1
|
David V, Galtier S, Meyrand R. Monofractality in the Solar Wind at Electron Scales: Insights from Kinetic Alfvén Waves Turbulence. PHYSICAL REVIEW LETTERS 2024; 132:085201. [PMID: 38457708 DOI: 10.1103/physrevlett.132.085201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 03/10/2024]
Abstract
The breakdown of scale invariance in turbulent flows, known as multifractal scaling, is considered a cornerstone of turbulence. In solar wind turbulence, a monofractal behavior can be observed at electron scales, in contrast to larger scales where multifractality always prevails. Why scale invariance appears at electron scales is a challenging theoretical puzzle with important implications for understanding solar wind heating and acceleration. We investigate this long-standing problem using direct numerical simulations of three-dimensional electron reduced magnetohydrodynamics. Both weak and strong kinetic Alfvén waves turbulence regimes are studied in the balanced case. After recovering the expected theoretical predictions for the magnetic spectra, a higher-order multiscale statistical analysis is performed. This study reveals a striking difference between the two regimes, with the emergence of monofractality only in weak turbulence, whereas strong turbulence is multifractal. This result, combined with recent studies, shows the relevance of collisionless weak KAW turbulence to describe the solar wind at electron scales.
Collapse
Affiliation(s)
- Vincent David
- Laboratoire de Physique des Plasmas, École polytechnique, F-91128 Palaiseau Cedex, France
- Université Paris-Saclay, IPP, CNRS, Observatoire Paris-Meudon, France
| | - Sébastien Galtier
- Laboratoire de Physique des Plasmas, École polytechnique, F-91128 Palaiseau Cedex, France
- Université Paris-Saclay, IPP, CNRS, Observatoire Paris-Meudon, France
| | - Romain Meyrand
- Department of Physics, University of Otago, 730 Cumberland Street, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Tomassetti N, Bertucci B, Donnini F, Graziani M, Fiandrini E, Khiali B, Reina Conde A. Data driven analysis of cosmic rays in the heliosphere: diffusion of cosmic protons. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-023-01149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractUnderstanding the time-dependent relationship between the Sun’s variability and cosmic rays (GCR) is essential for developing predictive models of energetic radiation in space. When traveling inside the heliosphere, GCRs are affected by magnetic turbulence and solar wind disturbances which result in the so-called solar modulation effect. To investigate this phenomenon, we have performed a data-driven analysis of the temporal dependence of the GCR flux over the solar cycle. With a global statistical inference of GCR data collected in space by AMS-02 and PAMELA on monthly basis, we have determined the rigidity and time dependence of the GCR diffusion mean free path. Here we present our results for GCR protons, we discuss their interpretation in terms of basic processes of particle transport and their relations with the dynamics of the heliospheric plasma.
Collapse
|
3
|
Dong C, Wang L, Huang YM, Comisso L, Sandstrom TA, Bhattacharjee A. Reconnection-driven energy cascade in magnetohydrodynamic turbulence. SCIENCE ADVANCES 2022; 8:eabn7627. [PMID: 36475799 PMCID: PMC9728964 DOI: 10.1126/sciadv.abn7627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Magnetohydrodynamic turbulence regulates the transfer of energy from large to small scales in many astrophysical systems, including the solar atmosphere. We perform three-dimensional magnetohydrodynamic simulations with unprecedentedly large magnetic Reynolds number to reveal how rapid reconnection of magnetic field lines changes the classical paradigm of the turbulent energy cascade. By breaking elongated current sheets into chains of small magnetic flux ropes (or plasmoids), magnetic reconnection leads to a previously undiscovered range of energy cascade, where the rate of energy transfer is controlled by the growth rate of the plasmoids. As a consequence, the turbulent energy spectra steepen and attain a spectral index of -2.2 that is accompanied by changes in the anisotropy of turbulence eddies. The omnipresence of plasmoids and their consequences on, for example, solar coronal heating, can be further explored with current and future spacecraft and telescopes.
