1
|
Tang YX, Wu WZ, Zhou SS, Zeng DT, Zheng GC, He RQ, Qin DY, Huang WY, Chen JT, Dang YW, Tang YL, Chi BT, Zhan YT, Chen G. Exploring the potential function of high expression of ANAPC1 in regulating ubiquitination in hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:103594. [DOI: 10.4251/wjgo.v17.i5.103594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 03/14/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND ANAPC1, a key regulator of the ubiquitination in tumour development, has not been thoroughly studied in hepatocellular carcinoma (HCC).
AIM To elucidate the expression of ANAPC1 in HCC and its potential regulatory mechanism related to ubiquitination.
METHODS Bulk RNA (RNA sequencing and microarrays), immunohistochemistry (IHC) tissues, and single-cell RNA sequencing (scRNA-seq) data were integrated to comprehensively investigate ANAPC1 expression in HCC. Clustered regularly interspaced short palindromic repeats analysis was performed to assess growth in HCC cell lines following ANAPC1 knockout. Enrichment analyses were conducted to explore the functions of ANAPC1. ScRNA-seq data was used to examine the cell cycle and metabolic levels. CellChat analysis was applied to investigate the interactions between ANAPC1 and different cell types. The relationship between ANAPC1 expression and drug concentration was analyzed.
RESULTS ANAPC1 messenger RNA was found to be upregulated in bulk RNA, IHC tissues samples and malignant hepatocytes. The proliferation of JHH2 cell lines was most significantly inhibited after ANAPC1 knockdown. In biological pathways, the development of HCC was found to be linked to the regulation of ubiquitin-mediated proteolysis. Additionally, scRNA-seq results indicated that highly expressed ANAPC1 was in the G2/M phase, with increased glycolysis/gluconeogenesis activity. A CellChat analysis showed that ANAPC1 was associated with the regulation of the migration inhibitory factor-(cluster of differentiation 74 + C-X-C chemokine receptor type 4) pathway. Higher ANAPC1 expression correlated with stronger effects of sorafenib, dasatinib, ibrutinib, lapatinib, nilotinib and afatinib.
CONCLUSION The high expression level of ANAPC1 may regulate the cell cycle and metabolic levels of HCC through the ubiquitination-related pathway, thereby promoting disease progression.
Collapse
Affiliation(s)
- Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Zi Wu
- Department of Pathology, People’s Hospital of Ling Shan, Nanning 535400, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Sheng Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Da-Tong Zeng
- Department of Pathology, Redcross Hospital of Yulin City, Nanning 537000, Guangxi Zhuang Autonomous Region, China
| | - Guang-Cai Zheng
- Department of Hepatobiliary Surgery, Redcross Hospital of Yulin City, Nanning 537000, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di-Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ji-Tian Chen
- Department of Pathology, People’s Hospital of Ling Shan, Nanning 535400, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bang-Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan-Ting Zhan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Sharma S, Srivastava S, Dubey RN, Mishra P, Singh J. [SNG2], a prion form of Cut4/Apc1, confers non-Mendelian inheritance of heterochromatin silencing defect in fission yeast. Nucleic Acids Res 2024; 52:13792-13811. [PMID: 39565210 DOI: 10.1093/nar/gkae1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Prions represent epigenetic regulator proteins that can self-propagate their structure and confer their misfolded structure and function on normally folded proteins. Like the mammalian prion PrPSc, prions also occur in fungi. While a few prions, like Swi1, affect gene expression, none are shown to affect heterochromatin structure and function. In fission yeast and metazoans, histone methyltransferase Clr4/Suv39 causes H3-Lys9 methylation, which is bound by the chromodomain protein Swi6/HP1 to assemble heterochromatin. Earlier, we showed that sng2-1 mutation in the Cut4 subunit of anaphase-promoting complex abrogates heterochromatin structure due to defective binding and recruitment of Swi6. Here, we demonstrate that the Cut4p forms a non-canonical prion form, designated as [SNG2], which abrogates heterochromatin silencing. [SNG2] exhibits various prion-like properties, e.g. non-Mendelian inheritance, requirement of Hsp proteins for its propagation, de novo generation upon cut4 overexpression, reversible curing by guanidine, cytoplasmic inheritance and formation of infectious protein aggregates, which are dissolved upon overexpression of hsp genes. Interestingly, [SNG2] prion imparts an enhanced tolerance to stress conditions, supporting its role in promoting cell survival under environmental stress during evolution.
Collapse
Affiliation(s)
- Suman Sharma
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | | | - Poonam Mishra
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Jagmohan Singh
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| |
Collapse
|
3
|
Zemlianski V, Marešová A, Princová J, Holič R, Häsler R, Ramos Del Río MJ, Lhoste L, Zarechyntsava M, Převorovský M. Nitrogen availability is important for preventing catastrophic mitosis in fission yeast. J Cell Sci 2024; 137:jcs262196. [PMID: 38780300 DOI: 10.1242/jcs.262196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.
Collapse
Affiliation(s)
- Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Roman Holič
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Manuel José Ramos Del Río
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Laurane Lhoste
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Maryia Zarechyntsava
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
4
|
Benssouina FZ, Parat F, Villard C, Leloup L, Garrouste F, Sabatier JM, Ferhat L, Kovacic H. Overexpression of a Novel Noxo1 Mutant Increases Ros Production and Noxo1 Relocalisation. Int J Mol Sci 2023; 24:ijms24054663. [PMID: 36902094 PMCID: PMC10003393 DOI: 10.3390/ijms24054663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Noxo1, the organizing element of the Nox1-dependent NADPH oxidase complex responsible for producing reactive oxygen species, has been described to be degraded by the proteasome. We mutated a D-box in Noxo1 to express a protein with limited degradation and capable of maintaining Nox1 activation. Wild-type (wt) and mutated Noxo1 (mut1) proteins were expressed in different cell lines to characterize their phenotype, functionality, and regulation. Mut1 increases ROS production through Nox1 activity affects mitochondrial organization and increases cytotoxicity in colorectal cancer cell lines. Unexpectedly the increased activity of Noxo1 is not related to a blockade of its proteasomal degradation since we were unable in our conditions to see any proteasomal degradation either for wt or mut1 Noxo1. Instead, D-box mutation mut1 leads to an increased translocation from the membrane soluble fraction to a cytoskeletal insoluble fraction compared to wt Noxo1. This mut1 localization is associated in cells with a filamentous phenotype of Noxo1, which is not observed with wt Noxo1. We found that mut1 Noxo1 associates with intermediate filaments such as keratin 18 and vimentin. In addition, Noxo1 D-Box mutation increases Nox1-dependent NADPH oxidase activity. Altogether, Nox1 D-box does not seem to be involved in Noxo1 degradation but rather related to the maintenance of the Noxo1 membrane/cytoskeleton balance.
Collapse
|
5
|
Silva TS, Faucz FR, Hernández-Ramírez LC, Pankratz N, Lane J, Kay DM, Lyra A, Kochi C, Stratakis CA, Longui CA, Mills JL. Whole exome sequencing in patients with ectopic posterior pituitary. J Endocr Soc 2022; 6:bvac116. [DOI: 10.1210/jendso/bvac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Context
Ectopic posterior pituitary (EPP), a condition in which the posterior pituitary gland is displaced due to defective neuronal migration, is frequently associated with hypopituitarism. Genetic variants play a role, but many cases remain unexplained.
