1
|
Zhao Y, Hou K, Li Y, Hao S, Liu Y, Na Y, Li C, Cui J, Xu X, Wu X, Wang H. Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks. Nucleic Acids Res 2023; 51:12207-12223. [PMID: 37897354 PMCID: PMC10711563 DOI: 10.1093/nar/gkad940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Following a DNA double strand break (DSB), several nucleases and helicases coordinate to generate single-stranded DNA (ssDNA) with 3' free ends, facilitating precise DNA repair by homologous recombination (HR). The same nucleases can act on stalled replication forks, promoting nascent DNA degradation and fork instability. Interestingly, some HR factors, such as CtIP and BRCA1, have opposite regulatory effects on the two processes, promoting end resection at DSB but inhibiting the degradation of nascent DNA on stalled forks. However, the reason why nuclease actions are regulated by different mechanisms in two DNA metabolism is poorly understood. We show that human HELQ acts as a DNA end resection regulator, with opposing activities on DNA end resection at DSBs and on stalled forks as seen for other regulators. Mechanistically, HELQ helicase activity is required for EXO1-mediated DSB end resection, while ssDNA-binding capacity of HELQ is required for its recruitment to stalled forks, facilitating fork protection and preventing chromosome aberrations caused by replication stress. Here, HELQ synergizes with CtIP but not BRCA1 or BRCA2 to protect stalled forks. These findings reveal an unanticipated role of HELQ in regulating DNA end resection at DSB and stalled forks, which is important for maintaining genome stability.
Collapse
Affiliation(s)
- Yuqin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Kaiping Hou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Youhang Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yinan Na
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Chao Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Cui
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, China Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
2
|
Tóth A, Székvölgyi L, Vellai T. The genome loading model for the origin and maintenance of sex in eukaryotes. Biol Futur 2022; 73:345-357. [PMID: 36534301 DOI: 10.1007/s42977-022-00148-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Understanding why sexual reproduction-which involves syngamy (union of gametes) and meiosis-emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the "shorter" homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- András Tóth
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
3
|
He D, Du Z, Xu H, Bao X. Chl1, an ATP-Dependent DNA Helicase, Inhibits DNA:RNA Hybrids Formation at DSB Sites to Maintain Genome Stability in S. pombe. Int J Mol Sci 2022; 23:ijms23126631. [PMID: 35743069 PMCID: PMC9224301 DOI: 10.3390/ijms23126631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
As an ATP-dependent DNA helicase, human ChlR1/DDX11 (Chl1 in yeast) can unwind both DNA:RNA and DNA:DNA substrates in vitro. Studies have demonstrated that ChlR1 plays a vital role in preserving genome stability by participating in DNA repair and sister chromatid cohesion, whereas the ways in which the biochemical features of ChlR1 function in DNA metabolism are not well understood. Here, we illustrate that Chl1 localizes to double-strand DNA break (DSB) sites and restrains DNA:RNA hybrid accumulation at these loci. Mutation of Chl1 strongly impairs DSB repair capacity by homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways, and deleting RNase H further reduces DNA repair efficiency, which indicates that the enzymatic activities of Chl1 are needed in Schizosaccharomyces pombe. In addition, we found that the Rpc37 subunit of RNA polymerase III (RNA Pol III) interacts directly with Chl1 and that deletion of Chl1 has no influence on the localization of Rpc37 at DSB site, implying the role of Rpc37 in the recruitment of Chl1 to this site.
Collapse
Affiliation(s)
- Deyun He
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan 250353, China; (Z.D.); (H.X.)
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
- Correspondence: (D.H.); (X.B.)
| | - Zhen Du
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan 250353, China; (Z.D.); (H.X.)
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Huiling Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan 250353, China; (Z.D.); (H.X.)
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
| | - Xiaoming Bao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan 250353, China; (Z.D.); (H.X.)
- Key Laboratory of Shandong Microbial Engineering, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
- Correspondence: (D.H.); (X.B.)
| |
Collapse
|
4
|
Liu S, Hua Y, Wang J, Li L, Yuan J, Zhang B, Wang Z, Ji J, Kong D. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 2021; 184:1314-1329.e10. [PMID: 33626331 DOI: 10.1016/j.cell.2021.01.048] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022]
Abstract
End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.
Collapse
Affiliation(s)
- Sijie Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Hua
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingna Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyan Li
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Yuan
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ziyang Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Xu X, Yuan Y, Feng B, Deng W. CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Fruits are an essential part of a healthy, balanced diet and it is particularly important for fibre, essential vitamins, and trace elements. Improvement in the quality of fruit and elongation of shelf life are crucial goals for researchers. However, traditional techniques have some drawbacks, such as long period, low efficiency, and difficulty in the modification of target genes, which limit the progress of the study. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technique was developed and has become the most popular gene-editing technology with high efficiency, simplicity, and low cost. CRISPR/Cas9 technique is widely accepted to analyse gene function and complete genetic modification. This review introduces the latest progress of CRISPR/Cas9 technology in fruit quality improvement. For example, CRISPR/Cas9-mediated targeted mutagenesis of RIPENING INHIBITOR gene (RIN), Lycopene desaturase (PDS), Pectate lyases (PL), SlMYB12, and CLAVATA3 (CLV3) can affect fruit ripening, fruit bioactive compounds, fruit texture, fruit colouration, and fruit size. CRISPR/Cas9-mediated mutagenesis has become an efficient method to modify target genes and improve fruit quality.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yujin Yuan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Abstract
Meiosis is the basis of the generative reproduction of eukaryotes. The crucial first step is homologous chromosome pairing. In higher eukaryotes, micrometer-scale chromosomes, micrometer distances apart, are brought together by nanometer DNA sequences, at least a factor of 1000 size difference. Models of homology search, homologue movement, and pairing at the DNA level in higher eukaryotes are primarily based on studies with yeast where the emphasis is on the induction and repair of DNA double-strand breaks (DSB). For such a model, the very large nuclei of most plants and animals present serious problems. Homology search without DSBs cannot be explained by models based on DSB repair. The movement of homologues to meet each other and make contact at the molecular level is not understood. These problems are discussed and the conclusion is that at present practically nothing is known of meiotic homologue pairing in higher eukaryotes up to the formation of the synaptonemal complex, and that new, necessarily speculative models must be developed. Arguments are given that RNA plays a central role in homology search and a tentative model involving RNA in homology search is presented. A role of actin in homologue movement is proposed. The primary role of DSBs in higher eukaryotes is concluded to not be in paring but in the preparation of Holliday junctions, ultimately leading to chromatid exchange.
Collapse
Affiliation(s)
- J Sybenga
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands.,Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
7
|
Milo S, Harari-Misgav R, Hazkani-Covo E, Covo S. Limited DNA Repair Gene Repertoire in Ascomycete Yeast Revealed by Comparative Genomics. Genome Biol Evol 2020; 11:3409-3423. [PMID: 31693105 PMCID: PMC7145719 DOI: 10.1093/gbe/evz242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Ascomycota is the largest phylogenetic group of fungi that includes species important to human health and wellbeing. DNA repair is important for fungal survival and genome evolution. Here, we describe a detailed comparative genomic analysis of DNA repair genes in Ascomycota. We determined the DNA repair gene repertoire in Taphrinomycotina, Saccharomycotina, Leotiomycetes, Sordariomycetes, Dothideomycetes, and Eurotiomycetes. The subphyla of yeasts, Saccharomycotina and Taphrinomycotina, have a smaller DNA repair gene repertoire comparing to Pezizomycotina. Some genes were absent from most, if not all, yeast species. To study the conservation of these genes in Pezizomycotina, we used the Gain Loss Mapping Engine algorithm that provides the expectations of gain or loss of genes given the tree topology. Genes that were absent from most of the species of Taphrinomycotina or Saccharomycotina showed lower conservation in Pezizomycotina. This suggests that the absence of some DNA repair in yeasts is not random; genes with a tendency to be lost in other classes are missing. We ranked the conservation of DNA repair genes in Ascomycota. We found that Rad51 and its paralogs were less conserved than other recombinational proteins, suggesting that there is a redundancy between Rad51 and its paralogs, at least in some species. Finally, based on the repertoire of UV repair genes, we found conditions that differentially kill the wine pathogen Brettanomyces bruxellensis and not Saccharomyces cerevisiae. In summary, our analysis provides testable hypotheses to the role of DNA repair proteins in the genome evolution of Ascomycota.