Collapse
Affiliation(s)
- Chuanfei Dong
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540, USA
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
| | - Liang Wang
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540, USA
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
| | - Yi-Min Huang
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540, USA
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
| | - Luca Comisso
- Department of Astronomy and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
| | | | - Amitava Bhattacharjee
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540, USA
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Parashar TN, Matthaeus WH. Observations of cross scale energy transfer in the inner heliosphere by Parker Solar Probe. REVIEWS OF MODERN PLASMA PHYSICS 2022; 6:41. [PMID: 36437822 PMCID: PMC9684259 DOI: 10.1007/s41614-022-00097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
The solar wind, a continuous flow of plasma from the sun, not only shapes the near Earth space environment but also serves as a natural laboratory to study plasma turbulence in conditions that are not achievable in the lab. Starting with the Mariners, for more than five decades, multiple space missions have enabled in-depth studies of solar wind turbulence. Parker Solar Probe (PSP) was launched to explore the origins and evolution of the solar wind. With its state-of-the-art instrumentation and unprecedented close approaches to the sun, PSP is starting a new era of inner heliospheric exploration. In this review we discuss observations of turbulent energy flow across scales in the inner heliosphere as observed by PSP. After providing a quick theoretical overview and a quick recap of turbulence before PSP, we discuss in detail the observations of energy at various scales on its journey from the largest scales to the internal degrees of freedom of the plasma. We conclude with some open ended questions, many of which we hope that PSP will help answer.
Collapse
Affiliation(s)
- Tulasi N. Parashar
- School of Chemical and Physical Sciences, Victoria University of Wellington, Gate 7, Kelburn Parade, Kelburn, Wellington, 6012 New Zealand
- Department of Physics and Astronomy, University of Delaware, Sharp Laboratory, Newark, Delaware 19711 USA
| | - William H. Matthaeus
- Department of Physics and Astronomy, University of Delaware, Sharp Laboratory, Newark, Delaware 19711 USA
| |
Collapse
|
5
|
Contrasting Scaling Properties of Near-Sun Sub-Alfvénic and Super-Alfvénic Regions. UNIVERSE 2022. [DOI: 10.3390/universe8070338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Scale-invariance has rapidly established itself as one of the most used concepts in space plasmas to uncover underlying physical mechanisms via the scaling-law behavior of the statistical properties of field fluctuations. In this work, we characterize the scaling properties of the magnetic field fluctuations in a sub-alfvénic region in contrast with those of the nearby super-alfvénic zone during the ninth Parker Solar Probe perihelion. With our observations, (i) evidence of an extended self-similarity (ESS) for both the inertial and the sub-ion/kinetic regimes during both solar wind intervals is provided, (ii) a multifractal nature of field fluctuations is observed across inertial scales for both solar wind intervals, and (iii) a mono-fractal structure of the small-scale dynamics is reported. The main novelty is that a universal character is found at the sub-ion/kinetic scale, where a unique rescaling exponent describes the high-order statistics of fluctuations during both wind intervals. Conversely, a multitude of scaling symmetries is observed at the inertial scale with a similar fractal topology and geometrical structures between the magnetic field components in the ecliptic plane and perpendicular to it, in contrast with a different level of intermittency, more pronounced during the super-alfvénic interval rather than the sub-alfvénic one, along the perpendicular direction to the ecliptic plane. The above features are interpreted in terms of the possible underlying heating and/or acceleration mechanisms in the solar corona resulting from turbulence and current sheet formation.