Objective
A large EPP cohort was studied to explore the importance of genetic variants and how they correlate with clinical findings.
Methods
Whole exome sequencing was performed on a discovery sample of 27 cases to identify rare variants. The variants that met the criteria for rarity and biological relevance, or that were previously associated with EPP (ROBO1 and HESX1), were then resequenced in the 27 cases plus a replication sample of 51 cases.
Results
We identified 16 different variants in 12 genes in 15 of the 78 cases (19.2%). Complete anterior pituitary deficiency was twice as common in cases with variants of interest compared to cases without variants (9/15; 60% vs. 19/63; 30.1%, respectively; Z test; p=0.06). Breech presentation was more frequent in the variant positive group (5/15 vs. 1/63; Z test; p= 0.003). Four cases had variants in ROBO1 and one in HESX1, genes previously associated with EPP. The ROBO1 p.S18* variant has not been reported previously; ROBO1 p.Q1227H has not been associated with EPP previously.
Conclusions
EPP cases with variants of interest identified in this study were more likely to present with severe clinical disease. Several variants were identified in genes not previously associated with EPP. Our findings confirm that EPP is a multigenic disorder. Future studies are needed to identify additional genes.
Collapse
Affiliation(s)
- Tatiane S Silva
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - Fabio R Faucz
- Section on Endocrinology and Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda , Maryland, USA
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda , Maryland, USA
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán . 15 Vasco de Quiroga, Radiation Oncology building, 2 nd floor, Belisario Domínguez sección 16. Tlalpan, CDMX 14080, Mexico
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology University of Minnesota Medical School, Minneapolis , Minnesota, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology University of Minnesota Medical School, Minneapolis , Minnesota, USA
| | - Denise M Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health , Albany, New York, USA
| | - Arthur Lyra
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - Cristiane Kochi
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda , Maryland, USA
- Research Institute, ELPEN , Athens, Greece
- Human Genetics & Precision Medicine, IMBB, FORTH , Heraklion, Greece
| | - Carlos A Longui
- Pediatric Endocrinology Unit, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa SP School of Medical Sciences , São Paulo, Brazil
| | - James L Mills
- Epidemiology Branch , Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH) , Bethesda, Maryland, USA
| |
Collapse
|
6
|
Chica N, Portantier M, Nyquist-Andersen M, Espada-Burriel S, Lopez-Aviles S. Uncoupling of Mitosis and Cytokinesis Upon a Prolonged Arrest in Metaphase Is Influenced by Protein Phosphatases and Mitotic Transcription in Fission Yeast. Front Cell Dev Biol 2022; 10:876810. [PMID: 35923846 PMCID: PMC9340479 DOI: 10.3389/fcell.2022.876810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Depletion of the Anaphase-Promoting Complex/Cyclosome (APC/C) activator Cdc20 arrests cells in metaphase with high levels of the mitotic cyclin (Cyclin B) and the Separase inhibitor Securin. In mammalian cells this arrest has been exploited for the treatment of cancer with drugs that engage the spindle assembly checkpoint and, recently, with chemical inhibitors of the APC/C. While most cells arrested in mitosis for prolonged periods undergo apoptosis, others skip cytokinesis and enter G1 with unsegregated chromosomes. This process, known as mitotic slippage, generates aneuploidy and increases genomic instability in the cancer cell. Here, we analyze the behavior of fission yeast cells arrested in mitosis through the transcriptional silencing of the Cdc20 homolog slp1. While depletion of slp1 readily halts cells in metaphase, this arrest is only transient and a majority of cells eventually undergo cytokinesis and show steady mitotic dephosphorylation. Notably, this occurs in the absence of Cyclin B (Cdc13) degradation. We investigate the involvement of phosphatase activity in these events and demonstrate that PP2A-B55Pab1 is required to prevent septation and, during the arrest, its CDK-mediated inhibition facilitates the induction of cytokinesis. In contrast, deletion of PP2A-B56Par1 completely abrogates septation. We show that this effect is partly due to this mutant entering mitosis with reduced CDK activity. Interestingly, both PP2A-B55Pab1 and PP2A-B56Par1, as well as Clp1 (the homolog of the budding yeast mitotic phosphatase Cdc14) are required for the dephosphorylation of mitotic substrates during the escape. Finally, we show that the mitotic transcriptional wave controlled by the RFX transcription factor Sak1 facilitates the induction of cytokinesis and also requires the activity of PP2A-B56Par1 in a mechanism independent of CDK.
Collapse
Affiliation(s)
- Nathalia Chica
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Sandra Lopez-Aviles, ; Nathalia Chica,
| | - Marina Portantier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mari Nyquist-Andersen
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silvia Espada-Burriel
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sandra Lopez-Aviles
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL partnership, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Biosciences (IBV), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Sandra Lopez-Aviles, ; Nathalia Chica,
| |
Collapse
|
7
|
Tanabe T, Kawamukai M, Matsuo Y. Glucose limitation and pka1 deletion rescue aberrant mitotic spindle formation induced by Mal3 overexpression in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2020; 84:1667-1680. [PMID: 32441227 DOI: 10.1080/09168451.2020.1763157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, proper chromosome segregation, and stress responses in Schizosaccharomyces pombe. We demonstrated that both the cAMP/PKA pathway and glucose limitation play roles in appropriate spindle formation. Overexpression of Mal3 (1-308), an EB1 family protein, caused growth defects, increased 4C DNA content, and induced monopolar spindle formation. Overproduction of a high-affinity microtubule binding mutant (Q89R) and a recombinant protein possessing the CH and EB1 domains (1-241) both resulted in more severe phenotypes than Mal3 (1-308). Loss of functional Pka1 and glucose limitation rescued the phenotypes of Mal3-overexpressing cells, whereas deletion of Tor1 or Ssp2 did not. Growth defects and monopolar spindle formation in a kinesin-5 mutant, cut7-446, was partially rescued by pka1 deletion or glucose limitation. These findings suggest that Pka1 and glucose limitation regulate proper spindle formation in Mal3-overexpressing cells and the cut7-446 mutant.
Collapse
Affiliation(s)
- Takuma Tanabe
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University , Matsue, Japan.,Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University , Matsue, Japan
| |
Collapse
|
8
|
Mal3 is a multi-copy suppressor of the sensitivity to microtubule-depolymerizing drugs and chromosome mis-segregation in a fission yeast pka1 mutant. PLoS One 2019; 14:e0214803. [PMID: 30973898 PMCID: PMC6459531 DOI: 10.1371/journal.pone.0214803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/20/2019] [Indexed: 11/24/2022] Open
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, transition into meiosis, chronological aging, and stress responses in the fission yeast, Schizosaccharomyces pombe. We demonstrated here that Pka1 is responsible for normal growth in the presence of the microtubule-destabilization drug TBZ and proper chromosome segregation. The deletion of the pka1 gene resulted in the TBZ-sensitive phenotype and chromosome mis-segregation. We isolated the mal3 gene as a multi-copy suppressor of the TBZ-sensitive phenotype in the pka1Δ strains. Overexpression of the CH domain (1–143) or the high-affinity microtubule binding mutant (1–143 Q89R) of Mal3 rescued the TBZ-sensitive phenotype in the pka1Δ and mal3Δ strains, while the EB1 domain (135–308) and the mutants defective in microtubule binding (1–143 Q89E) failed to do so in the same strains. Chromosome mis-segregation caused by TBZ in the pka1Δ or mal3Δ strains was suppressed by the overexpression of the Mal3 CH domain (1–143), Mal3 CH domain with the coiled-coil domain (1–197), or full-length Mal3. Overexpression of EB1 orthologs from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, or Homo sapiens suppressed the TBZ-sensitive phenotype in the pka1Δ strains, indicating their conserved functions. These findings suggest that Pka1 and the microtubule binding of the Mal3 CH domain play a role in the maintenance of proper chromosome segregation.
