conducted for different contact angles β=110^{∘} (hydrophobic) and β=160^{∘} (superhydrophobic) which correspond to the experimental study of Dash et al. [Phys. Rev. E 90, 062407 (2014)PLEEE81539-375510.1103/PhysRevE.90.062407]. The droplet with β=110^{∘} is stable while the one with β=160^{∘} is unstable to the azimuthal wave number m=1 mode. This suggests that the experimental observation for a droplet with β=110^{∘} corresponds to the steady toroidal base flow, while for β=160^{∘}, the m=1 instability promotes the rigid body rotation motion. A marginal stability analysis for different β shows that a 3-μL water droplet is unstable to the m=1 mode when the contact angle β is larger than 130^{∘}. A marginal stability analysis for different volumes is also conducted for the two contact angles β=110^{∘} and 160^{∘}. The droplet with β=110^{∘} becomes unstable when the volume is larger than 3.5μL while the one with β=160^{∘} is always unstable to m=1 mode for the considered volume range (2-5μL). In contrast to classical buoyancy driven (Rayleigh-Bénard) problems whose instability is controlled independently by the geometrical aspect ratio and the Rayleigh number, in this problem, these parameters are all linked together with the volume and contact angles.
Collapse
Affiliation(s)
- E Yim
- LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - A Bouillant
- LadHyX, École polytechnique, 91128 Palaiseau, France.,PMMH, PSL-ESPCI, CNRS-UMR 7636, 75005 Paris, France
| | - F Gallaire
- LFMI, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Verburg T, Schaap A, Zhang S, den Toonder J, Wang Y. Enhancement of microalgae growth using magnetic artificial cilia. Biotechnol Bioeng 2021; 118:2472-2481. [PMID: 33738795 PMCID: PMC8251745 DOI: 10.1002/bit.27756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Microalgae have shown great potential as a source of biofuels, food, and other bioproducts. More recently, microfluidic devices have been employed in microalgae-related studies. However, at small fluid volumes, the options for controlling flow conditions are more limited and mixing becomes largely reliant on diffusion. In this study, we fabricated magnetic artificial cilia (MAC) and implemented them in millimeter scale culture wells and conducted growth experiments with Scenedesmus subspicatus while actuating the MAC in a rotating magnetic field to create flow and mixing. In addition, surface of MAC was made hydrophilic using plasma treatment and its effect on growth was compared with untreated, hydrophobic MAC. The experiments showed that the growth was enhanced by ten and two times with hydrophobic and hydrophilic MAC, respectively, compared with control groups which contain no MAC. This technique can be used to investigate mixing and flow in small sample volumes, and the enhancement in growth can be beneficial for the throughput of screening studies. Moreover, the methods used for creating and controlling MAC can be easily adopted in labs without microfabrication infrastructures, and they can be mastered by people with little prior experience in microfluidics.
Collapse
Affiliation(s)
- Thijn Verburg
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Shuaizhong Zhang
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jaap den Toonder
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ye Wang
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
25
|
Nyande BW, Mathew Thomas K, Lakerveld R. CFD Analysis of a Kenics Static Mixer with a Low Pressure Drop under Laminar Flow Conditions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Baggie W. Nyande
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kiran Mathew Thomas
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
26
|
James M, Revia RA, Stephen Z, Zhang M. Microfluidic Synthesis of Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2113. [PMID: 33114204 PMCID: PMC7690813 DOI: 10.3390/nano10112113] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
Abstract
Research efforts into the production and application of iron oxide nanoparticles (IONPs) in recent decades have shown IONPs to be promising for a range of biomedical applications. Many synthesis techniques have been developed to produce high-quality IONPs that are safe for in vivo environments while also being able to perform useful biological functions. Among them, coprecipitation is the most commonly used method but has several limitations such as polydisperse IONPs, long synthesis times, and batch-to-batch variations. Recent efforts at addressing these limitations have led to the development of microfluidic devices that can make IONPs of much-improved quality. Here, we review recent advances in the development of microfluidic devices for the synthesis of IONPs by coprecipitation. We discuss the main architectures used in microfluidic device design and highlight the most prominent manufacturing methods and materials used to construct these microfluidic devices. Finally, we discuss the benefits that microfluidics can offer to the coprecipitation synthesis process including the ability to better control various synthesis parameters and produce IONPs with high production rates.