Collapse
|
6
|
Bacchini F, Pucci F, Malara F, Lapenta G. Kinetic Heating by Alfvén Waves in Magnetic Shears. PHYSICAL REVIEW LETTERS 2022; 128:025101. [PMID: 35089767 DOI: 10.1103/physrevlett.128.025101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
With first-principles kinetic simulations, we show that a large-scale Alfvén wave (AW) propagating in an inhomogeneous background decays into kinetic Alfvén waves (KAWs), triggering ion and electron energization. We demonstrate that the two species can access unequal amounts of the initial AW energy, experiencing differential heating. During the decay process, the electric field carried by KAWs produces non-Maxwellian features in the particle velocity distribution functions, in accordance with space observations. The process we present solely requires the interaction of a large-scale AW with a magnetic shear and may be relevant for several astrophysical and laboratory plasmas.
Collapse
Affiliation(s)
- Fabio Bacchini
- Centre for mathematical Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
| | - Francesco Pucci
- Istituto per la Scienza e Tecnologia dei Plasmi, Consiglio Nazionale delle Ricerche (ISTP-CNR), Via Amendola 122/D, 70126 Bari, Italy and Centre for mathematical Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
| | - Francesco Malara
- Dipartimento di Fisica, Università della Calabria, 87036 Rende (CS), Italy
| | - Giovanni Lapenta
- Centre for mathematical Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
Verscharen D, Wicks RT, Alexandrova O, Bruno R, Burgess D, Chen CHK, D’Amicis R, De Keyser J, de Wit TD, Franci L, He J, Henri P, Kasahara S, Khotyaintsev Y, Klein KG, Lavraud B, Maruca BA, Maksimovic M, Plaschke F, Poedts S, Reynolds CS, Roberts O, Sahraoui F, Saito S, Salem CS, Saur J, Servidio S, Stawarz JE, Štverák Š, Told D. A Case for Electron-Astrophysics. EXPERIMENTAL ASTRONOMY 2021; 54:473-519. [PMID: 36915623 PMCID: PMC9998602 DOI: 10.1007/s10686-021-09761-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/07/2021] [Indexed: 06/18/2023]
Abstract
The smallest characteristic scales, at which electron dynamics determines the plasma behaviour, are the next frontier in space and astrophysical plasma research. The analysis of astrophysical processes at these scales lies at the heart of the research theme of electron-astrophysics. Electron scales are the ultimate bottleneck for dissipation of plasma turbulence, which is a fundamental process not understood in the electron-kinetic regime. In addition, plasma electrons often play an important role for the spatial transfer of thermal energy due to the high heat flux associated with their velocity distribution. The regulation of this electron heat flux is likewise not understood. By focussing on these and other fundamental electron processes, the research theme of electron-astrophysics links outstanding science questions of great importance to the fields of space physics, astrophysics, and laboratory plasma physics. In this White Paper, submitted to ESA in response to the Voyage 2050 call, we review a selection of these outstanding questions, discuss their importance, and present a roadmap for answering them through novel space-mission concepts.
Collapse
Affiliation(s)
- Daniel Verscharen
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Space Science Center, University of New Hampshire, Durham, NH USA
| | - Robert T. Wicks
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
| | - Olga Alexandrova
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | - Roberto Bruno
- Instituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
| | - David Burgess
- School of Physics and Astronomy, Queen Mary University of London, London, UK
| | | | | | - Johan De Keyser
- Royal Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - Thierry Dudok de Wit
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
| | - Luca Franci
- School of Physics and Astronomy, Queen Mary University of London, London, UK
- Osservatorio Astrofisico di Arcetri, INAF, Firenze, Italy
| | - Jiansen He
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Pierre Henri
- Laboratoire de Physique et Chimie de l’Environment et de l’Espace, CNRS, University of Orléans and CNES, Orléans, France
- CNRS, UCA, OCA, Lagrange, Nice, France
| | - Satoshi Kasahara
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | | | - Kristopher G. Klein
- Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, Tucson, AZ USA
| | - Benoit Lavraud
- Laboratoire d’astrophysique de Bordeaux, Université de Bordeaux, CNRS, Pessac, France
- Institut de Recherche en Astrophysique et Planétologie, CNRS, UPS, CNES, Université de Toulouse, Toulouse, France