Collapse
|
9
|
Vandame P, Spriet C, Trinel D, Gelaude A, Caillau K, Bompard C, Biondi E, Bodart JF. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation. Cell Cycle 2015; 13:3232-40. [PMID: 25485503 DOI: 10.4161/15384101.2014.950907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.
Collapse
Affiliation(s)
- Pauline Vandame
- a Laboratoire de Régulation des Signaux de division; EA4479; Université Lille1; Université Lille Nord de France; Villeneuve d'Ascq, France Institut Fédératif de Recherche (IFR)147; Site de Recherche Intégré en Cancérologie (SIRIC) ONCOLILLE
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Uchiyama M, Terunuma J, Hanaoka F. The Protein Level of Rev1, a TLS Polymerase in Fission Yeast, Is Strictly Regulated during the Cell Cycle and after DNA Damage. PLoS One 2015; 10:e0130000. [PMID: 26147350 PMCID: PMC4493104 DOI: 10.1371/journal.pone.0130000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
Translesion DNA synthesis provides an alternative DNA replication mechanism when template DNA is damaged. In fission yeast, Eso1 (polη), Kpa1/DinB (polκ), Rev1, and Polζ (a complex of Rev3 and Rev7) have been identified as translesion synthesis polymerases. The enzymatic characteristics and protein-protein interactions of these polymerases have been intensively characterized; however, how these proteins are regulated during the cell cycle remains unclear. Therefore, we examined the cell cycle oscillation of translesion polymerases. Interestingly, the protein levels of Rev1 peaked during G1 phase and then decreased dramatically at the entry of S phase; this regulation was dependent on the proteasome. Temperature-sensitive proteasome mutants, such as mts2-U31 and mts3-U32, stabilized Rev1 protein when the temperature was shifted to the restrictive condition. In addition, deletion of pop1 or pop2, subunits of SCF ubiquitin ligase complexes, upregulated Rev1 protein levels. Besides these effects during the cell cycle, we also observed upregulation of Rev1 protein upon DNA damage. This upregulation was abolished when rad3, a checkpoint protein, was deleted or when the Rev1 promoter was replaced with a constitutive promoter. From these results, we hypothesize that translesion DNA synthesis is strictly controlled through Rev1 protein levels in order to avoid unwanted mutagenesis.
Collapse
Affiliation(s)
- Masashi Uchiyama
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Junko Terunuma
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | - Fumio Hanaoka
- Institute for Biomolecular Science, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Phosphorylation regulates binding of the human papillomavirus type 8 E2 protein to host chromosomes. J Virol 2012; 86:10047-58. [PMID: 22787207 DOI: 10.1128/jvi.01140-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E2 proteins are indispensable for the viral life cycle, and their functions are subject to tight regulation. The E2 proteins undergo posttranslational modifications that regulate their properties and roles in viral transcription, replication, and genome maintenance. During persistent infection, the E2 proteins from many papillomaviruses act as molecular bridges that tether the viral genomes to host chromosomes to retain them within the host nucleus and to partition them to daughter cells. The betapapillomavirus E2 proteins bind to pericentromeric regions of host mitotic chromosomes, including the ribosomal DNA loci. We recently reported that two residues (arginine 250 and serine 253) within the chromosome binding region of the human papillomavirus type 8 (HPV8) E2 protein are required for this binding. In this study, we show that serine 253 is phosphorylated, most likely by protein kinase A, and this modulates the interaction of the E2 protein with cellular chromatin. Furthermore, we show that this phosphorylation occurs in S phase, increases the half-life of the E2 protein, and promotes chromatin binding from S phase through mitosis.
Collapse
|
12
|
Masuda H, Fong CS, Ohtsuki C, Haraguchi T, Hiraoka Y. Spatiotemporal regulations of Wee1 at the G2/M transition. Mol Biol Cell 2011; 22:555-69. [PMID: 21233285 PMCID: PMC3046054 DOI: 10.1091/mbc.e10-07-0644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Wee1 is highly dynamic at the SPB during the G2/M transition. Wee1 accumulates at the nuclear face of the SPB when cyclin B–Cdc2 peaks at the SPB and disappears from the SPB during spindle assembly. This dynamic behavior of Wee1 at the SPB is important for regulation of cyclin B–Cdc2 activity and proper mitotic entry and progression. Wee1 is a protein kinase that negatively regulates mitotic entry in G2 phase by suppressing cyclin B–Cdc2 activity, but its spatiotemporal regulations remain to be elucidated. We observe the dynamic behavior of Wee1 in Schizosaccharomyces pombe cells and manipulate its localization and kinase activity to study its function. At late G2, nuclear Wee1 efficiently suppresses cyclin B–Cdc2 around the spindle pole body (SPB). During the G2/M transition when cyclin B–Cdc2 is highly enriched at the SPB, Wee1 temporally accumulates at the nuclear face of the SPB in a cyclin B–Cdc2-dependent manner and locally suppresses both cyclin B–Cdc2 activity and spindle assembly to counteract a Polo kinase–dependent positive feedback loop. Then Wee1 disappears from the SPB during spindle assembly. We propose that regulation of Wee1 localization around the SPB during the G2/M transition is important for proper mitotic entry and progression.
Collapse
Affiliation(s)
- Hirohisa Masuda
- Laboratory of Cell Regulation, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom.
| | | | | | | | | |
Collapse
|
13
|
Hood-DeGrenier JK. Identification of phosphatase 2A-like Sit4-mediated signalling and ubiquitin-dependent protein sorting as modulators of caffeine sensitivity in S. cerevisiae. Yeast 2010; 28:189-204. [DOI: 10.1002/yea.1830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/23/2010] [Indexed: 11/07/2022] Open
|
14
|
McInnis B, Mitchell J, Marcus S. Phosphorylation of the protein kinase A catalytic subunit is induced by cyclic AMP deficiency and physiological stresses in the fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Commun 2010; 399:665-9. [PMID: 20691155 PMCID: PMC2941774 DOI: 10.1016/j.bbrc.2010.07.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022]
Abstract
In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Delta cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Delta cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1(+) or cyr1Delta S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.