Collapse
Affiliation(s)
- Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
| | - Zachary Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98105, USA; (M.J.); (R.A.R.); (Z.S.)
- Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
27
|
Gidde RR. On effects of shape, aspect ratio and position of obstacle on the mixing enhancement in micromixer with hexagonal-shaped chambers. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe micromixer geometry presented consists of T-type micromixer with premixing chamber, hexagonal shaped chambers and obstacles. In order to observe influences of obstacle shape, aspect ratio and position, simulations are carried out for two types of obstacle shapes viz. rectangular and triangular for the Reynold number in the range from 0.1 to 75. Flow and mixing dynamics are studied to investigate the effect of geometric modifications for identifying the mixing mechanisms. The effect of obstacle shape, aspect ratio and position is investigated using the performance characteristics viz. mixing index and pressure drop quantitatively. Both the micromixers demonstrate different mixing mechanisms, including transverse flow, vortices and chaotic advection due to split and recombination action. The mixing performance is diffusion dominated below Re < 5 and it is advection dominated beyond Re > 5. At Re ≥ 20, the mixing index observed is 0.80 in all the micromixer design configurations.
Collapse
Affiliation(s)
- Ranjitsinha R. Gidde
- SVERI’s College of Engineering, Pandharpur413304, Maharashtra, India
- SVERI’s College of Engineering, Pandharpur413304, Maharashtra, India
| |
Collapse
|
28
|
Trefry MG, Lester DR, Metcalfe G, Wu J. Lagrangian Complexity Persists with Multimodal Flow Forcing in Compressible Porous Systems. Transp Porous Media 2020. [DOI: 10.1007/s11242-020-01487-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Numerical analysis on droplet mixing induced by microwave heating: Decoupling of influencing physical properties. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Residence time distribution of passive scalars in magnetic nanofluid Poiseuille flow under uniform rotating magnetic fields. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Hegde O, Kabi P, Basu S. Enhancement of mixing in a viscous, non-volatile droplet using a contact-free vapor-mediated interaction. Phys Chem Chem Phys 2020; 22:14570-14578. [PMID: 32596709 DOI: 10.1039/d0cp01004a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mixing at small fluidic length scales is especially challenging in viscous and non-volatile droplets frequently encountered in bio-chemical assays. In situ methods of mixing, which depend on diffusion or evaporation-driven capillary flow, are typically slow and inefficient, while thermal or electro-capillary methods that are either complicated to implement or may cause sample denaturing. This article demonstrates an enhanced mixing timescale in a sessile droplet of glycerol by simply introducing a droplet of ethanol in its near vicinity. The fast evaporation of ethanol introduces molecules in the proximity of the glycerol droplet, which are preferentially adsorbed (more on the side closer to ethanol) creating a gradient of surface tension driving the Marangoni convection in the droplet. We conclusively show that for the given volume of the droplet, the mixing time reduces by ∼10 hours due to the vapour-mediated Marangoni convection. Simple scaling arguments are used to predict the enhancement of the mixing timescale. Experimental evidence obtained from fluorescence imaging is used to quantify mixing and validate the analytical results. This is the first proof of concept of enhanced mixing in a viscous, sessile droplet using the vapour mediation technique.