Collapse
Affiliation(s)
- Shira Milo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| | - Reut Harari-Misgav
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Hebrew University, Rehovot, Israel
| |
Collapse
|
8
|
Covo S. Genomic Instability in Fungal Plant Pathogens. Genes (Basel) 2020; 11:E421. [PMID: 32295266 PMCID: PMC7230313 DOI: 10.3390/genes11040421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/29/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Fungi and fungal-like organisms (oomycetes) that cause diseases in plants have impacted human communities for centuries and probably from the dawn of agriculture. In modern agriculture, there is a constant race between new strategies to manage fungal plant pathogens and their ability to adapt. An important component in this race is fungal genetic diversity. Mechanisms such as sexual and parasexual recombination that contribute to the creation of novel allele combinations in fungal plant pathogens are briefly discussed in the first part of this review. Advances in genomics have enabled the investigation of chromosomal aberrations of agriculturally important fungal isolates at the nucleotide level. Some of these cases are summarized in the second part of this review; it is claimed that the effect of chromosomal aberrations on pathogenicity should be studied mechanistically. More data on the effect of gene copy number variations on phenotypes that are relevant to agriculture are especially needed. Genome rearrangements through translocations have shaped the genome of fungal plant pathogens by creating lineage-specific chromosome territories encoding for genes participating in plant diseases. Pathogenicity chromosomes are unique cases of such lineage-specific genetic elements, interestingly these chromosomes can be transferred horizontally and thus transforming a non-pathogenic strain to a pathogenic one. The third part of this review describes our attempts to reveal mutators in fungal plant pathogens by identifying fungi that lack important DNA repair genes or respond to DNA damage in an unconventional way. We found that a group of fungal plant pathogens lack conserved genes that are needed for an important Holliday junction resolution pathway. In addition, in Fusarium oxysporum, the rate-limiting step in dNTP production is not induced under DNA replication stress. This is very different from organisms from bacteria to humans. It remains to be seen if these mechanisms promote genetic instability in fungal plant pathogens.
Collapse
Affiliation(s)
- Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot 76100001, Israel
| |
Collapse
|
9
|
What Does the History of Research on the Repair of DNA Double-Strand Breaks Tell Us?-A Comprehensive Review of Human Radiosensitivity. Int J Mol Sci 2019; 20:ijms20215339. [PMID: 31717816 PMCID: PMC6862552 DOI: 10.3390/ijms20215339] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the molecular and cellular response to ionizing radiation (IR) has progressed considerably. This is notably the case for the repair and signaling of DNA double-strand breaks (DSB) that, if unrepaired, can result in cell lethality, or if misrepaired, can cause cancer. However, through the different protocols, techniques, and cellular models used during the last four decades, the DSB repair kinetics and the relationship between cellular radiosensitivity and unrepaired DSB has varied drastically, moving from all-or-none phenomena to very complex mechanistic models. To date, personalized medicine has required a reliable evaluation of the IR-induced risks that have become a medical, scientific, and societal issue. However, the molecular bases of the individual response to IR are still unclear: there is a gap between the moderate radiosensitivity frequently observed in clinic but poorly investigated in the publications and the hyper-radiosensitivity of rare but well-characterized genetic diseases frequently cited in the mechanistic models. This paper makes a comprehensive review of semantic issues, correlations between cellular radiosensitivity and unrepaired DSB, shapes of DSB repair curves, and DSB repair biomarkers in order to propose a new vision of the individual response to IR that would be more coherent with clinical reality.
Collapse
|
10
|
Shen C, Wang N, Huang C, Wang M, Zhang X, Lin Z. Population genomics reveals a fine-scale recombination landscape for genetic improvement of cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:494-505. [PMID: 31002209 DOI: 10.1111/tpj.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 05/28/2023]
Abstract
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population-scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population-scaled recombination rate between Gossypium hirsutum and G. arboreum and sub-genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome-wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high-recombination regions than were those of yield and early maturity traits. These results provide insights into the population-scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
11
|
Increased LOH due to Defective Sister Chromatid Cohesion Is due Primarily to Chromosomal Aneuploidy and not Recombination. G3-GENES GENOMES GENETICS 2017; 7:3305-3315. [PMID: 28983067 PMCID: PMC5633381 DOI: 10.1534/g3.117.300091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Loss of heterozygosity (LOH) is an important factor in cancer, pathogenic fungi, and adaptation to changing environments. The sister chromatid cohesion process (SCC) suppresses aneuploidy and therefore whole chromosome LOH. SCC is also important to channel recombinational repair to sister chromatids, thereby preventing LOH mediated by allelic recombination. There is, however, insufficient information about the relative roles that the SCC pathway plays in the different modes of LOH. Here, we found that the cohesin mutation mcd1-1, and other mutations in SCC, differentially affect the various types of LOH. The greatest effect, by three orders of magnitude, was on whole chromosome loss (CL). In contrast, there was little increase in recombination-mediated LOH, even for telomeric markers. Some of the LOH events that were increased by SCC mutations were complex, i.e., they were the result of several chromosome transactions. Although these events were independent of POL32, the most parsimonious way to explain the formation of at least some of them was break-induced replication through the centromere. Interestingly, the mcd1-1 pol32Δ double mutant showed a significant reduction in the rate of CL in comparison with the mcd1-1 single mutant. Our results show that defects in SCC allow the formation of complex LOH events that, in turn, can promote drug or pesticide resistance in diploid microbes that are pathogenic to humans or plants.
Collapse
|
12
|
Li M, Shen X, Zhao Y, Hu X, Hu F, Rao X. Better understanding of homologous recombination through a 12-week laboratory course for undergraduates majoring in biotechnology. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 45:329-335. [PMID: 28314074 DOI: 10.1002/bmb.21043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/08/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
Homologous recombination, a central concept in biology, is defined as the exchange of DNA strands between two similar or identical nucleotide sequences. Unfortunately, undergraduate students majoring in biotechnology often experience difficulties in understanding the molecular basis of homologous recombination. In this study, we developed and implemented a 12-week laboratory course for biotechnology undergraduates in which gene targeting in Streptococcus suis was used to facilitate their understanding of the basic concept and process of homologous recombination. Students worked in teams of two to select a gene of interest to create a knockout mutant using methods that relied on homologous recombination. By integrating abstract knowledge and practice in the process of scientific research, students gained hands-on experience in molecular biology techniques while learning about the principle and process of homologous recombination. The learning outcomes and survey-based assessment demonstrated that students substantially enhanced their understanding of how homologous recombination could be used to study gene function. Overall, the course was very effective for helping biotechnology undergraduates learn the theory and application of homologous recombination, while also yielding positive effects in developing confidence and scientific skills for future work in research. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):329-335, 2017.