Collapse
Affiliation(s)
| | | | - Stevan Marcus
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487
| |
Collapse
|
15
|
Roux AE, Arseneault G, Chartrand P, Ferbeyre G, Rokeach LA. A screen for genes involved in respiration control and longevity in Schizosaccharomyces pombe. Ann N Y Acad Sci 2010; 1197:19-27. [PMID: 20536828 DOI: 10.1111/j.1749-6632.2010.05198.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present results showing that glucose signaling has proaging effects in the yeast Schizosaccharomyces pombe. Deletion of the receptor that senses extracellular glucose (Git3) increases the life span of S. pombe, while constitutive activation of the Galpha subunit acting downstream of this receptor (Gpa2) shortens its life span. The latter mutant is also impaired for growth under respiration conditions. We have used this phenotype in a selection strategy to identify genes that when overexpressed can rescue the respiratory defect of constitutively active Galpha subunit mutants. Here, we report an extended version of the work we presented at the IABG meeting and the results of this screen. This strategy allowed us to isolate four genes: psp1(+)/moc1(+), cka1(+), adh1(+), and rpb10(+). Interestingly, the overexpression of these genes was also capable of increasing the chronological life span of wild-type yeast cells.
Collapse
Affiliation(s)
- Antoine E Roux
- Department of Biochemistry, Université de Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
16
|
Dubey RN, Nakwal N, Bisht KK, Saini A, Haldar S, Singh J. Interaction of APC/C-E3 ligase with Swi6/HP1 and Clr4/Suv39 in heterochromatin assembly in fission yeast. J Biol Chem 2009; 284:7165-76. [PMID: 19117951 PMCID: PMC2652303 DOI: 10.1074/jbc.m806461200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/22/2008] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin assembly in fission yeast is initiated by binding of Swi6/HP1 to the Lys-9-dimethylated H3 followed by spreading via cooperative recruitment of Swi6/HP1. Recruitment of Cohesin by Swi6/HP1 further stabilizes the heterochromatin structure and integrity. Subsequently, polyubiquitylation of Cut2 by anaphase-promoting complex-cyclosome (APC/C)-ubiquitin-protein isopeptide ligase (E3 ligase) followed by degradation of Cut2 releases Cut1, which cleaves the Rad21 subunit of Cohesin, facilitating sister chromatid separation during mitosis. Here, we demonstrate a surprising role of APC/C in assembly of heterochromatin and silencing at mating type, centromere, and ribosomal DNA loci. Coincidentally with the loss of silencing, recruitment of Swi6, H3-Lys-9-Me2, and Clr4 at dg-dh repeats at cen1 and the K region of mat locus is abrogated in mutants cut4, cut9, and nuc2. Surprisingly, both Cut4 and Cut9 are also highly enriched at these regions in wild type and depleted in swi6Delta mutant. Cut4 and Cut9 interact directly with Swi6/HP1 and Clr4, whereas the mutant Cut4 does not, suggesting that a direct physical interaction of APC subunits Cut4 and Cut9 with Swi6 and Clr4 is instrumental in heterochromatin assembly. The silencing defect in APC mutants is causally related to ubiquitylation activity of APC-E3 ligase. Like swi6 mutant, APC mutants are also defective in Cohesin recruitment and exhibit defects like lagging chromosomes, chromosome loss, and aberrant recombination in the mat region. In addition, APC mutants exhibit a bidirectional expression of dh repeats, suggesting a role in the RNA interference pathway. Thus, APC and heterochromatin proteins Swi6 and Clr4 play a mutually cooperative role in heterochromatin assembly, thereby ensuring chromosomal integrity, inheritance, and segregation during mitosis and meiosis.
Collapse
|
17
|
Regulation of the subcellular localization of cyclic AMP-dependent protein kinase in response to physiological stresses and sexual differentiation in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2008; 7:1450-9. [PMID: 18621924 DOI: 10.1128/ec.00168-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe regulation of the subcellular localization of cyclic AMP (cAMP)-dependent protein kinase (PKA) regulatory (Cgs1p) and catalytic (Pka1p) subunits in the fission yeast Schizosaccharomyces pombe in response to physiological stresses and during sexual differentiation as determined by fluorescence microscopy of the Cgs1-green fluorescent protein (GFP) and Pka1-GFP fusion proteins, respectively. In wild-type S. pombe cells cultured to log phase under normal growth conditions, Cgs1p and Pka1p are concentrated in the nucleus and more diffusely present in the cytoplasm. Nuclear localization of both proteins is dependent on cAMP, since in cells lacking adenylate cyclase they are detectable only in the cytoplasm. In cells lacking Cgs1p or both Cgs1p and adenylate cyclase, Pka1p is concentrated in the nucleus, demonstrating a role for Cgs1p in the nuclear exclusion of Pka1p. Nuclear-cytoplasmic redistribution of Cgs1p and Pka1p is triggered by growth in glucose-limited or hyperosmotic media and in response to stationary-phase growth. In addition, both proteins are excluded from the nucleus in mating cells undergoing karyogamy and subsequently concentrated in postmeiotic spores. Cgs1p is required for subcellular redistribution of Pka1p induced by growth in glucose-limited and hyperosmotic media and during karyogamy but is not required for Pka1p redistribution triggered by stationary-phase growth or for the enrichment of Pka1p in spores. Our results demonstrate that PKA localization is regulated by cAMP and regulatory subunit-dependent and -independent mechanisms in S. pombe.
Collapse
|
18
|
Dischinger S, Krapp A, Xie L, Paulson JR, Simanis V. Chemical genetic analysis of the regulatory role of Cdc2p in the S. pombe septation initiation network. J Cell Sci 2008; 121:843-53. [PMID: 18303049 DOI: 10.1242/jcs.021584] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The protein kinase Cdc2p is the master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. It is required both for entry into mitosis and for onset of DNA replication. Cdc2p must be inactivated to permit exit from mitosis, licensing of replication origins and cytokinesis. To study the role of Cdc2p in greater detail, we generated a cdc2 allele that is sensitive to an inhibitory ATP analogue. We show that the inhibitor-induced cell cycle arrest is reversible and examine the effect of inhibiting Cdc2p on the regulation of the septation initiation network (SIN), which controls the initiation of cytokinesis in S. pombe. We found that specific inactivation of Cdc2p in a mitotically arrested cell promotes the asymmetrical recruitment of SIN proteins to the spindle poles and the recruitment of the most downstream SIN components and beta-(1,3) glucan synthase to the contractile ring. Thus, we conclude that inactivation of Cdc2p is sufficient to activate the SIN and promote cytokinesis.
