1
|
Palukaitis P, Murphy AM. Tobamoviruses: Molecular Aspects and Resistance Regulation-A Special Issue Commemorating 125 Years of Research on Tobamoviruses. Viruses 2025; 17:296. [PMID: 40143227 PMCID: PMC11945331 DOI: 10.3390/v17030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
This Special Issue of Viruses was commissioned in 2023 to celebrate 125 years of research on Tobamoviruses [...].
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alex M. Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
2
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
3
|
Wang X, Bai Y, Shen Z, Zhang X, Cai C, Qiao C, Jiang C, Cheng L, Liu D, Yang A. Genome-wide analysis of tobacco NtTOM1/TOM3 gene family and identification of NtTOM1a/ NtTOM3a response to tobacco mosaic virus. BMC PLANT BIOLOGY 2024; 24:942. [PMID: 39385089 PMCID: PMC11465672 DOI: 10.1186/s12870-024-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND TOBAMOVIRUS MULTIPLICATION 1 (TOM1) and its homolog TOBAMOVIRUS MULTIPLICATION 3 (TOM3) play a prominent role in the multiplication of tobacco mosaic virus (TMV) in higher plants. Although homologs of NtTOM1/TOM3 genes have been identified in several plant species, little is known about the characteristics and functions of NtTOM1/TOM3 at the genome-wide level in tobacco (Nicotiana tabacum L.). RESULTS In this study, we performed genome-wide identification and expression pattern analysis of the tobacco NtTOM1/TOM3 gene family. Twelve NtTOM1/TOM3 genes were identified and classified into four groups based on phylogenetic analysis. Sequence and conserved domain analyses showed that all these genes contained a specific DUF1084 domain. Expression pattern analysis showed that NtTOM1a, NtTOM1b, NtTOM1d, NtTOM3a, NtTOM3b, and NtTOM3d were induced by TMV at 1-, 3-, and 9 dpi, whereas the expression of other genes was not responsive to TMV at the early infection stage. TMV virion accumulation showed no obvious difference in either nttom1a or nttom3a mutants compared with the wild type. However, the virus propagation was significantly, but not completely, inhibited in the nttom1atom3a double mutant, indicating that other gene family members may function redundantly, such as NtTOM1b and NtTOM1d. In addition, overexpression of NtTOM1a or NtTOM3a also inhibited the TMV replication to some extent. CONCLUSIONS The present study performed genome-wide analysis of the NtTOM1/TOM3 gene family in tobacco, and identified NtTOM1a and NtTOM3a as important genes involved in TMV multiplication based on functional analysis. These results provide a theoretical basis for further improving TMV resistance in tobacco.
Collapse
Affiliation(s)
- Xuebo Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Tobacco Science Research Institute of Guangdong Province, Shaoguan, 512029, Guangdong, China
| | - Yalin Bai
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhan Shen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xinyao Zhang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, 410007, China
| | - Changchun Cai
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Chan Qiao
- Tobacco Research Institute of Mudanjiang, Harbin, 150076, China
| | - Caihong Jiang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lirui Cheng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
4
|
To Be Seen or Not to Be Seen: Latent Infection by Tobamoviruses. PLANTS 2022; 11:plants11162166. [PMID: 36015469 PMCID: PMC9415976 DOI: 10.3390/plants11162166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Tobamoviruses are among the most well-studied plant viruses and yet there is still a lot to uncover about them. On one side of the spectrum, there are damage-causing members of this genus: such as the tobacco mosaic virus (TMV), tomato brown rugose fruit virus (ToBRFV) and cucumber green mottle mosaic virus (CGMMV), on the other side, there are members which cause latent infection in host plants. New technologies, such as high-throughput sequencing (HTS), have enabled us to discover viruses from asymptomatic plants, viruses in mixed infections where the disease etiology cannot be attributed to a single entity and more and more researchers a looking at non-crop plants to identify alternative virus reservoirs, leading to new virus discoveries. However, the diversity of these interactions in the virosphere and the involvement of multiple viruses in a single host is still relatively unclear. For such host–virus interactions in wild plants, symptoms are not always linked with the virus titer. In this review, we refer to latent infection as asymptomatic infection where plants do not suffer despite systemic infection. Molecular mechanisms related to latent behavior of tobamoviruses are unknown. We will review different studies which support different theories behind latency.