Collapse
Affiliation(s)
- Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xiaodong Shen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Fuquan Hu
- Department of Microbiology, Third Military Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Trombetta B, D'Atanasio E, Cruciani F. Patterns of Inter-Chromosomal Gene Conversion on the Male-Specific Region of the Human Y Chromosome. Front Genet 2017; 8:54. [PMID: 28515739 PMCID: PMC5413550 DOI: 10.3389/fgene.2017.00054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
The male-specific region of the human Y chromosome (MSY) is characterized by the lack of meiotic recombination and it has long been considered an evolutionary independent region of the human genome. In recent years, however, the idea that human MSY did not have an independent evolutionary history begun to emerge with the discovery that inter-chromosomal gene conversion (ICGC) can modulate the genetic diversity of some portions of this genomic region. Despite the study of the dynamics of this molecular mechanism in humans is still in its infancy, some peculiar features and consequences of it can be summarized. The main effect of ICGC is to increase the allelic diversity of MSY by generating a significant excess of clustered single nucleotide polymorphisms (SNPs) (defined as groups of two or more SNPs occurring in close proximity and on the same branch of the Y phylogeny). On the human MSY, 13 inter-chromosomal gene conversion hotspots (GCHs) have been identified so far, involving donor sequences mainly from the X-chromosome and, to a lesser extent, from autosomes. Most of the GCHs are evolutionary conserved and overlap with regions involved in aberrant X–Y crossing-over. This review mainly focuses on the dynamics and the current knowledge concerning the recombinational landscape of the human MSY in the form of ICGC, on how this molecular mechanism may influence the evolution of the MSY, and on how it could affect the information enclosed within a genomic region which, until recently, appeared to be an evolutionary independent unit.
Collapse
Affiliation(s)
- Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Eugenia D'Atanasio
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di RomaRome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (CNR),Rome, Italy
| |
Collapse
|
14
|
VanBelzen DJ, Malik AS, Henthorn PS, Kornegay JN, Stedman HH. Mechanism of Deletion Removing All Dystrophin Exons in a Canine Model for DMD Implicates Concerted Evolution of X Chromosome Pseudogenes. Mol Ther Methods Clin Dev 2017; 4:62-71. [PMID: 28344992 PMCID: PMC5363321 DOI: 10.1016/j.omtm.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked, muscle-wasting disorder caused by mutations in the large, 2.4-Mb dystrophin gene. The majority of DMD-causing mutations are sporadic, multi-exon, frameshifting deletions, with the potential for variable immunological tolerance to the dystrophin protein from patient to patient. While systemic gene therapy holds promise in the treatment of DMD, immune responses to vectors and transgenes must first be rigorously evaluated in informative preclinical models to ensure patient safety. A widely used canine model for DMD, golden retriever muscular dystrophy, expresses detectable amounts of near full-length dystrophin due to alternative splicing around an intronic point mutation, thereby confounding the interpretation of immune responses to dystrophin-derived gene therapies. Here we characterize a naturally occurring deletion in a dystrophin-null canine, the German shorthaired pointer. The deletion spans 5.6 Mb of the X chromosome and encompasses all coding exons of the DMD and TMEM47 genes. The sequences surrounding the deletion breakpoints are virtually identical, suggesting that the deletion occurred through a homologous recombination event. Interestingly, the deletion breakpoints are within loci that are syntenically conserved among mammals, yet the high homology among this subset of ferritin-like loci is unique to the canine genome, suggesting lineage-specific concerted evolution of these atypical sequence elements.
Collapse
Affiliation(s)
- D. Jake VanBelzen
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alock S. Malik
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paula S. Henthorn
- Section of Medical Genetics, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joe N. Kornegay
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Hansell H. Stedman
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Mutator Phenotype and DNA Double-Strand Break Repair in BLM Helicase-Deficient Human Cells. Mol Cell Biol 2016; 36:2877-2889. [PMID: 27601585 PMCID: PMC5108877 DOI: 10.1128/mcb.00443-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
Bloom syndrome (BS), an autosomal recessive disorder of the BLM gene, predisposes sufferers to various cancers. To investigate the mutator phenotype and genetic consequences of DNA double-strand breaks (DSBs) in BS cells, we developed BLM helicase-deficient human cells by disrupting the BLM gene. Cells with a loss of heterozygosity (LOH) due to homologous recombination (HR) or nonhomologous end joining (NHEJ) can be restored with or without site-directed DSB induction. BLM cells exhibited a high frequency of spontaneous interallelic HR with crossover, but noncrossover events with long-tract gene conversions also occurred. Despite the highly interallelic HR events, BLM cells predominantly produced hemizygous LOH by spontaneous deletion. These phenotypes manifested during repair of DSBs. Both NHEJ and HR appropriately repaired DSBs in BLM cells, resulting in hemizygous and homozygous LOHs, respectively. However, the magnitude of the LOH was exacerbated in BLM cells, as evidenced by large deletions and long-tract gene conversions with crossover. BLM helicase suppresses the elongation of branch migration and crossover of double Holliday junctions (HJs) during HR repair, and a deficiency in this enzyme causes collapse, abnormal elongation, and/or preferable resolution to crossover of double HJs, resulting in a large-scale LOH. This mechanism underlies the predisposition for cancer in BS.
Collapse
|
16
|
Chrenek MA, Nickerson JM, Boatright JH. Clustered Regularly Interspaced Short Palindromic Repeats: Challenges in Treating Retinal Disease. Asia Pac J Ophthalmol (Phila) 2016; 5:304-8. [PMID: 27488072 PMCID: PMC4975549 DOI: 10.1097/apo.0000000000000225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ophthalmic researchers and clinicians arguably have led the way for safe, effective gene therapy, most notably with adeno-associated viral gene supplementation in the treatment for patients with Leber congenital amaurosis type 2 with mutations in the RPE65 gene. These successes notwithstanding, most other genetic retinal disease will be refractory to supplementation. The ideal gene therapy approach would correct gene mutations to restore normal function in the affected cells. Gene editing in which a mutant allele is inactivated or converted to sequence that restores normal function is hypothetically one such approach. Such editing involves site-specific digestion of mutant genomic DNA followed by repair. Previous experimental approaches were hampered by inaccurate and high rates of off-site lesioning and by overall low digestion rates. A new tool, clustered regularly interspaced short palindromic repeats coupled with the nuclease Cas9, may address both shortcomings. Some of the many challenges that must be addressed in moving clustered regularly interspaced short palindromic repeats coupled with the nuclease Cas9 therapies to the ophthalmic clinic are discussed here.
Collapse
Affiliation(s)
- Micah A. Chrenek
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - John M. Nickerson
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, Georgia
| |
Collapse
|
17
|
Roles of C-Terminal Region of Yeast and Human Rad52 in Rad51-Nucleoprotein Filament Formation and ssDNA Annealing. PLoS One 2016; 11:e0158436. [PMID: 27362509 PMCID: PMC4928909 DOI: 10.1371/journal.pone.0158436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/15/2016] [Indexed: 11/19/2022] Open
Abstract
Yeast Rad52 (yRad52) has two important functions at homologous DNA recombination (HR); annealing complementary single-strand DNA (ssDNA) molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity). Its human homolog (hRAD52) has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51) onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing.