| | - Bennett A. Maruca
- Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE USA
| | - Milan Maksimovic
- Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-Meudon, Paris, France
| | | | - Stefaan Poedts
- Centre for Mathematical Plasma Astrophysics, KU Leuven, Leuven, Belgium
- Institute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland
| | | | - Owen Roberts
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Fouad Sahraoui
- Laboratoire de Physique des Plasmas, CNRS, École Polytechnique, Sorbonne Université, Observatoire de Paris-Meudon, Paris Saclay, Palaiseau, France
| | - Shinji Saito
- Space Environment Laboratory, National Institute of Information and Communications Technology, Tokyo, Japan
| | - Chadi S. Salem
- Space Sciences Laboratory, University of California, Berkeley, CA USA
| | - Joachim Saur
- Institut für Geophysik und Meteorologie, University of Cologne, Cologne, Germany
| | - Sergio Servidio
- Department of Physics, Università della Calabria, Rende, Italy
| | | | - Štěpán Štverák
- Astronomical Institute and Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Told
- Max Planck Institute for Plasma Physics, Garching, Germany
| |
Collapse
|
8
|
Alexandrova O, Jagarlamudi VK, Hellinger P, Maksimovic M, Shprits Y, Mangeney A. Spectrum of kinetic plasma turbulence at 0.3-0.9 astronomical units from the Sun. Phys Rev E 2021; 103:063202. [PMID: 34271660 DOI: 10.1103/physreve.103.063202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
We investigate spectral properties of turbulence in the solar wind that is a weakly collisional astrophysical plasma, accessible to in situ observations. Using the Helios search coil magnetometer measurements in the fast solar wind, in the inner heliosphere, we focus on properties of the turbulent magnetic fluctuations at scales smaller than the ion characteristic scales, the so-called kinetic plasma turbulence. At such small scales, we show that magnetic power spectra between 0.3 and 0.9 AU from the Sun have a generic shape ∼f^{-8/3}exp(-f/f_{d}), where the dissipation frequency f_{d} is correlated with the Doppler shifted frequency f_{ρe} of the electron Larmor radius. This behavior is statistically significant: all the observed kinetic spectra are well described by this model, with f_{d}=f_{ρe}/1.8. Our results indicate that the electron gyroradius plays the role of the dissipation scale and marks the end of the electromagnetic cascade in the solar wind.
Collapse
Affiliation(s)
- Olga Alexandrova
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, F-92195 Meudon, France
| | - Vamsee Krishna Jagarlamudi
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, F-92195 Meudon, France.,LPC2E, CNRS, University of Orléans, 3 Avenue de la Recherche Scientifique, F-45071 Orleans Cedex 2, France.,Institute for Space Astrophysics and Planetology, National Institute for Astrophysics, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Petr Hellinger
- Astronomical Institute, CAS, Bocni II/1401, CZ-14100 Prague, Czech Republic.,Institute of Atmospheric Physics, CAS, Bocni II/1401, CZ-14100 Prague, Czech Republic
| | - Milan Maksimovic
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, F-92195 Meudon, France
| | - Yuri Shprits
- GFZ German Research Centre for Geosciences, University of Potsdam, D-14469 Potsdam, Germany
| | - Andre Mangeney
- LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, F-92195 Meudon, France
| |
Collapse
|
9
|
Rigon G, Albertazzi B, Pikuz T, Mabey P, Bouffetier V, Ozaki N, Vinci T, Barbato F, Falize E, Inubushi Y, Kamimura N, Katagiri K, Makarov S, Manuel MJE, Miyanishi K, Pikuz S, Poujade O, Sueda K, Togashi T, Umeda Y, Yabashi M, Yabuuchi T, Gregori G, Kodama R, Casner A, Koenig M. Micron-scale phenomena observed in a turbulent laser-produced plasma. Nat Commun 2021; 12:2679. [PMID: 33976145 PMCID: PMC8113596 DOI: 10.1038/s41467-021-22891-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/29/2021] [Indexed: 11/09/2022] Open
Abstract
Turbulence is ubiquitous in the universe and in fluid dynamics. It influences a wide range of high energy density systems, from inertial confinement fusion to astrophysical-object evolution. Understanding this phenomenon is crucial, however, due to limitations in experimental and numerical methods in plasma systems, a complete description of the turbulent spectrum is still lacking. Here, we present the measurement of a turbulent spectrum down to micron scale in a laser-plasma experiment. We use an experimental platform, which couples a high power optical laser, an x-ray free-electron laser and a lithium fluoride crystal, to study the dynamics of a plasma flow with micrometric resolution (~1μm) over a large field of view (>1 mm2). After the evolution of a Rayleigh–Taylor unstable system, we obtain spectra, which are overall consistent with existing turbulent theory, but present unexpected features. This work paves the way towards a better understanding of numerous systems, as it allows the direct comparison of experimental results, theory and numerical simulations. Turbulence effects explored use macroscale systems in general. Here the authors generate a turbulent plasma using laser irradiation of a solid target and study the dynamics of the plasma flow at the micron-scale by using scattering of an XFEL beam.