Collapse
|
19
|
Hattori H, Zhang X, Jia Y, Subramanian KK, Jo H, Loison F, Newburger PE, Luo HR. RNAi screen identifies UBE2D3 as a mediator of all-trans retinoic acid-induced cell growth arrest in human acute promyelocytic NB4 cells. Blood 2007; 110:640-50. [PMID: 17420285 PMCID: PMC1924478 DOI: 10.1182/blood-2006-11-059048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been widely used in differentiation therapy for acute promyelocytic leukemia (APL). ATRA binds to retinoic acid receptor (RAR) and triggers the formation of the transcription coactivator complex, which leads to changes in gene expression, APL cell-cycle arrest and differentiation, and clinical remission. The mechanisms responsible for ATRA's beneficial effects are still ill-defined. Here, we conducted a large-scale, unbiased short hairpin RNA (shRNA) screen aiming to identify mediators of ATRA-induced differentiation and growth arrest of APL cells. Twenty-six proteins were identified. They cover a wide range of cellular functions, including gene expression, intracellular signaling, cell death control, stress responses, and metabolic regulation, indicating the complexity of ATRA-induced cell growth control and differentiation in APL. One of these proteins, the ubiquitin-conjugating enzyme UBE2D3, is up-regulated in ATRA-treated acute promyelocytic NB4 cells. UBE2D3 is physically associated with cyclin D1 and mediates ATRA-induced cyclin D1 degradation. Knocking down UBE2D3 by RNA interference (RNAi) leads to blockage of ATRA-induced cyclin D1 degradation and cell-cycle arrest. Thus, our results highlight the involvement of the ubiquitin-mediated proteolysis pathway in ATRA-induced cell-cycle arrest and provide a novel strategy for modulating ATRA-elicited cellular effects.
Collapse
|
20
|
Tange Y, Niwa O. Novel mad2 alleles isolated in a Schizosaccharomyces pombe gamma-tubulin mutant are defective in metaphase arrest activity, but remain functional for chromosome stability in unperturbed mitosis. Genetics 2007; 175:1571-84. [PMID: 17277378 PMCID: PMC1855100 DOI: 10.1534/genetics.106.061309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A previously isolated fission yeast gamma-tubulin mutant containing apparently stabilized microtubules proliferated at an approximately identical rate as wild type, yet the mutant mitosis spindle dynamics were aberrant, particularly the kinetochore microtubule dynamics. Progression through mitosis in the mutant, however, resulted in mostly accurate chromosome segregation. In the absence of the spindle assembly checkpoint gene, mad2+, the spindle dynamics in the gamma-tubulin mutant were greatly compromised, leading to a high incidence of chromosome missegregation. Unlike in wild-type cells, green fluorescent protein (GFP)-tagged Mad2 protein often accumulated near one of the poles of an elongating spindle in the gamma-tubulin mutant. We isolated novel mad2 mutants that were defective in arresting mitotic progression upon gross perturbation of the spindle formation but remained functional for the viability of the gamma-tubulin mutant. Further, the mad2 mutations did not appreciably destabilize minichromosomes in unperturbed mitoses. When overexpressed ectopically, these mutant Mad2 proteins sequestered wild-type Mad2, preventing its function in mitotic checkpoint arrest, but not in minichromosome stability. These results indicated that the Mad2 functions required for checkpoint arrest and chromosome stability in unperturbed mitosis are genetically discernible. Immunoprecipitation studies demonstrated that GFP-fused mutant Mad2 proteins formed a Mad1-containing complex with altered stability compared to that formed with wild-type Mad2, providing clues to the novel mad2 mutant phenotype.
Collapse
Affiliation(s)
- Yoshie Tange
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | | |
Collapse
|
21
|
van Roessel P, Elliott DA, Robinson IM, Prokop A, Brand AH. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 2005; 119:707-18. [PMID: 15550251 DOI: 10.1016/j.cell.2004.11.028] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 10/04/2004] [Accepted: 11/05/2004] [Indexed: 10/26/2022]
Abstract
Neuronal plasticity relies on tightly regulated control of protein levels at synapses. One mechanism to control protein abundance is the ubiquitin-proteasome degradation system. Recent studies have implicated ubiquitin-mediated protein degradation in synaptic development, function, and plasticity, but little is known about the regulatory mechanisms controlling ubiquitylation in neurons. In contrast, ubiquitylation has long been studied as a central regulator of the eukaryotic cell cycle. A critical mediator of cell-cycle transitions, the anaphase-promoting complex/cyclosome (APC/C), is an E3 ubiquitin ligase. Although the APC/C has been detected in several differentiated cell types, a functional role for the complex in postmitotic cells has been elusive. We describe a novel postmitotic role for the APC/C at Drosophila neuromuscular synapses: independent regulation of synaptic growth and synaptic transmission. In neurons, the APC/C controls synaptic size via a downstream effector Liprin-alpha; in muscles, the APC/C regulates synaptic transmission, controlling the concentration of a postsynaptic glutamate receptor.
Collapse
Affiliation(s)
- Peter van Roessel
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Anatomy, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Hames RS, Crookes RE, Straatman KR, Merdes A, Hayes MJ, Faragher AJ, Fry AM. Dynamic recruitment of Nek2 kinase to the centrosome involves microtubules, PCM-1, and localized proteasomal degradation. Mol Biol Cell 2005; 16:1711-24. [PMID: 15659651 PMCID: PMC1073654 DOI: 10.1091/mbc.e04-08-0688] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrosomes undergo dramatic changes in composition and activity during cell cycle progression. Yet mechanisms involved in recruiting centrosomal proteins are poorly understood. Nek2 is a cell cycle-regulated protein kinase required for regulation of centrosome structure at the G2/M transition. Here, we have addressed the processes involved in trafficking of Nek2 to the centrosome of human adult cells. We find that Nek2 exists in small, highly dynamic cytoplasmic particles that move to and from the centrosome. Many of these particles align along microtubules and a motif was identified in the Nek2 C-terminal noncatalytic domain that allows both microtubule binding and centrosome localization. FRAP experiments reveal that 70% of centrosomal Nek2 is rapidly turned over (t(1/2) approximately 3 s). Microtubules facilitate Nek2 trafficking to the centrosome but only over long distances. Cytoplasmic Nek2 particles colocalize in part with PCM-1 containing centriolar satellites and depletion of PCM-1 interferes with centrosomal recruitment of Nek2 and its substrate C-Nap1. Finally, we show that proteasomal degradation is necessary to allow rapid recruitment of new Nek2 molecules to the centrosome. Together, these data highlight multiple processes involved in regulating the abundance of Nek2 kinase at the centrosome including microtubule binding, the centriolar satellite component PCM-1, and localized protein degradation.
Collapse
|
23
|
Kimata Y, Yanagida M. Suppression of a mitotic mutant by tRNA-Ala anticodon mutations that produce a dominant defect in late mitosis. J Cell Sci 2005; 117:2283-93. [PMID: 15126629 DOI: 10.1242/jcs.01078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cold-sensitive dominant mutants scn1 and scn2 of Schizosaccharomyces pombe were isolated by their ability to suppress temperature-sensitive cut9-665 defective in an essential subunit (human Apc6/budding yeast Cdc16 ortholog) of anaphase promoting complex/cyclosome (APC/C). APC/C mutants were defective in metaphase/anaphase transition, whereas single scn mutants showed the delay in anaphase spindle elongation at 20 degrees C. The scn mutants lost viability because of chromosome missegregation, and were sensitive to a tubulin poison. To understand the scn phenotypes, mutant genes were identified. Surprisingly, scn1 and scn2 have the same substitution in the anticodon of two different tRNA-Ala (UGC) genes. UGC was altered to UGU so that the binding of the tRNA-Ala to the ACA Thr codon in mRNA became possible. As cut9-665 contained an Ala535Thr substitution, wild-type Cut9 protein was probably produced in scn mutants. Indeed, plasmid carrying tRNA-Ala (UGU) conferred cold-sensitivity to wild-type and suppressed cut9-665 in a dominant fashion. The previously identified scn1(+) (renamed as scn3(+)) turned out to be a high copy suppressor for scn1 and scn2. These are the first tRNA mutants that cause a mitotic defect.