Collapse
Affiliation(s)
- Omkar Hegde
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Prasenjit Kabi
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore-560012, India
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
32
|
Shen J, Shafiq M, Ma M, Chen H. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1177. [PMID: 32560284 PMCID: PMC7353232 DOI: 10.3390/nano10061177] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
The controlled synthesis and surface engineering of inorganic nanomaterials hold great promise for the design of functional nanoparticles for a variety of applications, such as drug delivery, bioimaging, biosensing, and catalysis. However, owing to the inadequate and unstable mass/heat transfer, conventional bulk synthesis methods often result in the poor uniformity of nanoparticles, in terms of microstructure, morphology, and physicochemical properties. Microfluidic technologies with advantageous features, such as precise fluid control and rapid microscale mixing, have gathered the widespread attention of the research community for the fabrication and engineering of nanomaterials, which effectively overcome the aforementioned shortcomings of conventional bench methods. This review summarizes the latest research progress in the microfluidic fabrication of different types of inorganic nanomaterials, including silica, metal, metal oxides, metal organic frameworks, and quantum dots. In addition, the surface modification strategies of nonporous and porous inorganic nanoparticles based on microfluidic method are also introduced. We also provide the readers with an insight on the red blocks and prospects of microfluidic approaches, for designing the next generation of inorganic nanomaterials.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Shafiq
- Department of Chemistry, Pakistan Institute of Engineering & Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan;
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; (J.S.); (H.C.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Jongen MSA, MacArthur BD, Englyst NA, West J. Single platelet variability governs population sensitivity and initiates intrinsic heterotypic responses. Commun Biol 2020; 3:281. [PMID: 32499608 PMCID: PMC7272428 DOI: 10.1038/s42003-020-1002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Investigations into the nature of platelet functional variety and consequences for homeostasis require new methods for resolving single platelet phenotypes. Here we combine droplet microfluidics with flow cytometry for high throughput single platelet function analysis. A large-scale sensitivity continuum was shown to be a general feature of human platelets from individual donors, with hypersensitive platelets coordinating significant sensitivity gains in bulk platelet populations and shown to direct aggregation in droplet-confined minimal platelet systems. Sensitivity gains scaled with agonist potency (convulxin > TRAP-14>ADP) and reduced the collagen and thrombin activation threshold required for platelet population polarization into pro-aggregatory and pro-coagulant states. The heterotypic platelet response results from an intrinsic behavioural program. The method and findings invite future discoveries into the nature of hypersensitive platelets and how community effects produce population level responses in health and disease. Maaike S. A. Jongen et al. combine droplet microfluidics with flow cytometry to resolve single platelet responses to agonists. They demonstrate that hyperactive platelets enhance the platelet population response by paracrine signaling as a function of agonist potency and heterotypic responses result from an intrinsic behavioural program.
Collapse
Affiliation(s)
- Maaike S A Jongen
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ben D MacArthur
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Nicola A Englyst
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jonathan West
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK. .,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
34
|
Dincau B, Dressaire E, Sauret A. Pulsatile Flow in Microfluidic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904032. [PMID: 31657131 DOI: 10.1002/smll.201904032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
This review describes the current knowledge and applications of pulsatile flow in microfluidic systems. Elements of fluid dynamics at low Reynolds number are first described in the context of pulsatile flow. Then the practical applications in microfluidic processes are presented: the methods to generate a pulsatile flow, the generation of emulsion droplets through harmonic flow rate perturbation, the applications in mixing and particle separation, and the benefits of pulsatile flow for clog mitigation. The second part of the review is devoted to pulsatile flow in biological applications. Pulsatile flows can be used for mimicking physiological systems, to alter or enhance cell cultures, and for bioassay automation. Pulsatile flows offer unique advantages over a steady flow, especially in microfluidic systems, but also require some new physical insights and more rigorous investigation to fully benefit future applications.
Collapse
Affiliation(s)
- Brian Dincau
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Emilie Dressaire
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
35
|
Lukashkin AN, Sadreev II, Zakharova N, Russell IJ, Yarin YM. Local Drug Delivery to the Entire Cochlea without Breaching Its Boundaries. iScience 2020; 23:100945. [PMID: 32151971 PMCID: PMC7063177 DOI: 10.1016/j.isci.2020.100945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian cochlea is one of the least accessible organs for drug delivery. Systemic administration of many drugs is severely limited by the blood-labyrinth barrier. Local intratympanic administration into the middle ear would be a preferable option in this case, and the only option for many newly emerging classes of drugs, but it leads to the formation of drug concentration gradients along the extensive, narrow cochlea. The gradients are orders of magnitude and well outside the therapeutic windows. Here we present an efficient, quick, and simple method of cochlear pumping, through large-amplitude, low-frequency reciprocal oscillations of the stapes and round window, which can consistently and uniformly deliver drugs along the entire length of the intact cochlea within minutes without disrupting the cochlear boundaries. The method should facilitate novel ways of approaching the treatment of inner ear disorders because it overcomes the challenge of delivering therapeutics along the entire cochlear length. Systemic delivery of drugs to the inner ear is limited by the blood-labyrinth barrier Middle ear administration results in pronounced drug gradients along the cochlea Cochlear pumping distributes drugs evenly along the entire cochlea within minutes
Collapse
Affiliation(s)
- Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK; Centre for Regenerative Medicine and Devices, University of Brighton, Brighton BN2 4GJ, UK.