Collapse
Affiliation(s)
- G Rigon
- LULI, CNRS, CEA, École Polytechnique, UPMC, Univ Paris 06: Sorbonne Universités, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France.
| | - B Albertazzi
- LULI, CNRS, CEA, École Polytechnique, UPMC, Univ Paris 06: Sorbonne Universités, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - T Pikuz
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Osaka, Japan.,Joint Institute for High Temperatures RAS, Moscow, Russia
| | - P Mabey
- LULI, CNRS, CEA, École Polytechnique, UPMC, Univ Paris 06: Sorbonne Universités, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - V Bouffetier
- Université de Bordeaux-CNRS-CEA, CELIA, UMR 5107, Talence, France
| | - N Ozaki
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan
| | - T Vinci
- LULI, CNRS, CEA, École Polytechnique, UPMC, Univ Paris 06: Sorbonne Universités, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - F Barbato
- Université de Bordeaux-CNRS-CEA, CELIA, UMR 5107, Talence, France
| | | | - Y Inubushi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - N Kamimura
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - K Katagiri
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - S Makarov
- Joint Institute for High Temperatures RAS, Moscow, Russia.,Department of Physics of accelerators and radiation medicine, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - M J-E Manuel
- General Atomics, Inertial Fusion Technologies, San Diego, CA, USA
| | | | - S Pikuz
- Joint Institute for High Temperatures RAS, Moscow, Russia.,National Research Nuclear University 'MEPhi', Moscow, Russia
| | - O Poujade
- CEA-DAM, DIF, Arpajon, France.,Université Paris-Saclay, CEA, LMCE, Bruyères-le-Châtel, France
| | - K Sueda
- RIKEN SPring-8 Center, Hyogo, Japan
| | - T Togashi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - Y Umeda
- Graduate School of Engineering, Osaka University, Osaka, Japan.,Institute for Planetary Materials, Okayama University, Tottori, Japan
| | - M Yabashi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - T Yabuuchi
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan.,RIKEN SPring-8 Center, Hyogo, Japan
| | - G Gregori
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - R Kodama
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - A Casner
- Université de Bordeaux-CNRS-CEA, CELIA, UMR 5107, Talence, France.,CEA-CESTA, 15 avenue des Sablières, CS 60001, 33116 Le Barp Cedex, France
| | - M Koenig
- LULI, CNRS, CEA, École Polytechnique, UPMC, Univ Paris 06: Sorbonne Universités, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France.,Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Ruhunusiri S, Howes GG, Halekas JS. Plasma Turbulence at Comet 67P/Churyumov-Gerasimenko: Rosetta Observations. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2020; 125:e2020JA028100. [PMID: 34381663 PMCID: PMC8350962 DOI: 10.1029/2020ja028100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/18/2020] [Indexed: 06/13/2023]
Abstract
We perform a power spectral analysis of magnetic field fluctuations measured by the Rosetta spacecraft's magnetometer at comet 67P/Churyumov-Gerasimenko. We interpret the power spectral signatures in terms of plasma turbulent processes and discover that different turbulent processes are prominent during different active phases of the comet. During the weakly active phase of the comet, dominant injection is prominent at low frequencies near 10-2 Hz, while partial energy cascade or dispersion is prominent at high frequencies near 10-1 Hz. During the intermediately active phase, uniform injection is prominent at low frequencies, while partial energy cascade or dispersion is prominent at high frequencies. During the strongly active phase of the comet, we find that partial energy cascade or dissipation is dominant at low frequencies, while partial energy cascade, dissipation, or dispersion is dominant at high frequencies. We infer that the temporal variations of the turbulent processes occur due to the evolution of the plasma environment of the comet as it orbits the Sun.