Collapse
|
5
|
Balke I, Zeltins A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv Drug Deliv Rev 2019; 145:119-129. [PMID: 30172923 DOI: 10.1016/j.addr.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 07/24/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022]
Abstract
In recent decades, the development of plant virology and genetic engineering techniques has resulted in the construction of plant virus-based vaccines for protection against different infectious agents, cancers and autoimmune diseases in both humans and animals. Interaction studies between plant viruses and mammalian organisms have suggested that plant viruses and virus-like particles (VLPs) are safe and noninfectious to humans and animals. Plant viruses with introduced antigens are powerful vaccine components due to their strongly organized, repetitive spatial structure; they can elicit strong immune responses similar to those observed with infectious mammalian viruses. The analysis of published data demonstrated that at least 73 experimental vaccines, including 61 prophylactic and 12 therapeutic vaccines, have been constructed using plant viruses as a carrier structure for presentation of different antigens. This information clearly demonstrates that noninfectious viruses are also applicable as vaccine carriers. Moreover, several plant viruses have been used for platform development, and corresponding vaccines are currently being tested in human and veterinary clinical trials. This review therefore discusses the main principles of plant VLP vaccine construction, emphasizing the physical, chemical, genetic and immunological aspects. Results of the latest studies suggest that several plant virus-based vaccines will join the list of approved human and animal vaccines in the near future.
Collapse
Affiliation(s)
- Ina Balke
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia
| | - Andris Zeltins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV1067, Latvia.
| |
Collapse
|
6
|
Southan A, Lang T, Schweikert M, Tovar GEM, Wege C, Eiben S. Covalent incorporation of tobacco mosaic virus increases the stiffness of poly(ethylene glycol) diacrylate hydrogels. RSC Adv 2018; 8:4686-4694. [PMID: 35539563 PMCID: PMC9077753 DOI: 10.1039/c7ra10364f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022] Open
Abstract
Hydrogels are versatile materials, finding applications as adsorbers, supports for biosensors and biocatalysts or as scaffolds for tissue engineering. A frequently used building block for chemically cross-linked hydrogels is poly(ethylene glycol) diacrylate (PEG-DA). However, after curing, PEG-DA hydrogels cannot be functionalized easily. In this contribution, the stiff, rod-like tobacco mosaic virus (TMV) is investigated as a functional additive to PEG-DA hydrogels. TMV consists of more than 2000 identical coat proteins and can therefore present more than 2000 functional sites per TMV available for coupling, and thus has been used as a template or building block for nano-scaled hybrid materials for many years. Here, PEG-DA (M n = 700 g mol-1) hydrogels are combined with a thiol-group presenting TMV mutant (TMVCys). By covalent coupling of TMVCys into the hydrogel matrix via the thiol-Michael reaction, the storage modulus of the hydrogels is increased compared to pure PEG-DA hydrogels and to hydrogels containing wildtype TMV (wt-TMV) which is not coupled covalently into the hydrogel matrix. In contrast, the swelling behaviour of the hydrogels is not altered by TMVCys or wt-TMV. Transmission electron microscopy reveals that the TMV particles are well dispersed in the hydrogels without any large aggregates. These findings give rise to the conclusion that well-defined hydrogels were obtained which offer the possibility to use the incorporated TMV as multivalent carrier templates e.g. for enzymes in future studies.