| | - Ildar I Sadreev
- Faculty of Medicine, Department of Medicine, Imperial College, London SW7 2AZ, UK
| | | | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | | |
Collapse
|
36
|
Abstract
An electronic tongue (e-tongue) is a multisensory system usually applied to complex liquid media that uses computational/statistical tools to group information generated by sensing units into recognition patterns, which allow the identification/distinction of samples. Different types of e-tongues have been previously reported, including microfluidic devices. In this context, the integration of passive mixers inside microchannels is of great interest for the study of suppression/enhancement of sensorial/chemical effects in the pharmaceutical, food, and beverage industries. In this study, we present developments using a stereolithography technique to fabricate microfluidic devices using 3D-printed molds for elastomers exploring the staggered herringbone passive mixer geometry. The fabricated devices (microchannels plus mixer) are then integrated into an e-tongue system composed of four sensing units assembled on a single printed circuit board (PCB). Gold-plated electrodes are designed as an integral part of the PCB electronic circuitry for a highly automated platform by enabling faster analysis and increasing the potential for future use in commercial applications. Following previous work, the e-tongue sensing units are built functionalizing gold electrodes with layer-by-layer (LbL) films. Our results show that the system is capable of (i) covering basic tastes below the human gustative perception and (ii) distinguishing different suppression effects coming from the mixture of both strong and weak electrolytes. This setup allows for triplicate measurements in 12 electrodes, which represents four complete sensing units, by automatically switching all electrodes without any physical interaction with the sensor. The result is a fast and reliable data acquisition system, which comprises a suitable solution for monitoring, sequential measurements, and database formation, being less susceptible to human errors.
Collapse
|
37
|
Ling FWM, Khleif AA, Abdulbari HA. Investigating the effect of micro-riblets on the flow and micro-mixing behavior in micro-channel. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1715959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fiona W. M. Ling
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Ali A. Khleif
- Department of Production Engineering and Metallurgy, University of Technology-IRAQ, Baghdad, Iraq
| | - Hayder A. Abdulbari
- Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| |
Collapse
|
38
|
Camarri S, Mariotti A, Galletti C, Brunazzi E, Mauri R, Salvetti MV. An Overview of Flow Features and Mixing in Micro T and Arrow Mixers. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b04922] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Camarri
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, 56122 Pisa, Italy
| | - Alessandro Mariotti
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, 56122 Pisa, Italy
| | - Chiara Galletti
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, 56122 Pisa, Italy
| | - Elisabetta Brunazzi
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, 56122 Pisa, Italy
| | - Roberto Mauri
- Dipartimento di Ingegneria Civile e Industriale, University of Pisa, 56122 Pisa, Italy
| | | |
Collapse
|
39
|
Tallapragada P, Sudarsanam S. Chaotic advection and mixing by a pair of microrotors in a circular domain. Phys Rev E 2019; 100:062207. [PMID: 31962448 DOI: 10.1103/physreve.100.062207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
In this work we study chaotic mixing induced by point microrotors in a bounded two-dimensional Stokes flow. The dynamics of the pair of rotors, modeled as rotlets, are non-Hamiltonian in the bounded domain and produce chaotic advection of fluid tracers in subsets of the domain. A complete parametric investigation of the fluid mixing as a function of the initial locations of the rotlets is performed based on pseudophase portraits. The mixing of fluid tracers as a function of relative positions of microrotors is studied using finite-time entropy and locational entropy. The finite-time locational entropy is used to identify regions of the fluid that produce good versus poor mixing, and this is visualized by the stretching and folding of blobs of tracer particles. Unlike the case of the classic blinking vortex dynamics, the velocity field of the flow modeled using rotlets inside a circular boundary is smooth in time and satisfies the no-slip boundary condition. This makes the considered model a more realistic case for studies of mixing in microfluidic devices using magnetic-actuated microspheres.