Collapse
Affiliation(s)
- S. Ruhunusiri
- Department of Physics and Astronomy, The University of Iowa, Iowa City, IA, USA
| | - G. G. Howes
- Department of Physics and Astronomy, The University of Iowa, Iowa City, IA, USA
| | - J. S. Halekas
- Department of Physics and Astronomy, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Bowen TA, Mallet A, Bale SD, Bonnell JW, Case AW, Chandran BDG, Chasapis A, Chen CHK, Duan D, Dudok de Wit T, Goetz K, Halekas JS, Harvey PR, Kasper JC, Korreck KE, Larson D, Livi R, MacDowall RJ, Malaspina DM, McManus MD, Pulupa M, Stevens M, Whittlesey P. Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. PHYSICAL REVIEW LETTERS 2020; 125:025102. [PMID: 32701332 DOI: 10.1103/physrevlett.125.025102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U., with a power-law index of around -4. Based on our measurements, we demonstrate that either a significant (>50%) fraction of the total turbulent energy flux is dissipated in this range of scales, or the characteristic nonlinear interaction time of the turbulence decreases dramatically from the expectation based solely on the dispersive nature of nonlinearly interacting kinetic Alfvén waves.
Collapse
Affiliation(s)
- Trevor A Bowen
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| | - Alfred Mallet
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| | - Stuart D Bale
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
- Physics Department, University of California, Berkeley, California 94720-7300, USA
- The Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - J W Bonnell
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| | - Anthony W Case
- Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138, USA
| | - Benjamin D G Chandran
- Department of Physics and Astronomy, University of New Hampshire, Durham, New Hampshire 03824, USA
- Space Science Center, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Alexandros Chasapis
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - Christopher H K Chen
- School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Die Duan
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
- School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Thierry Dudok de Wit
- LPC2E, CNRS and University of Orléans, 3 Avenue de la Recherche Scientifique, 45071 Orléans, France
| | - Keith Goetz
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jasper S Halekas
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Peter R Harvey
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| | - J C Kasper
- Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138, USA
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kelly E Korreck
- Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138, USA
| | - Davin Larson
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| | - Roberto Livi
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| | - Robert J MacDowall
- Solar System Exploration Division, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - David M Malaspina
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
- Astrophysical and Planetary Sciences Department, University of Colorado, Boulder, Colorado, USA
| | - Michael D McManus
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
- Physics Department, University of California, Berkeley, California 94720-7300, USA
| | - Marc Pulupa
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| | - Michael Stevens
- Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138, USA
| | - Phyllis Whittlesey
- Space Sciences Laboratory, University of California, Berkeley, California 94720-7450, USA
| |
Collapse
|
12
|
|
13
|
Verscharen D, Klein KG, Maruca BA. The multi-scale nature of the solar wind. LIVING REVIEWS IN SOLAR PHYSICS 2019; 16:5. [PMID: 31929769 PMCID: PMC6934245 DOI: 10.1007/s41116-019-0021-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 11/09/2019] [Indexed: 05/29/2023]
Abstract
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free paths of all species, their inertial lengths, their gyration radii, and their Debye lengths. The characteristic timescales include the expansion time, the collision times, and the periods associated with gyration, waves, and oscillations. We review the past and present research into the multi-scale nature of the solar wind based on in-situ spacecraft measurements and plasma theory. We emphasize that couplings of processes across scales are important for the global dynamics and thermodynamics of the solar wind. We describe methods to measure in-situ properties of particles and fields. We then discuss the role of expansion effects, non-equilibrium distribution functions, collisions, waves, turbulence, and kinetic microinstabilities for the multi-scale plasma evolution.