Collapse
Affiliation(s)
- A Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany +49 711 68568162
| | - T Lang
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany +49 711 68568162
| | - M Schweikert
- Department of Biobased Materials, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Pfaffenwaldring 57 70569 Stuttgart Germany
| | - G E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany +49 711 68568162
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstr. 12 70569 Stuttgart Germany
| | - C Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Pfaffenwaldring 57 70569 Stuttgart Germany
| | - S Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart Pfaffenwaldring 57 70569 Stuttgart Germany
| |
Collapse
|
7
|
Atanasova P, Kim I, Chen B, Eiben S, Bill J. Controllable Virus-Directed Synthesis of Nanostructured Hybrids Induced by Organic/Inorganic Interactions. ACTA ACUST UNITED AC 2017; 1:e1700106. [DOI: 10.1002/adbi.201700106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Petia Atanasova
- Institute for Materials Science; Universität Stuttgart; Heisenbergstr. 3 70569 Stuttgart Germany
| | - Insook Kim
- Max-Planck Institute for Intelligent Systems; Heisenbergstr. 3 70569 Stuttgart Germany
| | - Bingling Chen
- ALPLA Werke Alwin Lehner GmbH & Co KG Mockenstrasse 34; A-6971 Hard Austria
| | - Sabine Eiben
- Institute of Biomaterials and Biological Systems; Universität Stuttgart; Pfaffenwaldring 57 70569 Stuttgart Germany
| | - Joachim Bill
- Institute for Materials Science; Universität Stuttgart; Heisenbergstr. 3 70569 Stuttgart Germany
| |
Collapse
|
8
|
Makarov VV, Kalinina NO. Structure and Noncanonical Activities of Coat Proteins of Helical Plant Viruses. BIOCHEMISTRY (MOSCOW) 2016; 81:1-18. [PMID: 26885578 DOI: 10.1134/s0006297916010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main function of virus coat protein is formation of the capsid that protects the virus genome against degradation. However, besides the structural function, coat proteins have many additional important activities in the infection cycle of the virus and in the defense response of host plants to viral infection. This review focuses on noncanonical functions of coat proteins of helical RNA-containing plant viruses with positive genome polarity. Analysis of data on the structural organization of coat proteins of helical viruses has demonstrated that the presence of intrinsically disordered regions within the protein structure plays an important role in implementation of nonstructural functions and largely determines the multifunctionality of coat proteins.
Collapse
Affiliation(s)
- V V Makarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
9
|
Mongkolsiriwattana C, Zhou JS, Ng JCK. A 3'-end structure in RNA2 of a crinivirus is essential for viral RNA synthesis and contributes to replication-associated translation activity. Sci Rep 2016; 6:34482. [PMID: 27694962 PMCID: PMC5046102 DOI: 10.1038/srep34482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023] Open
Abstract
The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3' terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2'-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5' and YSS-containing 3' terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons.
Collapse
Affiliation(s)
- Chawin Mongkolsiriwattana
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - Jaclyn S. Zhou
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| | - James C. K. Ng
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
10
|
Koch C, Eber FJ, Azucena C, Förste A, Walheim S, Schimmel T, Bittner AM, Jeske H, Gliemann H, Eiben S, Geiger FC, Wege C. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:613-29. [PMID: 27335751 PMCID: PMC4901926 DOI: 10.3762/bjnano.7.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.
Collapse
Affiliation(s)
- Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fabian J Eber
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Carlos Azucena
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Alexander Förste
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Stefan Walheim
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Alexander M Bittner
- CIC Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Sabine Eiben
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fania C Geiger
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| |
Collapse
|
11
|
Junqueira BRT, Nicolini C, Lucinda N, Orílio AF, Nagata T. A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector. J Virol Methods 2014; 198:32-6. [PMID: 24388933 DOI: 10.1016/j.jviromet.2013.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants.
Collapse
Affiliation(s)
| | - Cícero Nicolini
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Natalia Lucinda
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Anelise Franco Orílio
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | - Tatsuya Nagata
- Pós-graduação em Biologia Molecular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
12
|
Musiychuk K, Stephenson N, Bi H, Farrance CE, Orozovic G, Brodelius M, Brodelius P, Horsey A, Ugulava N, Shamloul AM, Mett V, Rabindran S, Streatfield SJ, Yusibov V. A launch vector for the production of vaccine antigens in plants. Influenza Other Respir Viruses 2009; 1:19-25. [PMID: 19453476 PMCID: PMC4634661 DOI: 10.1111/j.1750-2659.2006.00005.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Historically, most vaccines have been based on killed or live-attenuated infectious agents. Although very successful at immunizing populations against disease, both approaches raise safety concerns and often have limited production capacity. This has resulted in increased emphasis on the development of subunit vaccines. Several recombinant systems have been considered for subunit vaccine manufacture, including plants, which offer advantages both in cost and in scale of production. We have developed a plant expression system utilizing a 'launch vector', which combines the advantageous features of standard agrobacterial binary plasmids and plant viral vectors, to achieve high-level target antigen expression in plants. As an additional feature, to aid in target expression, stability and purification, we have engineered a thermostable carrier molecule to which antigens are fused. We have applied this launch vector/carrier system to engineer and express target antigens from various pathogens, including, influenza A/Vietnam/04 (H5N1) virus.