Collapse
Affiliation(s)
- Phanindra Tallapragada
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | - Senbagaraman Sudarsanam
- Department of Mechanical Engineering, Mahindra École Centrale, Hyderabad, Telangana 500043, India
| |
Collapse
|
40
|
Fallahi H, Zhang J, Phan HP, Nguyen NT. Flexible Microfluidics: Fundamentals, Recent Developments, and Applications. MICROMACHINES 2019; 10:E830. [PMID: 31795397 PMCID: PMC6953028 DOI: 10.3390/mi10120830] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
Miniaturization has been the driving force of scientific and technological advances over recent decades. Recently, flexibility has gained significant interest, particularly in miniaturization approaches for biomedical devices, wearable sensing technologies, and drug delivery. Flexible microfluidics is an emerging area that impacts upon a range of research areas including chemistry, electronics, biology, and medicine. Various materials with flexibility and stretchability have been used in flexible microfluidics. Flexible microchannels allow for strong fluid-structure interactions. Thus, they behave in a different way from rigid microchannels with fluid passing through them. This unique behaviour introduces new characteristics that can be deployed in microfluidic applications and functions such as valving, pumping, mixing, and separation. To date, a specialised review of flexible microfluidics that considers both the fundamentals and applications is missing in the literature. This review aims to provide a comprehensive summary including: (i) Materials used for fabrication of flexible microfluidics, (ii) basics and roles of flexibility on microfluidic functions, (iii) applications of flexible microfluidics in wearable electronics and biology, and (iv) future perspectives of flexible microfluidics. The review provides researchers and engineers with an extensive and updated understanding of the principles and applications of flexible microfluidics.
Collapse
Affiliation(s)
| | | | | | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.F.); (J.Z.); (H.-P.P.)
| |
Collapse
|
41
|
Richard C, McGee R, Goenka A, Mukherjee P, Bhargava R. On-demand Milifluidic Synthesis of Quantum Dots in Digital Droplet Reactors. Ind Eng Chem Res 2019; 59:3730-3735. [PMID: 33911342 DOI: 10.1021/acs.iecr.9b04230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colloidal quantum dots (QDs) offer dramatic potential due to their size-dependent optical properties. Lack of facile synthesis methods for precise and reproducible size and composition, however, present an extant barrier to their widespread use. Here we report the use of droplet microfluidics for the simple and highly reproducible synthesis of cadmium sulfide (CdS) and cadmium selenide (CdSe) QDs without the use of harsh solvents and in ambient conditions. Our approach uses a liquid-liquid barrier between two immiscible liquids to generate a digital droplet reactor. This reaction droplet is easily controlled and manipulated and offers enhanced mixing when coupled to a helical mixer, resulting in a significant reduction in size distribution compared to benchtop procedures. Furthermore, QD characteristics have modeled and predicted based on the parameters of the microfluidic device. We believe this method overcomes the current manufacturing challenges with synthesizing nanostructures, which is required for the next generation of nanosensors.
Collapse
Affiliation(s)
- Craig Richard
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rachel McGee
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Aditya Goenka
- Department of Chemical Engineering, Indian Institute Technology, Kharagpur, India
| | - Prabuddha Mukherjee
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Departments of Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Mechanical Science and Engineering and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Cancer Center at Illinois
| |
Collapse
|
42
|
|
43
|
Shanko ES, van de Burgt Y, Anderson PD, den Toonder JMJ. Microfluidic Magnetic Mixing at Low Reynolds Numbers and in Stagnant Fluids. MICROMACHINES 2019; 10:E731. [PMID: 31671753 PMCID: PMC6915455 DOI: 10.3390/mi10110731] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Microfluidic mixing becomes a necessity when thorough sample homogenization is required in small volumes of fluid, such as in lab-on-a-chip devices. For example, efficient mixing is extraordinarily challenging in capillary-filling microfluidic devices and in microchambers with stagnant fluids. To address this issue, specifically designed geometrical features can enhance the effect of diffusion and provide efficient mixing by inducing chaotic fluid flow. This scheme is known as "passive" mixing. In addition, when rapid and global mixing is essential, "active" mixing can be applied by exploiting an external source. In particular, magnetic mixing (where a magnetic field acts to stimulate mixing) shows great potential for high mixing efficiency. This method generally involves magnetic beads and external (or integrated) magnets for the creation of chaotic motion in the device. However, there is still plenty of room for exploiting the potential of magnetic beads for mixing applications. Therefore, this review article focuses on the advantages of magnetic bead mixing along with recommendations on improving mixing in low Reynolds number flows (Re ≤ 1) and in stagnant fluids.