Collapse
Affiliation(s)
- Yuu Kimata
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University. Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
24
|
Schwickart M, Havlis J, Habermann B, Bogdanova A, Camasses A, Oelschlaegel T, Shevchenko A, Zachariae W. Swm1/Apc13 is an evolutionarily conserved subunit of the anaphase-promoting complex stabilizing the association of Cdc16 and Cdc27. Mol Cell Biol 2004; 24:3562-76. [PMID: 15060174 PMCID: PMC381669 DOI: 10.1128/mcb.24.8.3562-3576.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaphase-promoting complex (APC/C) is a large ubiquitin-protein ligase which controls progression through anaphase by triggering the degradation of cell cycle regulators such as securin and B-type cyclins. The APC/C is an unusually complex ligase containing at least 10 different, evolutionarily conserved components. In contrast to APC/C's role in cell cycle regulation little is known about the functions of individual subunits and how they might interact with each other. Here, we have analyzed Swm1/Apc13, a small subunit recently identified in the budding yeast complex. Database searches revealed proteins related to Swm1/Apc13 in various organisms including humans. Both the human and the fission yeast homologues are associated with APC/C subunits, and they complement the phenotype of an SWM1 deletion mutant of budding yeast. Swm1/Apc13 promotes the stable association with the APC/C of the essential subunits Cdc16 and Cdc27. Accordingly, Swm1/Apc13 is required for ubiquitin ligase activity in vitro and for the timely execution of APC/C-dependent cell cycle events in vivo.
Collapse
Affiliation(s)
- Martin Schwickart
- Max Planck Institute of Molecular Cell Biology and Genetics. Scionics Computer Innovation GmbH, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Vodermaier HC, Gieffers C, Maurer-Stroh S, Eisenhaber F, Peters JM. TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr Biol 2003; 13:1459-68. [PMID: 12956947 DOI: 10.1016/s0960-9822(03)00581-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Chromosome segregation and mitotic exit depend on activation of the anaphase-promoting complex (APC) by the substrate adaptor proteins CDC20 and CDH1. The APC is a ubiquitin ligase composed of at least 11 subunits. The interaction of APC2 and APC11 with E2 enzymes is sufficient for ubiquitination reactions, but the functions of most other subunits are unknown. RESULTS We have biochemically characterized subcomplexes of the human APC. One subcomplex, containing APC2/11, APC1, APC4, and APC5, can assemble multiubiquitin chains but is unable to bind CDH1 and to ubiquitinate substrates. The other subcomplex contains all known APC subunits except APC2/11. This subcomplex can recruit CDH1 but fails to support any ubiquitination reaction. In vitro, the C termini of CDC20 and CDH1 bind to the closely related TPR subunits APC3 and APC7. Homology modeling predicts that these proteins are similar in structure to the peroxisomal import receptor PEX5, which binds cargo proteins via their C termini. APC activation by CDH1 depends on a conserved C-terminal motif that is also found in CDC20 and APC10. CONCLUSIONS APC1, APC4, and APC5 may connect APC2/11 with TPR subunits. TPR domains in APC3 and APC7 recruit CDH1 to the APC and may thereby bring substrates into close proximity of APC2/11 and E2 enzymes. In analogy to PEX5, the different TPR subunits of the APC might function as receptors that interact with the C termini of regulatory proteins such as CDH1, CDC20, and APC10.
Collapse
Affiliation(s)
- Hartmut C Vodermaier
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030, Vienna, Austria
| | | | | | | | | |
Collapse
|
26
|
Matsumura T, Yuasa T, Hayashi T, Obara T, Kimata Y, Yanagida M. A brute force postgenome approach to identify temperature-sensitive mutations that negatively interact with separase and securin plasmids. Genes Cells 2003; 8:341-55. [PMID: 12653962 DOI: 10.1046/j.1365-2443.2003.00637.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The fission yeast Schizosaccharomyces pombe separase/Cut1 and securin/Cut2 are required for anaphase-specific activation of proteolysis that leads to proper sister chromatid separation. We intended to identify ts (temperature sensitive) strains whose growth was inhibited by multicopy plasmid pCUT1 or pCUT2 at the permissive temperature. RESULTS After a one-by-one transformation of 1015 randomly isolated ts strains, 18 transformants that retarded in colony formation at the permissive or semipermissive temperature were isolated. Six of them, in the absence of pCUT1 or pCUT2, produced mitotic phenotypes with condensed chromosomes at the restrictive temperature. Gene cloning established that these mutants were defective in either the subunits (Cut9, Cut23, Cut20 or Apc10) of APC (anaphase promoting complex)/cyclosome or Cut8, a regulator for 26S proteasome localization. The inhibitory effect of separase against APC/cyclosome mutations was abolished when the catalytic site mutation C1730A was introduced and overproduced, indicating that inhibition needs an active separase. Securin/Cut2 overproduction also caused a negative effect on these mutants. Surprisingly, the phenotypes of cut9 and cut23 in the presence of pCUT1 or pCUT2 were not the mitotic arrest, and they were strikingly different depending on pCUT1 or pCUT2. CONCLUSIONS This study shows the functional link between separase/Cut1 and APC/cyclosome in a separase activity-dependent manner. The negative effect of active separase overproduction on APC/cyclosome mutations is possibly due to the direct inhibition of APC/cyclosome. In addition, the manner of the inhibition by high copy securin and separase plasmids were quite different each other and did not result in the mitotic block.