Collapse
Affiliation(s)
- Daniel Verscharen
- Mullard Space Science Laboratory, University College London, Dorking, RH5 6NT UK
- Space Science Center, University of New Hampshire, Durham, NH 03824 USA
| | - Kristopher G. Klein
- Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719 USA
| | - Bennett A. Maruca
- Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
14
|
${k}_{\perp }^{-8/3}$ Spectrum in Kinetic Alfvén Wave Turbulence: Implications for the Solar Wind. ACTA ACUST UNITED AC 2019. [DOI: 10.3847/2041-8213/ab2fe6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Multifractal and Chaotic Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach. ENTROPY 2019; 21:e21030320. [PMID: 33267034 PMCID: PMC7514803 DOI: 10.3390/e21030320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/04/2022]
Abstract
Turbulence, intermittency, and self-organized structures in space plasmas can be investigated by using a multifractal formalism mostly based on the canonical structure function analysis with fixed constraints about stationarity, linearity, and scales. Here, the Empirical Mode Decomposition (EMD) method is firstly used to investigate timescale fluctuations of the solar wind magnetic field components; then, by exploiting the local properties of fluctuations, the structure function analysis is used to gain insights into the scaling properties of both inertial and kinetic/dissipative ranges. Results show that while the inertial range dynamics can be described in a multifractal framework, characterizing an unstable fixed point of the system, the kinetic/dissipative range dynamics is well described by using a monofractal approach, because it is a stable fixed point of the system, unless it has a higher degree of complexity and chaos.
Collapse
|
16
|
Zhdankin V, Uzdensky DA, Werner GR, Begelman MC. Electron and Ion Energization in Relativistic Plasma Turbulence. PHYSICAL REVIEW LETTERS 2019; 122:055101. [PMID: 30822031 DOI: 10.1103/physrevlett.122.055101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Electron and ion energization (i.e., heating and nonthermal acceleration) is a fundamental, but poorly understood, outcome of plasma turbulence. In this work, we present new results on this topic from particle-in-cell simulations of driven turbulence in collisionless, relativistic electron-ion plasma. We focus on temperatures such that ions (protons) are subrelativistic and electrons are ultrarelativistic, a regime relevant for high-energy astrophysical systems such as hot accretion flows onto black holes. We find that ions tend to be preferentially heated, gaining up to an order of magnitude more energy than electrons, and propose a simple empirical formula to describe the electron-ion energy partition as a function of the ratio of electron-to-ion gyroradii (which in turn is a function of initial temperatures and plasma beta). We also find that while efficient nonthermal particle acceleration occurs for both species in the ultrarelativistic regime, nonthermal electron populations are diminished with decreasing temperature whereas nonthermal ion populations are essentially unchanged. These results have implications for modeling and interpreting observations of hot accretion flows.