Collapse
|
18
|
Fenoy IM, Bogado SS, Contreras SM, Gottifredi V, Angel SO. The Knowns Unknowns: Exploring the Homologous Recombination Repair Pathway in Toxoplasma gondii. Front Microbiol 2016; 7:627. [PMID: 27199954 PMCID: PMC4853372 DOI: 10.3389/fmicb.2016.00627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite of medical and veterinary importance which causes toxoplasmosis in humans. Great effort is currently being devoted toward the identification of novel drugs capable of targeting such illness. In this context, we believe that the thorough understanding of the life cycle of this model parasite will facilitate the identification of new druggable targets in T. gondii. It is important to exploit the available knowledge of pathways which could modulate the sensitivity of the parasite to DNA damaging agents. The homologous recombination repair (HRR) pathway may be of particular interest in this regard as its inactivation sensitizes other cellular models such as human cancer to targeted therapy. Herein we discuss the information available on T. gondii's HRR pathway from the perspective of its conservation with respect to yeast and humans. Special attention was devoted to BRCT domain-containing and end-resection associated proteins in T. gondii as in other experimental models such proteins have crucial roles in early/late steps or HRR and in the pathway choice for double strand break resolution. We conclude that T. gondii HRR pathway is a source of several lines of investigation that allow to to comprehend the extent of diversification of HRR in T. gondii. Such an effort will serve to determine if HRR could represent a potential targer for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Ignacio M Fenoy
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| | - Silvina S Bogado
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| | - Susana M Contreras
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| | - Vanesa Gottifredi
- Cell Cycle Genomic Instability Laboratory, Fundación Instituto Leloir, IIBBA-CONICET Chascomús, Argentina
| | - Sergio O Angel
- Laboratorio de Parasitología Molecular, IIB-INTECH, CONICET-UNSAM Chascomús, Argentina
| |
Collapse
|
19
|
Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer GJ, Li J, Yan J. Genome-wide recombination dynamics are associated with phenotypic variation in maize. THE NEW PHYTOLOGIST 2016; 210:1083-94. [PMID: 26720856 DOI: 10.1111/nph.13810] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 05/04/2023]
Abstract
Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement.
Collapse
Affiliation(s)
- Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Xiaohong Yang
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Hao Tong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shutu Xu
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhigang Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Weiya Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, USA
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jiansheng Li
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Cooper DL, Lovett ST. Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli. eLife 2016; 5. [PMID: 26845522 PMCID: PMC4786428 DOI: 10.7554/elife.10807] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
RadA (also known as 'Sms') is a highly conserved protein, found in almost all eubacteria and plants, with sequence similarity to the RecA strand exchange protein and a role in homologous recombination. We investigate here the biochemical properties of the E. coli RadA protein and several mutant forms. RadA is a DNA-dependent ATPase, a DNA-binding protein and can stimulate the branch migration phase of RecA-mediated strand transfer reactions. RadA cannot mediate synaptic pairing between homologous DNA molecules but can drive branch migration to extend the region of heteroduplex DNA, even without RecA. Unlike other branch migration factors RecG and RuvAB, RadA stimulates branch migration within the context of the RecA filament, in the direction of RecA-mediated strand exchange. We propose that RadA-mediated branch migration aids recombination by allowing the 3’ invading strand to be incorporated into heteroduplex DNA and to be extended by DNA polymerases. DOI:http://dx.doi.org/10.7554/eLife.10807.001 Damage to the DNA of a cell can cause serious harm, and so cells have several ways in which they can repair DNA. Most of these processes rely on the fact that each of the two strands that make up a DNA molecule can be used as a template to build the other strand. However, this is not possible if both strands of the DNA break in the same place. This form of damage can be repaired in a process called homologous recombination, which uses an identical copy of the broken DNA molecule to repair the broken strands. As a result, this process can only occur during cell division shortly after a cell has duplicated its DNA. One important step of homologous recombination is called strand exchange. This involves one of the broken strands swapping places with part of the equivalent strand in the intact DNA molecule. To do so, the strands of the intact DNA molecule separate in the region that will be used for the repair, and the broken strand can then use the other non-broken DNA strand as a template to replace any missing sections of DNA. The region of the intact DNA molecule where the strands need to separate often grows during this process: this is known as branch migration. In bacteria, a protein called RecA plays a fundamental role in controlling strand exchange, but there are other, similar proteins whose roles in homologous recombination are less well known. Cooper and Lovett have now purified one of these proteins, called RadA, from the Escherichia coli species of bacteriato study how it affects homologous recombination. This revealed that RadA can bind to single-stranded DNA and stimulate branch migration to increase the rate of homologous recombination. Further investigation revealed that RadA allows branch migration to occur even when RecA is missing, but that RadA is unable to begin strand exchange if RecA is not present. The process of branch migration stabilizes the DNA molecules during homologous recombination and may also allow the repaired DNA strand to engage the machinery that copies DNA. Cooper and Lovett also used genetic techniques to alter the structure of specific regions of RadA and found out which parts of the protein affect the ability of RadA to stimulate branch migration. Future challenges are to find out what effect RadA has on the structure of RecA and how RadA promotes branch migration. DOI:http://dx.doi.org/10.7554/eLife.10807.002
Collapse
Affiliation(s)
- Deani L Cooper
- Department of Biology, Brandeis University, Waltham, United States.,Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| | - Susan T Lovett
- Department of Biology, Brandeis University, Waltham, United States.,Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
21
|
Khan A, Shaik JS, Behnke M, Wang Q, Dubey JP, Lorenzi HA, Ajioka JW, Rosenthal BM, Sibley LD. NextGen sequencing reveals short double crossovers contribute disproportionately to genetic diversity in Toxoplasma gondii. BMC Genomics 2014; 15:1168. [PMID: 25532601 PMCID: PMC4326188 DOI: 10.1186/1471-2164-15-1168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/16/2014] [Indexed: 11/30/2022] Open
Abstract
Background Toxoplasma gondii is a widespread protozoan parasite of animals that causes zoonotic disease in humans. Three clonal variants predominate in North America and Europe, while South American strains are genetically diverse, and undergo more frequent recombination. All three northern clonal variants share a monomorphic version of chromosome Ia (ChrIa), which is also found in unrelated, but successful southern lineages. Although this pattern could reflect a selective advantage, it might also arise from non-Mendelian segregation during meiosis. To understand the inheritance of ChrIa, we performed a genetic cross between the northern clonal type 2 ME49 strain and a divergent southern type 10 strain called VAND, which harbors a divergent ChrIa. Results NextGen sequencing of haploid F1 progeny was used to generate a genetic map revealing a low level of conventional recombination, with an unexpectedly high frequency of short, double crossovers. Notably, both the monomorphic and divergent versions of ChrIa were isolated with equal frequency. As well, ChrIa showed no evidence of being a sex chromosome, of harboring an inversion, or distorting patterns of segregation. Although VAND was unable to self fertilize in the cat, it underwent successful out-crossing with ME49 and hybrid survival was strongly associated with inheritance of ChrIII from ME49 and ChrIb from VAND. Conclusions Our findings suggest that the successful spread of the monomorphic ChrIa in the wild has not been driven by meiotic drive or related processes, but rather is due to a fitness advantage. As well, the high frequency of short double crossovers is expected to greatly increase genetic diversity among progeny from genetic crosses, thereby providing an unexpected and likely important source of diversity. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1168) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660S, Euclid Ave,, St, Louis, Mo 63110, USA.
| |
Collapse
|
22
|
Bengesser K, Vogt J, Mussotter T, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H. Analysis of crossover breakpoints yields new insights into the nature of the gene conversion events associated with large NF1 deletions mediated by nonallelic homologous recombination. Hum Mutat 2013; 35:215-26. [PMID: 24186807 DOI: 10.1002/humu.22473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
Abstract
Large NF1 deletions are mediated by nonallelic homologous recombination (NAHR). An in-depth analysis of gene conversion operating in the breakpoint-flanking regions of large NF1 deletions was performed to investigate whether the rate of discontinuous gene conversion during NAHR with crossover is increased, as has been previously noted in NAHR-mediated rearrangements. All 20 germline type-1 NF1 deletions analyzed were mediated by NAHR associated with continuous gene conversion within the breakpoint-flanking regions. Continuous gene conversion was also observed in 31/32 type-2 NF1 deletions investigated. In contrast to the meiotic type-1 NF1 deletions, type-2 NF1 deletions are predominantly of post-zygotic origin. Our findings therefore imply that the mitotic as well as the meiotic NAHR intermediates of large NF1 deletions are processed by long-patch mismatch repair (MMR), thereby ensuring gene conversion tract continuity instead of the discontinuous gene conversion that is characteristic of short-patch repair. However, the single type-2 NF1 deletion not exhibiting continuous gene conversion was processed without MMR, yielding two different deletion-bearing chromosomes, which were distinguishable in terms of their breakpoint positions. Our findings indicate that MMR failure during NAHR, followed by post-meiotic/mitotic segregation, has the potential to give rise to somatic mosaicism in human genomic rearrangements by generating breakpoint heterogeneity.