Collapse
Affiliation(s)
- Takuhiro Matsumura
- Department of Biophysics, Graduate School of Science and Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Nakamura T, Nagao K, Nakaseko Y, Yanagida M. Cut1/separase C-terminus affects spindle pole body positioning in interphase of fission yeast: pointed nuclear formation. Genes Cells 2002; 7:1113-24. [PMID: 12390246 DOI: 10.1046/j.1365-2443.2002.00586.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The separase-securin complex is required for anaphase. Separase activated by securin destruction cleaves the cohesin subunit Scc1/Rad21 enriched in kinetochores. Fission yeast Cut1/separase resides in interphase cytoplasm and mobilizes to the spindle and the spindle pole bodies (SPBs) in mitosis, while Cut2/securin remains in the nucleus from interphase to metaphase, and temporarily locates at the short spindle. RESULTS We here report a novel SPB-led dynamic nuclear movement in fission yeast, when the Cut1 C-terminal fragment is over-expressed. The tip of the pointed nucleus contained both SPB and centromeric DNA, and rapidly moved along the bundled cytoplasmic microtubules. The same pointed nucleus was produced when the human separase C-fragment was over-expressed. The pointed nuclear formation did not require the protease site of separase, but required the conserved C-terminus and a microtubule- and kinetochore-binding protein Mtc1/Alp14, a homologue of frog XMAP215 and budding yeast Stu2. The movement-inducing C-fragment should be cytoplasmic, as the pointed nucleus was abolished when the fragment contained the NLS (nuclear localization signal). CONCLUSIONS Overproduced separase C-fragment abolishes correct SPB-positioning in interphase. Resulting pointed nuclear formation (alternatively called 'pigtail movement') requires cytoplasmic microtubules and Mtc1/Alp14.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 Japan
| | | | | | | |
Collapse
|
28
|
Huang JY, Raff JW. The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J Cell Sci 2002; 115:2847-56. [PMID: 12082146 DOI: 10.1242/jcs.115.14.2847] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila cells, the destruction of cyclin B is spatially regulated. In cellularised embryos, cyclin B is initially degraded on the mitotic spindle and is then degraded in the cytoplasm. In syncytial embryos,only the spindle-associated cyclin B is degraded at the end of mitosis. The anaphase promoting complex/cyclosome (APC/C) targets cyclin B for destruction,but its subcellular localisation remains controversial. We constructed GFP fusions of two core APC/C subunits, Cdc16 and Cdc27. These fusion proteins were incorporated into the endogenous APC/C and were largely localised in the cytoplasm during interphase in living syncytial embryos. Both fusion proteins rapidly accumulated in the nucleus prior to nuclear envelope breakdown but only weakly associated with mitotic spindles throughout mitosis. Thus, the global activation of a spatially restricted APC/C cannot explain the spatially regulated destruction of cyclin B. Instead, different subpopulations of the APC/C must be activated at different times to degrade cyclin B. Surprisingly,we noticed that GFP-Cdc27 associated with mitotic chromosomes, whereas GFP-Cdc16 did not. Moreover, reducing the levels of Cdc16 or Cdc27 by >90%in tissue culture cells led to a transient mitotic arrest that was both biochemically and morphologically distinct. Taken together, our results raise the intriguing possibility that there could be multiple forms of the APC/C that are differentially localised and perform distinct functions.
Collapse
Affiliation(s)
- Jun-yong Huang
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
29
|
Raff JW, Jeffers K, Huang JY. The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J Cell Biol 2002; 157:1139-49. [PMID: 12082076 PMCID: PMC2173543 DOI: 10.1083/jcb.200203035] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box-mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]-GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM-GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM-GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.
Collapse
Affiliation(s)
- Jordan W Raff
- Department of Genetics, Wellcome/Cancer Research UK Institute, Cambridge CB2 1QR, UK.
| | | | | |
Collapse
|
30
|
Abstract
All malignant human tumors contain chromosomal rearrangements. Among them, the majority of solid tumors show chromosomal instability, caused by aberrations in chromosomal segregation during cell division. Chromosomal instability, defined as increased probability of formation of novel chromosomal mutations compared to that of normal or control cells, appears to be a feature of tumorigenesis in vivo and in vitro (in cancer cell lines). Several enzymatic kinases are involved in maintaining proper chromosomal segregation and regulating cell cycle progression. One such kinase, cAMP-dependent protein kinase A (PKA), has a functional role in many aspects of cell signaling, metabolism, and proliferation. In this review, we will discuss the potential participation of PKA in chromosomal stability. This role includes the association of PKA with the centrosome, microtubules, and the anaphase-promoting complex/cyclosome (ACP/C), all key aspects of proper chromosomal segregation.
Collapse
Affiliation(s)
- Ludmila Matyakhina
- Unit on Genetics & Endocrinology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
31
|
Usuba T, Ishibashi Y, Okawa Y, Hirakawa T, Takada K, Ohkawa K. Purification and identification of monoubiquitin-phosphoglycerate mutase B complex from human colorectal cancer tissues. Int J Cancer 2001; 94:662-8. [PMID: 11745460 DOI: 10.1002/ijc.1524] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ubiquitin-conjugated proteins in human colorectal cancer tissues were analyzed by the immunoprecipitation with the antibody FK2 against conjugated ubiquitin followed with SDS-PAGE. In these immunoprecipitable proteins, a 38-kDa protein was abundant in the tumor regions but almost absent in the adjacent normal regions in 17/26 patients, thus we attempted to purify it. Using immunoaffinity chromatography with the antibody FK2 followed by gel filtration and SDS-PAGE, approximately 10 pmol of this protein was separated from 34 g of the pooled cancerous tissue and transferred onto a PVDF membrane. The 38-kDa protein was further digested with Achromobacter protease I, resulting in several peptide fragments. Amino acid sequences of these peptides showed complete sequence identity to those derived from either ubiquitin or phosphoglycerate mutase-B, suggesting that the 38-kDa protein is monoubiquitinated phosphoglycerate mutase-B, whose calculated mass is 37,369 Da. Western blot using an antibody against phosphoglycerate mutase-B revealed the presence of the 38-kDa protein in the anti-ubiquitin immunoprecipitates derived from the tumor regions, but not from normal counterparts. In addition, part of non-ubiquitinated phosphoglycerate mutase-B (29 kDa) was also found in the anti-ubiquitin immunoprecipitates, whose levels were higher in the tumor regions than in the adjacent normal regions. These results suggest that monoubiquitination of phosphoglycerate mutase-B as well as formation of a noncovalent complex containing ubiquitin and phosphoglycerate mutase-B increases in colorectal cancer and novel modification of phosphoglycerate mutase-B might have a pathophysiological role.
Collapse
Affiliation(s)
- T Usuba
- Department of Surgery, Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Severin F, Hyman AA, Piatti S. Correct spindle elongation at the metaphase/anaphase transition is an APC-dependent event in budding yeast. J Cell Biol 2001; 155:711-8. [PMID: 11724813 PMCID: PMC2150857 DOI: 10.1083/jcb.200104096] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Revised: 10/10/2001] [Accepted: 10/10/2001] [Indexed: 11/22/2022] Open
Abstract
At the metaphase to anaphase transition, chromosome segregation is initiated by the splitting of sister chromatids. Subsequently, spindles elongate, separating the sister chromosomes into two sets. Here, we investigate the cell cycle requirements for spindle elongation in budding yeast using mutants affecting sister chromatid cohesion or DNA replication. We show that separation of sister chromatids is not sufficient for proper spindle integrity during elongation. Rather, successful spindle elongation and stability require both sister chromatid separation and anaphase-promoting complex activation. Spindle integrity during elongation is dependent on proteolysis of the securin Pds1 but not on the activity of the separase Esp1. Our data suggest that stabilization of the elongating spindle at the metaphase to anaphase transition involves Pds1-dependent targets other than Esp1.
Collapse
Affiliation(s)
- F Severin
- Max Planck Institute for Cell Biology and Genetics, Dresden 01307, Germany
| | | | | |
Collapse
|
33
|
Gachet Y, Tournier S, Millar JB, Hyams JS. A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast. Nature 2001; 412:352-5. [PMID: 11460168 DOI: 10.1038/35085604] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).