Collapse
Affiliation(s)
- Vladimir Zhdankin
- Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, New Jersey 08544, USA
- JILA, University of Colorado and NIST, 440 UCB, Boulder, Colorado 80309, USA
| | - Dmitri A Uzdensky
- Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Gregory R Werner
- Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, Colorado 80309, USA
| | - Mitchell C Begelman
- JILA, University of Colorado and NIST, 440 UCB, Boulder, Colorado 80309, USA
- Department of Astrophysical and Planetary Sciences, 391 UCB, Boulder, Colorado 80309, USA
| |
Collapse
|
17
|
MacNeice P, Jian L, Antiochos S, Arge C, Bussy-Virat C, DeRosa M, Jackson B, Linker J, Mikic Z, Owens M, Ridley A, Riley P, Savani N, Sokolov I. Assessing the Quality of Models of the Ambient Solar Wind. SPACE WEATHER : THE INTERNATIONAL JOURNAL OF RESEARCH & APPLICATIONS 2018; 16:1644-1667. [PMID: 32021590 PMCID: PMC6999746 DOI: 10.1029/2018sw002040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
In this paper we present an assessment of the status of models of the global Solar Wind in the inner heliosphere. We limit our discussion to the class of models designed to provide solar wind forecasts, excluding those designed for the purpose of testing physical processes in idealized configurations. In addition, we limit our discussion to modeling of the 'ambient' wind in the absence of coronal mass ejections. In this assessment we cover use of the models both in forecast mode and as tools for scientific research. We present a brief history of the development of these models, discussing the range of physical approximations in use. We discuss the limitations of the data inputs available to these models and its impact on their quality. We also discuss current model development trends.
Collapse
Affiliation(s)
- P. MacNeice
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - L.K. Jian
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - S.K. Antiochos
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - C.N. Arge
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - C.D. Bussy-Virat
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - M.L. DeRosa
- Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, California, USA
| | - B.V. Jackson
- Center for Astrophysics and Space Sciences, University of California San Diego, La Jolla, California, USA
| | - J.A. Linker
- Predictive Science Inc., San Diego, California, USA
| | - Z. Mikic
- Predictive Science Inc., San Diego, California, USA
| | - M.J. Owens
- Department of Meteorology, University of Reading, Earley Gate, Reading, UK
| | - A.J. Ridley
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - P. Riley
- Predictive Science Inc., San Diego, California, USA
| | - N. Savani
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- GPHI, University of Maryland, Baltimore County, MD, USA
| | - I. Sokolov
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Grošelj D, Mallet A, Loureiro NF, Jenko F. Fully Kinetic Simulation of 3D Kinetic Alfvén Turbulence. PHYSICAL REVIEW LETTERS 2018; 120:105101. [PMID: 29570310 DOI: 10.1103/physrevlett.120.105101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Indexed: 06/08/2023]
Abstract
We present results from a three-dimensional particle-in-cell simulation of plasma turbulence, resembling the plasma conditions found at kinetic scales of the solar wind. The spectral properties of the turbulence in the subion range are consistent with theoretical expectations for kinetic Alfvén waves. Furthermore, we calculate the local anisotropy, defined by the relation k_{∥}(k_{⊥}), where k_{∥} is a characteristic wave number along the local mean magnetic field at perpendicular scale l_{⊥}∼1/k_{⊥}. The subion range anisotropy is scale dependent with k_{∥}<k_{⊥} and the ratio of linear to nonlinear time scales is of order unity, suggesting that the kinetic cascade is close to a state of critical balance. Our results compare favorably against a number of in situ solar wind observations and demonstrate-from first principles-the feasibility of plasma turbulence models based on a critically balanced cascade of kinetic Alfvén waves.
Collapse
Affiliation(s)
- Daniel Grošelj
- Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
| | - Alfred Mallet
- Space Science Center, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Nuno F Loureiro
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Frank Jenko
- Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching, Germany
| |
Collapse
|
19
|
Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4357/aa93e5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Stawarz JE, Pouquet A. Small-scale behavior of Hall magnetohydrodynamic turbulence. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063102. [PMID: 26764833 DOI: 10.1103/physreve.92.063102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 06/05/2023]
Abstract
Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.
Collapse
Affiliation(s)
- Julia E Stawarz
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309, USA and Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - Annick Pouquet
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| |
Collapse
|