Collapse
|
23
|
Posttranslational modifications of HIV-1 integrase by various cellular proteins during viral replication. Viruses 2013; 5:1787-801. [PMID: 23863879 PMCID: PMC3738961 DOI: 10.3390/v5071787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
HIV-1 integrase (IN) is a key viral enzyme during HIV-1 replication that catalyzes the insertion of viral DNA into the host genome. Recent studies have provided important insights into the multiple posttranslational modifications (PTMs) of IN (e.g., ubiquitination, SUMOylation, acetylation and phosphorylation), which regulate its multifaceted functions. A number of host cellular proteins, including Lens Epithelium‑derived Growth factor (LEDGF/p75), p300 and Ku70 have been shown to interact with IN and be involved in the PTM process of IN, either facilitating or counteracting the IN PTMs. Although previous studies have revealed much about the important roles of IN PTMs, how IN functions are fine-tuned by these PTMs under the physiological setting still needs to be determined. Here, we review the advances in the understanding of the mechanisms and roles of multiple IN PTMs.
Collapse
|
24
|
Rockwood J, Mao D, Grogan DW. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications. MICROBIOLOGY-SGM 2013; 159:1888-1899. [PMID: 23832004 DOI: 10.1099/mic.0.067942-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although homologous recombination (HR) is known to influence the structure, stability, and evolution of microbial genomes, few of its functional properties have been measured in cells of hyperthermophilic archaea. The present study manipulated various properties of the parental DNAs in high-resolution assays of Sulfolobus acidocaldarius transformation, and measured the impact on the efficiency and pattern of marker transfer to the recipient chromosome. The relative orientation of homologous sequences, the type and position of chromosomal mutation being replaced, and the length of DNA flanking the marked region all affected the efficiency, linkage, tract continuity, and other parameters of marker transfer. Effects predicted specifically by the classical reciprocal-exchange model of HR were not observed. One analysis observed only 90 % linkage between markers defined by adjacent bases; in another series of experiments, sequence divergence up to 4 % had no detectable impact on overall efficiency of HR or on the co-transfer of a distal non-selected marker. The effects of introducing DNA via conjugation, rather than transformation, were more difficult to assess, but appeared to increase co-transfer (i.e. linkage) of relatively distant non-selected markers. The results indicate that HR events between gene-sized duplex DNAs and the S. acidocaldarius chromosome typically involve neither crossing over nor interference from a mismatch-activated anti-recombination system. Instead, the donor DNA may anneal to a transient chromosomal gap, as in the mechanism proposed for oligonucleotide-mediated transformation of Sulfolobus and other micro-organisms.
Collapse
Affiliation(s)
- Jananie Rockwood
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| | - Dominic Mao
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| | - Dennis W Grogan
- Department of Biological Sciences, University of Cincinnati, 614 Rieveschl Hall, ML0006, Clifton Court, Cincinnati, OH 45221-0006, USA
| |
Collapse
|
25
|
PCNA is efficiently loaded on the DNA recombination intermediate to modulate polymerase δ, η, and ζ activities. Proc Natl Acad Sci U S A 2013; 110:7672-7. [PMID: 23610416 DOI: 10.1073/pnas.1222241110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is required for DNA homologous recombination (HR), but its exact role is unclear. Here, we investigated the loading of PCNA onto a synthetic D-loop (DL) intermediate of HR and the functional interactions of PCNA with Rad51 recombinase and DNA polymerase (Pol) δ, Pol η, and Pol ζ. PCNA was loaded onto the synthetic DL as efficiently as it was loaded onto a primed DNA substrate. Efficient PCNA loading requires Replication Protein A, which is associated with the displaced ssDNA loop and provides a binding site for the clamp-loader Replication Factor C. Loaded PCNA greatly stimulates DNA synthesis by Pol δ within the DL but does not affect primer recognition by Pol δ. This suggests that the essential role of PCNA in HR is not recruitment of Pol δ to the DL but stimulation of Pol δ to displace a DNA strand during DL extension. Both Pol η and Pol ζ extended the DL more efficiently than Pol δ in the absence of PCNA, but little or no stimulation was observed in the presence of PCNA. Finally, Rad51 inhibited both the loading of PCNA onto the DL and the extension of the DL by Pol δ and Pol η. However, preloaded PCNA on the DL counteracts the Rad51-mediated inhibition of the DL extension. This suggests that the inhibition of postinvasion DNA synthesis by Rad51 occurs mostly at the step of PCNA loading.
Collapse
|
26
|
Campo VA, Patenaude AM, Kaden S, Horb L, Firka D, Jiricny J, Di Noia JM. MSH6- or PMS2-deficiency causes re-replication in DT40 B cells, but it has little effect on immunoglobulin gene conversion or on repair of AID-generated uracils. Nucleic Acids Res 2013; 41:3032-46. [PMID: 23314153 PMCID: PMC3597665 DOI: 10.1093/nar/gks1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian antibody repertoire is shaped by somatic hypermutation (SHM) and class switch recombination (CSR) of the immunoglobulin (Ig) loci of B lymphocytes. SHM and CSR are triggered by non-canonical, error-prone processing of G/U mismatches generated by activation-induced deaminase (AID). In birds, AID does not trigger SHM, but it triggers Ig gene conversion (GC), a ‘homeologous’ recombination process involving the Ig variable region and proximal pseudogenes. Because recombination fidelity is controlled by the mismatch repair (MMR) system, we investigated whether MMR affects GC in the chicken B cell line DT40. We show here that Msh6−/− and Pms2−/− DT40 cells display cell cycle defects, including genomic re-replication. However, although IgVλ GC tracts in MMR-deficient cells were slightly longer than in normal cells, Ig GC frequency, donor choice or the number of mutations per sequence remained unaltered. The finding that the avian MMR system, unlike that of mammals, does not seem to contribute towards the processing of G/U mismatches in vitro could explain why MMR is unable to initiate Ig GC in this species, despite initiating SHM and CSR in mammalian cells. Moreover, as MMR does not counteract or govern Ig GC, we report a rare example of ‘homeologous’ recombination insensitive to MMR.
Collapse
Affiliation(s)
- Vanina A Campo
- Institut de Recherches Cliniques de Montréal, Division of Immunity and Viral Infections, Montréal, H2W 1R7 Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Covo S, Ma W, Westmoreland JW, Gordenin DA, Resnick MA. Understanding the origins of UV-induced recombination through manipulation of sister chromatid cohesion. Cell Cycle 2012; 11:3937-44. [PMID: 22987150 PMCID: PMC3507489 DOI: 10.4161/cc.21945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet light (UV) can provoke genome instability, partly through its ability to induce homologous recombination (HR). However, the mechanism(s) of UV-induced recombination is poorly understood. Although double-strand breaks (DSBs) have been invoked, there is little evidence for their generation by UV. Alternatively, single-strand DNA lesions that stall replication forks could provoke recombination. Recent findings suggest efficient initiation of UV-induced recombination in G1 through processing of closely spaced single-strand lesions to DSBs. However, other scenarios are possible, since the recombination initiated in G1 can be completed in the following stages of the cell cycle. We developed a system that could address UV-induced recombination events that start and finish in G2 by manipulating the activity of the sister chromatid cohesion complex. Here we show that sister-chromatid cohesion suppresses UV-induced recombination events that are initiated and resolved in G2. By comparing recombination frequencies and survival between UV and ionizing radiation, we conclude that a substantial portion of UV-induced recombination occurs through DSBs. This notion is supported by a direct physical observation of UV-induced DSBs that are dependent on nucleotide excision repair. However, a significant role of nonDSB intermediates in UV-induced recombination cannot be excluded.