Collapse
Affiliation(s)
- Eriola-Sophia Shanko
- Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Yoeri van de Burgt
- Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Patrick D Anderson
- Department of Mechanical Engineering, Polymer Technology Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Microsystems Research Section, and Institute for Complex Molecular Systems (ICMS), Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
44
|
Wirth V, Volkmar J, Bayer T. Synthesis of the Antibiotic Precursor Thiazolyl‐7‐Aminocephalosporanic Acid in a Microstructured Flow System. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vanessa Wirth
- Provadis School of International Management and Technology Department of Chemical Engineering Rudolph-Amthauer-Strasse 65926 Frankfurt am Main Germany
| | - Julia Volkmar
- Provadis School of International Management and Technology Department of Chemical Engineering Rudolph-Amthauer-Strasse 65926 Frankfurt am Main Germany
| | - Thomas Bayer
- Provadis School of International Management and Technology Department of Chemical Engineering Rudolph-Amthauer-Strasse 65926 Frankfurt am Main Germany
| |
Collapse
|
45
|
Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J Liposome Res 2019; 30:336-365. [DOI: 10.1080/08982104.2019.1668010] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - P. Sunthar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
46
|
Investigation of slip effects on electroosmotic mixing in heterogeneous microchannels based on entropy index. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
47
|
Meng H, Deng S, You Y, Chan HF. The role of microfluidics in protein formulations with pre-programmed functional characteristics. Biologics 2018; 12:191-197. [PMID: 30584273 PMCID: PMC6284529 DOI: 10.2147/btt.s126725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein-based therapies hold great promise for treating many diseases. Nevertheless, the challenges of producing therapies with targeted attributes via standardized processes may hinder the development of protein formulations and clinical translation of the advanced therapies. Microfluidics represents a promising technology to develop protein formulations with pre-programmed functional characteristics, including size, morphology, and controlled drug release property. In this review, we discuss some examples of adopting microfluidics for fabricating particle- and fiber/tube-based formulations and highlight the advantages of microfluidics-assisted fabrication.
Collapse
Affiliation(s)
- Hu Meng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China, .,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China,
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China, .,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China,
| | - Yajing You
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China, .,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China,
| |
Collapse
|
48
|
Svejdal RR, Dickinson ER, Sticker D, Kutter JP, Rand KD. Thiol-ene Microfluidic Chip for Performing Hydrogen/Deuterium Exchange of Proteins at Subsecond Time Scales. Anal Chem 2018; 91:1309-1317. [DOI: 10.1021/acs.analchem.8b03050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rasmus R. Svejdal
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Eleanor R. Dickinson
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Drago Sticker
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
- Microscale Analytical Systems Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jörg P. Kutter
- Microscale Analytical Systems Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kasper D. Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
49
|
Karan P, Chakraborty J, Chakraborty S. Electrokinetics over hydrophobic surfaces. Electrophoresis 2018; 40:616-624. [DOI: 10.1002/elps.201800352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Pratyaksh Karan
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; Kharagpur India
| | - Jeevanjyoti Chakraborty
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; Kharagpur India
| | - Suman Chakraborty
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; Kharagpur India
| |
Collapse
|
50
|
Sultan MA, Pardilhó SL, Brito MSCA, Fonte CP, Dias MM, Lopes JCB, Santos RJ. 3D Mixing Dynamics in T-Jet Mixers. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Ashar Sultan
- Universidade do Porto; Laboratory of Separation and Reaction Engineering; Associate Laboratory LSRE-LCM; Department of Chemical Engineering, Faculdade de Engenharia; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Sara L. Pardilhó
- Universidade do Porto; Laboratory of Separation and Reaction Engineering; Associate Laboratory LSRE-LCM; Department of Chemical Engineering, Faculdade de Engenharia; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Margarida S. C. A. Brito
- Universidade do Porto; Laboratory of Separation and Reaction Engineering; Associate Laboratory LSRE-LCM; Department of Chemical Engineering, Faculdade de Engenharia; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Cláudio P. Fonte
- The University of Manchester; School of Chemical Engineering and Analytical Science; Oxford Road M13 9PL Manchester UK
| | - Madalena M. Dias
- Universidade do Porto; Laboratory of Separation and Reaction Engineering; Associate Laboratory LSRE-LCM; Department of Chemical Engineering, Faculdade de Engenharia; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - José C. B. Lopes
- Universidade do Porto; Laboratory of Separation and Reaction Engineering; Associate Laboratory LSRE-LCM; Department of Chemical Engineering, Faculdade de Engenharia; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Ricardo J. Santos
- Universidade do Porto; Laboratory of Separation and Reaction Engineering; Associate Laboratory LSRE-LCM; Department of Chemical Engineering, Faculdade de Engenharia; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| |
Collapse
|