Collapse
Affiliation(s)
- Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Newark, DE 19711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sasaki N, Ogata T, Deguchi M, Nagai S, Tamai A, Meshi T, Kawakami S, Watanabe Y, Matsushita Y, Nyunoya H. Over-expression of putative transcriptional coactivator KELP interferes with Tomato mosaic virus cell-to-cell movement. MOLECULAR PLANT PATHOLOGY 2009; 10:161-73. [PMID: 19236566 PMCID: PMC6640241 DOI: 10.1111/j.1364-3703.2008.00517.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.
Collapse
Affiliation(s)
- Nobumitsu Sasaki
- Gene Research Centre, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Man M, Epel BL. Characterization of regulatory elements within the coat protein (CP) coding region of Tobacco mosaic virus affecting subgenomic transcription and green fluorescent protein expression from the CP subgenomic RNA promoter. J Gen Virol 2004; 85:1727-1738. [PMID: 15166458 DOI: 10.1099/vir.0.79838-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A replicon based on Tobacco mosaic virus that was engineered to express the open reading frame (ORF) of the green fluorescent protein (GFP) gene in place of the native coat protein (CP) gene from a minimal CP subgenomic (sg) RNA promoter was found to accumulate very low levels of GFP. Regulatory regions within the CP ORF were identified that, when presented as untranslated regions flanking the GFP ORF, enhanced or inhibited sg transcription and GFP expression. Full GFP expression from the CP sgRNA promoter required more than the first 20 nt of the CP ORF but not beyond the first 56 nt. Further analysis indicated the presence of an enhancer element between nt +25 and +55 with respect to the CP translation start site. The inclusion of this enhancer sequence upstream of the GFP ORF led to elevated sg transcription and to a 50-fold increase in GFP accumulation in comparison with a minimal CP promoter in which the entire CP ORF was displaced by the GFP ORF. Inclusion of the 3′-terminal 22 nt had a minor positive effect on GFP accumulation, but the addition of extended untranslated sequences from the 3′ terminus of the CP ORF downstream of the GFP ORF was basically found to inhibit sg transcription. Secondary structure analysis programs predicted the CP sgRNA promoter to reside within two stable stem–loop structures, which are followed by an enhancer region.
Collapse
Affiliation(s)
- Michal Man
- Department of Plant Sciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69778
| | - Bernard L Epel
- Department of Plant Sciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69778
| |
Collapse
|
15
|
Choi YG, Rao AL. Packaging of tobacco mosaic virus subgenomic RNAs by Brome mosaic virus coat protein exhibits RNA controlled polymorphism. Virology 2000; 275:249-57. [PMID: 10998324 DOI: 10.1006/viro.2000.0532] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The coat protein (CP) of icosahedral Brome mosaic virus (BMV) was expressed from a genetically engineered rod-shape Tobacco mosaic virus. Molecular characterization of the progeny recovered from symptomatic plants revealed that BMV CP selectively packaged the three subgenomic RNAs of the hybrid virus into two differently sized icosahedral virus-like particles (VLPs). The smaller VLPs packaged only the two smaller subgenomic RNAs. Additional in vitro reassembly assays with BMV CP subunits and transcripts of hybrid subgenomic RNAs further demonstrated that the ability of BMV capsids to display polymorphism is not dependent on the RNA size alone and appears to be controlled by some other feature(s) of the genetically engineered RNA.
Collapse
Affiliation(s)
- Y G Choi
- Department of Plant Pathology, University of California, Riverside, California 92521-0122, USA
| | | |
Collapse
|