Collapse
Affiliation(s)
- Y Gachet
- Department of Biology, University College London, Gower Street, London WC1E 6B, UK
| | | | | | | |
Collapse
|
34
|
Tatebe H, Goshima G, Takeda K, Nakagawa T, Kinoshita K, Yanagida M. Fission yeast living mitosis visualized by GFP-tagged gene products. Micron 2001; 32:67-74. [PMID: 10900382 DOI: 10.1016/s0968-4328(00)00023-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The fission yeast Schizosaccharomyces pombe has been used as a model organism to study cell cycle control and dynamic chromosome behavior during anaphase segregation as genetic and cytological approaches are easily amenable. To understand the role of gene products involved in these cellular events, it is important to determine intracellular localization of each gene product during the cell cycle. In this article, visualization in living cells of several gene products involved in cell cycle control and sister chromatid separation is described. The genes tagged with jellyfish green fluorescent protein (GFP) include sad1(+) (encoding a spindle pole body (SPB) protein), atb2(+) (alpha-tubulin), mis6(+) (a kinetochore protein), eat1(+) (a novel actin-like protein localized in the nucleus) and cdc13(+) (a mitotic cyclin). In addition, LacI which is bound to a DNA segment containing LacO repeat sequences integrated near the centromere (cen1) is visualized. These are useful to monitor cell cycle events in living cells.
Collapse
Affiliation(s)
- H Tatebe
- CREST Research Project, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, 606-8502, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Daum JR, Tugendreich S, Topper LM, Jorgensen PM, Hoog C, Hieter P, Gorbsky GJ. The 3F3/2 anti-phosphoepitope antibody binds the mitotically phosphorylated anaphase-promoting complex/cyclosome. Curr Biol 2000; 10:R850-2. [PMID: 11114529 DOI: 10.1016/s0960-9822(00)00836-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Tatebe H, Yanagida M. Cut8, essential for anaphase, controls localization of 26S proteasome, facilitating destruction of cyclin and Cut2. Curr Biol 2000; 10:1329-38. [PMID: 11084332 DOI: 10.1016/s0960-9822(00)00773-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Anaphase-promoting complex (APC)/cyclosome and 26S proteasome are respectively required for polyubiquitination and degradation of mitotic cyclin and anaphase inhibitor Cut2 (Pds1/securin). In fission yeast, mutant cells defective in cyclosome and proteasome fail to complete mitosis and have hypercondensed chromosomes and a short spindle. A similar phenotype is seen in a temperature-sensitive strain cut8-563 at 36 degrees C, but the molecular basis for Cut8 function is little understood. RESULTS At high temperature, the level of Cut8 greatly increases and it becomes essential to the progression of anaphase. In cut8 mutants, chromosome mis-segregation and aberrant spindle dynamics occur, but cytokinesis takes place with normal timing, leading to the cut phenotype. This is due to the fact that destruction of mitotic cyclin and Cut2 in the nucleus is dramatically delayed, though polyubiquitination of Cdc13 occurs in cut8 mutant. Cut8 is localized chiefly to the nucleus and nuclear periphery, a distribution highly similar to that of 26S proteasome. In cut8 mutant, however, 26S proteasome becomes mostly cytoplasmic, showing that Cut8 is needed for its proper localization. CONCLUSION Cut8 is a novel evolutionarily conserved heat-inducible regulator. It facilitates anaphase-promoting proteolysis by recruiting 26S proteasome to a functionally efficient nuclear location.
Collapse
Affiliation(s)
- H Tatebe
- CREST Research Project, Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
37
|
Grishchuk EL, Frolov DY, Savchenko GV. Overexpression ofapc10 + in fission yeast can suppress the temperature sensitivity ofnuc2-663 mutant but not its sterility. Mol Biol 2000. [DOI: 10.1007/bf02759608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Rudner AD, Hardwick KG, Murray AW. Cdc28 activates exit from mitosis in budding yeast. J Cell Biol 2000; 149:1361-76. [PMID: 10871278 PMCID: PMC2175138 DOI: 10.1083/jcb.149.7.1361] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2000] [Accepted: 05/17/2000] [Indexed: 11/30/2022] Open
Abstract
The activity of the cyclin-dependent kinase 1 (Cdk1), Cdc28, inhibits the transition from anaphase to G1 in budding yeast. CDC28-T18V, Y19F (CDC28-VF), a mutant that lacks inhibitory phosphorylation sites, delays the exit from mitosis and is hypersensitive to perturbations that arrest cells in mitosis. Surprisingly, this behavior is not due to a lack of inhibitory phosphorylation or increased kinase activity, but reflects reduced activity of the anaphase-promoting complex (APC), a defect shared with other mutants that lower Cdc28/Clb activity in mitosis. CDC28-VF has reduced Cdc20- dependent APC activity in mitosis, but normal Hct1- dependent APC activity in the G1 phase of the cell cycle. The defect in Cdc20-dependent APC activity in CDC28-VF correlates with reduced association of Cdc20 with the APC. The defects of CDC28-VF suggest that Cdc28 activity is required to induce the metaphase to anaphase transition and initiate the transition from anaphase to G1 in budding yeast.
Collapse
Affiliation(s)
- Adam D. Rudner
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| | - Kevin G. Hardwick
- Department of Physiology, University of California, San Francisco, California 94143-0444
| | - Andrew W. Murray
- Department of Physiology, University of California, San Francisco, California 94143-0444
- Department of Biochemistry, University of California, San Francisco, California 94143-0444
| |
Collapse
|
39
|
Yamashita YM, Nakaseko Y, Kumada K, Nakagawa T, Yanagida M. Fission yeast APC/cyclosome subunits, Cut20/Apc4 and Cut23/Apc8, in regulating metaphase-anaphase progression and cellular stress responses. Genes Cells 1999; 4:445-63. [PMID: 10526233 DOI: 10.1046/j.1365-2443.1999.00274.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The 20S cyclosome/APC complex promotes metaphase-anaphase transition by ubiquitinating its specific substrates such as mitotic cyclins and anaphase inhibitor Cut2/Pds1/securin. The complex has been shown to contain more than 10 proteins in budding yeast and frog. In fission yeast, however, only five (Cut4, Cut9, Nuc2, Apc10, Hcn1) have been identified. RESULTS More than five hundred temperature-sensitive mutants were screened for identifying those defective in mitotic anaphase. Fifty-five showed the cut (cell untimely torn) phenotype or metaphase-arrest phenotypes, 27 of them locating at new loci. Their extracts were run in sucrose gradient centrifugation, and four showed alterations in the sedimentation profiles. The gene products of cut20+ and cut23+ were thus identified. Phenotypes of cut20-100 mutant highly resemble cut4-533 in many ways: they are hypersensitive to canavanine and CdCl2, and suppressed by PKA-inactivating regulators, cAMP-dependent phosphodiesterase and PKA regulatory subunits. Cut20 interacts closely with Cut4 in the assembly process of cyclosome. But cut20 mutant differs from cut4, as a novel gene stw1+ suppresses cut20 mutant but not cut4. cut23-194 mutant cells are sterile and blocked at metaphase, but does not show sensitivity to the stress and cAMP. TPR repeat-containing Cut23 may not be the stable component of APC/cyclosome, and its level significantly fluctuates during cell cycle. Cut23 may be ubiquitinated and degraded in a cell cycle dependent fashion. CONCLUSIONS We identified two new subunits of fission yeast cyclosome/APC complex. Our observations indicate that cyclosome components are divided into several subgroups with distinctly different roles.
Collapse
Affiliation(s)
- Y M Yamashita
- CREST Research Project, Department of Biophysics, Graduate School of Science, Japan
| | | | | | | | | |
Collapse
|