Collapse
Affiliation(s)
- Shay Covo
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC, USA.
| | | | | | | | | |
Collapse
|
28
|
Zhang C, Song Y, Cheng ZH, Wang YX, Zhu J, Ma H, Xu L, Yang ZN. The Arabidopsis thaliana DSB formation (AtDFO) gene is required for meiotic double-strand break formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:271-81. [PMID: 22694475 DOI: 10.1111/j.1365-313x.2012.05075.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA double-strand break (DSB) formation is the initial event for meiotic recombination catalyzed by the conserved Spo11 protein. In Arabidopsis, several proteins have been reported to be involved in DSB formation. Here, we report an Arabidopsis DSB forming (DFO) gene in Arabidopsis that is involved in DSB formation. The dfo mutant exhibits reduced fertility, producing polyads with an abnormal number of microspores, unlike the tetrads in the wild type. The dfo meiocytes were defective in homologous chromosome synapsis and segregation. Genetic analysis revealed that the homologous recombination of Atdfo-1 is severely affected in meiotic prophase I. DFO encodes a protein without any known conserved domain. There was no homologue identified outside the plant kingdom, indicating that AtDFO is a plant-specific protein. AtMRE11 has been reported to be responsible for processing SPO11-generated DSBs. The Atmre11 mutant displays chromosome fragmentation during meiosis. However, the Atdfo Atmre11 double mutant had no such chromosome fragmentation, indicating that AtDFO is required for DSB formation.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biology, East China Normal University, 3663 North Zhong Shan Road, Shanghai 200062, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gene conversion occurs within the mating-type locus of Cryptococcus neoformans during sexual reproduction. PLoS Genet 2012; 8:e1002810. [PMID: 22792079 PMCID: PMC3390403 DOI: 10.1371/journal.pgen.1002810] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/23/2012] [Indexed: 12/30/2022] Open
Abstract
Meiotic recombination of sex chromosomes is thought to be repressed in organisms with heterogametic sex determination (e.g. mammalian X/Y chromosomes), due to extensive divergence and chromosomal rearrangements between the two chromosomes. However, proper segregation of sex chromosomes during meiosis requires crossing-over occurring within the pseudoautosomal regions (PAR). Recent studies reveal that recombination, in the form of gene conversion, is widely distributed within and may have played important roles in the evolution of some chromosomal regions within which recombination was thought to be repressed, such as the centromere cores of maize. Cryptococcus neoformans, a major human pathogenic fungus, has an unusually large mating-type locus (MAT, >100 kb), and the MAT alleles from the two opposite mating-types show extensive nucleotide sequence divergence and chromosomal rearrangements, mirroring characteristics of sex chromosomes. Meiotic recombination was assumed to be repressed within the C. neoformans MAT locus. A previous study identified recombination hot spots flanking the C. neoformans MAT, and these hot spots are associated with high GC content. Here, we investigated a GC-rich intergenic region located within the MAT locus of C. neoformans to establish if this region also exhibits unique recombination behavior during meiosis. Population genetics analysis of natural C. neoformans isolates revealed signals of homogenization spanning this GC-rich intergenic region within different C. neoformans lineages, consistent with a model in which gene conversion of this region during meiosis prevents it from diversifying within each lineage. By analyzing meiotic progeny from laboratory crosses, we found that meiotic recombination (gene conversion) occurs around the GC-rich intergenic region at a frequency equal to or greater than the meiotic recombination frequency observed in other genomic regions. We discuss the implications of these findings with regards to the possible functional and evolutionary importance of gene conversion within the C. neoformans MAT locus and, more generally, in fungi. Recombination has been thought to be repressed within sex chromosomes, as well as within the mating-type (MAT) loci in many fungi, due to the highly diverged and rearranged nature between alleles defining opposite sexes or mating-types. However, it has long been appreciated that recombination can occur within these presumptive recombinational “cold spots,” and recent studies reveal that recombination, including gene conversion, can occur at a frequency higher than previously appreciated and could play important roles in shaping evolution of these chromosomal regions. Here, we provide evidence that, during sexual reproduction of the human pathogenic fungus Cryptococcus neoformans, recombination (gene conversion) occurs across a GC-rich intergenic region within the MAT locus. The frequency of this gene conversion is comparable to those of typical meiotic recombination events observed in other chromosomal regions. This is in accord with population genetics analyses, which indicate homogenization between alleles of opposite mating-types within the intergenic region. Gene conversion within these highly rearranged chromosomal regions may serve to ensure proper meiosis and/or rejuvenate genes/chromosomal regions within MAT that are otherwise facing irreversible evolutionary decay. In conclusion, our study provides further experimental evidence that at least some recombinational “cold spots” are not that cold, after all.
Collapse
|
30
|
Chow EWL, Morrow CA, Djordjevic JT, Wood IA, Fraser JA. Microevolution of Cryptococcus neoformans driven by massive tandem gene amplification. Mol Biol Evol 2012; 29:1987-2000. [PMID: 22334577 DOI: 10.1093/molbev/mss066] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The subtelomeric regions of organisms ranging from protists to fungi undergo a much higher rate of rearrangement than is observed in the rest of the genome. While characterizing these ~40-kb regions of the human fungal pathogen Cryptococcus neoformans, we have identified a recent gene amplification event near the right telomere of chromosome 3 that involves a gene encoding an arsenite efflux transporter (ARR3). The 3,177-bp amplicon exists in a tandem array of 2-15 copies and is present exclusively in strains with the C. neoformans var. grubii subclade VNI A5 MLST profile. Strains bearing the amplification display dramatically enhanced resistance to arsenite that correlates with the copy number of the repeat; the origin of increased resistance was verified as transport-related by functional complementation of an arsenite transporter mutant of Saccharomyces cerevisiae. Subsequent experimental evolution in the presence of increasing concentrations of arsenite yielded highly resistant strains with the ARR3 amplicon further amplified to over 50 copies, accounting for up to ~1% of the whole genome and making the copy number of this repeat as high as that seen for the ribosomal DNA. The example described here therefore represents a rare evolutionary intermediate-an array that is currently in a state of dynamic flux, in dramatic contrast to relatively common, static relics of past tandem duplications that are unable to further amplify due to nucleotide divergence. Beyond identifying and engineering fungal isolates that are highly resistant to arsenite and describing the first reported instance of microevolution via massive gene amplification in C. neoformans, these results suggest that adaptation through gene amplification may be an important mechanism that C. neoformans employs in response to environmental stresses, perhaps including those encountered during infection. More importantly, the ARR3 array will serve as an ideal model for further molecular genetic analyses of how tandem gene duplications arise and expand.
Collapse
Affiliation(s)
- Eve W L Chow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | |
Collapse
|
31
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
32
|
A conditional mouse model for measuring the frequency of homologous recombination events in vivo in the absence of essential genes. Mol Cell Biol 2011; 31:3593-602. [PMID: 21709021 DOI: 10.1128/mcb.00848-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ability to detect and repair DNA damage is crucial to the prevention of various diseases. Loss of function of genes involved in these processes is known to result in significant developmental defects and/or predisposition to cancer. One such DNA repair mechanism, homologous recombination, has the capacity to repair a wide variety of lesions. Knockout mouse models of genes thought to be involved in DNA repair processes are frequently lethal, making in vivo studies very difficult, if not impossible. Therefore, we set out to develop an in vivo conditional mouse model system to facilitate investigations into the involvement of essential genes in homologous recombination. To test our model, we measured the frequency of spontaneous homologous recombination using the pink-eyed unstable mouse model, in which we conditionally excised either Blm or full-length Brca1 (breast cancer 1, early onset). These two genes are hypothesized to have opposing roles in homologous recombination. In summary, our in vivo data supports in vitro studies suggesting that BLM suppresses homologous recombination, while full-length BRCA1 promotes this process.
Collapse
|
33
|
Wang Y, Smith K, Waldman BC, Waldman AS. Depletion of the bloom syndrome helicase stimulates homology-dependent repair at double-strand breaks in human chromosomes. DNA Repair (Amst) 2011; 10:416-26. [PMID: 21300576 PMCID: PMC3062690 DOI: 10.1016/j.dnarep.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/10/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208,
| | - Krissy Smith
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208,
| | - Barbara Criscuolo Waldman
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208,
| | - Alan S. Waldman
- Corresponding Author-- Department of Biological Science, 700 Sumter Street, University of South Carolina, Columbia, SC 29208, , telephone: 803-777-8405, fax: 803-777-4002
| |
Collapse
|
34
|
Discontinuity and limited linkage in the homologous recombination system of a hyperthermophilic archaeon. J Bacteriol 2010; 192:4660-8. [PMID: 20644140 DOI: 10.1128/jb.00447-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genetic transformation of Sulfolobus acidocaldarius by a multiply marked pyrE gene provided a high-resolution assay of homologous recombination in a hyperthermophilic archaeon. Analysis of 100 Pyr(+) transformants revealed that this recombination system could transfer each of 23 nonselected base pair substitutions to the recipient chromosome along with the selected marker. In 30% of the recombinants, donor markers were transferred as multiple blocks. In at least 40% of the recombinants, donor markers separated by 5 or 6 bp segregated from each other, whereas similar markers separated by 2 bp did not segregate. Among intermarker intervals, the frequency of recombination tract endpoints varied 40-fold, but in contrast to other recombination systems, it did not correlate with the length of the interval. The average length of donor tracts (161 bp) and the frequent generation of multiple tracts seemed generally consistent with the genetic properties observed previously in S. acidocaldarius conjugation. The efficiency with which short intervals of diverged pyrE sequence were incorporated into the genome raises questions about the threat of ectopic recombination in Sulfolobus spp. mediated by this apparently efficient yet permissive system.
Collapse
|
35
|
Chen JM, Cooper DN, Férec C, Kehrer-Sawatzki H, Patrinos GP. Genomic rearrangements in inherited disease and cancer. Semin Cancer Biol 2010; 20:222-33. [PMID: 20541013 DOI: 10.1016/j.semcancer.2010.05.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/22/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
Genomic rearrangements in inherited disease and cancer involve gross alterations of chromosomes or large chromosomal regions and can take the form of deletions, duplications, insertions, inversions or translocations. The characterization of a considerable number of rearrangement breakpoints has now been accomplished at the nucleotide sequence level, thereby providing an invaluable resource for the detailed study of the mutational mechanisms which underlie genomic recombination events. A better understanding of these mutational mechanisms is vital for improving the design of mutation detection strategies. At least five categories of mutational mechanism are known to give rise to genomic rearrangements: (i) homologous recombination including non-allelic homologous recombination (NAHR), gene conversion, single strand annealing (SSA) and break-induced replication (BIR), (ii) non-homologous end joining (NHEJ), (iii) microhomology-mediated replication-dependent recombination (MMRDR), (iv) long interspersed element-1 (LINE-1 or L1)-mediated retrotransposition and (v) telomere healing. Focussing on the first three of these general mechanisms, we compare and contrast their hallmark characteristics, and discuss the role of various local DNA sequence features (e.g. recombination-promoting motifs, repetitive sequences and sequences capable of non-B DNA formation) in mediating the recombination events that underlie gross genomic rearrangements. Finally, we explore how studies both at the level of the gene (using the neurofibromatosis type-1 gene as an example) and the whole genome (using data derived from cancer genome sequencing studies) are shaping our understanding of the impact of genomic rearrangements as a cause of human genetic disease.
Collapse
Affiliation(s)
- Jian-Min Chen
- Etablissement Français du Sang (EFS) - Bretagne, Brest, France.
| | | | | | | | | |
Collapse
|
36
|
The pol3-t hyperrecombination phenotype and DNA damage-induced recombination in Saccharomyces cerevisiae is RAD50 dependent. J Biomed Biotechnol 2009; 2009:312710. [PMID: 19834566 PMCID: PMC2761004 DOI: 10.1155/2009/312710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/21/2009] [Indexed: 11/18/2022] Open
Abstract
The DNA polymerase delta (POL3/CDC2) allele pol3-t of Saccharomyces cerevisiae has previously been shown to be sensitive to methylmethanesulfonate (MMS) and has been proposed to be involved in base excision repair. Our results, however, show that the pol3-t mutation is synergistic for MMS sensitivity with MAG1, a known base excision repair gene, but it is epistatic with rad50Delta, suggesting that POL3 may be involved not only in base excision repair but also in a RAD50 dependent function. We further studied the interaction of pol3-t with rad50Delta by examining their effect on spontaneous, MMS-, UV-, and ionizing radiation-induced intrachromosomal recombination. We found that rad50Delta completely abolishes the elevated spontaneous frequency of intrachromosomal recombination in the pol3-t mutant and significantly decreases UV- and MMS-induced recombination in both POL3 and pol3-t strains. Interestingly, rad50Delta had no effect on gamma-ray-induced recombination in both backgrounds between 0 and 50 Gy. Finally, the deletion of RAD50 had no effect on the elevated frequency of homologous integration conferred by the pol3-t mutation. RAD50 is possibly involved in resolution of replication forks that are stalled by mutagen-induced external DNA damage, or internal DNA damage produced by growing the pol3-t mutant at the restrictive temperature.
Collapse
|
37
|
Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication. Mol Cell Biol 2009; 29:5441-54. [PMID: 19651902 DOI: 10.1128/mcb.00256-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Double-strand breaks (DSBs) are harmful DNA lesions that can generate chromosomal rearrangements or chromosome losses if not properly repaired. Despite their association with a number of genetic diseases and cancer, the mechanisms by which DSBs cause rearrangements remain unknown. Using a newly developed experimental assay for the analysis of translocations occurring between two chromosomes in Saccharomyces cerevisiae, we found that a single DSB located on one chromosome uses a short homologous sequence found in a third chromosome as a bridge to complete DSB repair, leading to chromosomal translocations. Such translocations are dramatically reduced when the short homologous sequence on the third chromosome is deleted. Translocations rely on homologous recombination (HR) proteins, such as Rad51, Rad52, and Rad59, as well as on the break-induced replication-specific protein Pol32 and on Srs2, but not on Ku70. Our results indicate that a single chromosomal DSB efficiently searches for short homologous sequences throughout the genome for its repair, leading to triparental translocations between heterologous chromosomes. Given the abundance of repetitive DNA in eukaryotic genomes, the results of this study open the possibility that HR rather than nonhomologous end joining may be a major source of chromosomal translocations.
Collapse
|
38
|
Mazloum N, Holloman WK. Second-end capture in DNA double-strand break repair promoted by Brh2 protein of Ustilago maydis. Mol Cell 2009; 33:160-70. [PMID: 19187759 PMCID: PMC2663533 DOI: 10.1016/j.molcel.2008.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/18/2008] [Accepted: 12/18/2008] [Indexed: 11/28/2022]
Abstract
Brh2 plays a central role in the homologous recombination system of Ustilago maydis, mediating delivery of Rad51 to single-stranded DNA. Here we report that Brh2 can pair the displaced strand of a D loop with a complementary single-stranded DNA to form a duplexed, or double, D loop. The reaction emulates the second-end capture step envisioned in models of DNA double-strand break repair. This second-end capture reaction promoted by Brh2 proceeds efficiently when performed in the presence of Rad51 under conditions that block annealing by Rad52, or when the second single-stranded DNA substrate is replaced by double-stranded DNA. In a coupled reaction that requires extension of the D loop more than 200 nt by DNA synthesis in order to reveal a complementary region, Brh2 was also able to promote second-end capture and thus model a synthesis-dependent strand-annealing mechanism.
Collapse
Affiliation(s)
- Nayef Mazloum
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, NY 10021
| | - William K. Holloman
- Department of Microbiology and Immunology, Cornell University Weill Medical College, New York, NY 10021
| |
Collapse
|
39
|
Culligan KM, Britt AB. Both ATM and ATR promote the efficient and accurate processing of programmed meiotic double-strand breaks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:629-38. [PMID: 18435824 DOI: 10.1111/j.1365-313x.2008.03530.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ATM and ATR protein kinases play central roles in the cellular response to double-strand breaks (DSBs) by regulating DNA repair, cell-cycle arrest and apoptosis. During meiosis, SPO11-dependent DSBs are generated, initiating recombination between homologous chromosomes. Previous studies in mice and plants have shown that defects in ATM result in the appearance of abnormally fragmented chromosomes. However, the role of ATR in promoting normal meiosis has not yet been elucidated. Employing null Arabidopsis mutants of ATR and ATM, we demonstrate here that although atr mutants display no obvious defects in any phase of meiotic progression, the combination of defects in atr and atm exacerbates the fragmentation observed in the atm single mutant, prevents complete synapsis of chromosomes, and results in extensive and persistent interactions between non-homologous DNAs. The observed non-homologous interactions require the induction of programmed breaks: the combination of either the atm single or the atr atm double mutant with a spo11 defect eliminates the ectopic interactions observed in the double mutant, as well as significantly reducing the fragmentation seen in atm or in atr atm. Our results suggest that ATM is required for the efficient processing of SPO11-dependent DSBs during meiosis. They also indicate that ATM and ATR act redundantly to inhibit sustained interactions between non-homologous chromatids, and that these ectopic interactions require SPO11 activity.
Collapse
Affiliation(s)
- Kevin M Culligan
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA.
| | | |
Collapse
|
40
|
Johzuka-Hisatomi Y, Terada R, Iida S. Efficient transfer of base changes from a vector to the rice genome by homologous recombination: involvement of heteroduplex formation and mismatch correction. Nucleic Acids Res 2008; 36:4727-35. [PMID: 18632759 PMCID: PMC2504299 DOI: 10.1093/nar/gkn451] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome by homologous recombination. Through a gene-targeting procedure with positive–negative selection, we previously reported the generation of fertile transgenic rice plants with a positive marker inserted into the Adh2 gene by using an Agrobacterium-mediated transformation vector containing the positive marker flanked by two 6-kb homologous segments for recombination. We describe here that base changes within the homologous segments in the vector could be efficiently transferred into the corresponding genomic sequences of rice recombinants. Interestingly, a few sequences from the host genome were flanked by the changed sequences derived from the vector in most of the recombinants. Because a single-stranded T-DNA molecule in Agrobacterium-mediated transformation is imported into the plant nucleus and becomes double-stranded, both single-stranded and double-stranded T-DNA intermediates can serve in gene-targeting processes. Several alternative models, including the occurrence of the mismatch correction of heteroduplex molecules formed between the genomic DNA and either a single-stranded or double-stranded T-DNA intermediate, are compared to explain the observation, and implications for the modification of endogenous genes for functional genomic analysis by gene targeting are discussed.
Collapse
|
41
|
Ehmsen KT, Heyer WD. Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease. Nucleic Acids Res 2008; 36:2182-95. [PMID: 18281703 PMCID: PMC2367710 DOI: 10.1093/nar/gkm1152] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 11/29/2022] Open
Abstract
The DNA structure-selective endonuclease Mus81-Mms4/Eme1 is a context-specific recombination factor that supports DNA replication, but is not essential for DSB repair in Saccharomyces cerevisiae. We overexpressed Mus81-Mms4 in S. cerevisiae, purified the heterodimer to apparent homogeneity, and performed a classical enzymological characterization. Kinetic analysis (k(cat), K(M)) demonstrated that Mus81-Mms4 is catalytically active and identified three substrate classes in vitro. Class I substrates reflect low K(M) (3-7 nM) and high k(cat) ( approximately 1 min(-1)) and include the nicked Holliday junction, 3'-flapped and replication fork-like structures. Class II substrates share low K(M) (1-6 nM) but low k(cat) (< or =0.3 min(-1)) relative to Class I substrates and include the D-loop and partial Holliday junction. The splayed Y junction defines a class III substrate having high K(M) ( approximately 30 nM) and low k(cat) (0.26 min(-1)). Holliday junctions assembled from oligonucleotides with or without a branch migratable core were negligibly cut in vitro. We found that Mus81 and Mms4 are phosphorylated constitutively and in the presence of the genotoxin MMS. The endogenous complex purified in either modification state is negligibly active on Holliday junctions. Hence, Holliday junction incision activity in vitro cannot be attributed to the Mus81-Mms4 heterodimer in isolation.
Collapse
Affiliation(s)
- Kirk Tevebaugh Ehmsen
- Section of Microbiology and Section of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology and Section of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616-8665, USA
| |
Collapse
|
42
|
Barzel A, Kupiec M. Finding a match: how do homologous sequences get together for recombination? Nat Rev Genet 2008; 9:27-37. [PMID: 18040271 DOI: 10.1038/nrg2224] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decades of research into homologous recombination have unravelled many of the details concerning the transfer of information between two homologous sequences. By contrast, the processes by which the interacting molecules initially colocalize are largely unknown. How can two homologous needles find each other in the genomic haystack? Is homologous pairing the result of a damage-induced homology search, or is it an enduring and general feature of the genomic architecture that facilitates homologous recombination whenever and wherever damage occurs? This Review presents the homologous-pairing enigma, delineates our current understanding of the process and offers guidelines for future research.
Collapse
Affiliation(s)
- Adi Barzel
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
43
|
Chen JM, Cooper DN, Chuzhanova N, Férec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 2007; 8:762-75. [PMID: 17846636 DOI: 10.1038/nrg2193] [Citation(s) in RCA: 472] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene conversion, one of the two mechanisms of homologous recombination, involves the unidirectional transfer of genetic material from a 'donor' sequence to a highly homologous 'acceptor'. Considerable progress has been made in understanding the molecular mechanisms that underlie gene conversion, its formative role in human genome evolution and its implications for human inherited disease. Here we assess current thinking about how gene conversion occurs, explore the key part it has played in fashioning extant human genes, and carry out a meta-analysis of gene-conversion events that are known to have caused human genetic disease.
Collapse
|
44
|
Johnson-Schlitz DM, Flores C, Engels WR. Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 2007; 3:e50. [PMID: 17432935 PMCID: PMC1851981 DOI: 10.1371/journal.pgen.0030050] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/20/2007] [Indexed: 11/19/2022] Open
Abstract
The analysis of double-strand break (DSB) repair is complicated by the existence of several pathways utilizing a large number of genes. Moreover, many of these genes have been shown to have multiple roles in DSB repair. To address this complexity we used a repair reporter construct designed to measure multiple repair outcomes simultaneously. This approach provides estimates of the relative usage of several DSB repair pathways in the premeiotic male germline of Drosophila. We applied this system to mutations at each of 11 repair loci plus various double mutants and altered dosage genotypes. Most of the mutants were found to suppress one of the pathways with a compensating increase in one or more of the others. Perhaps surprisingly, none of the single mutants suppressed more than one pathway, but they varied widely in how the suppression was compensated. We found several cases in which two or more loci were similar in which pathway was suppressed while differing in how this suppression was compensated. Taken as a whole, the data suggest that the choice of which repair pathway is used for a given DSB occurs by a two-stage "decision circuit" in which the DSB is first placed into one of two pools from which a specific pathway is then selected.
Collapse
Affiliation(s)
- Dena M Johnson-Schlitz
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Carlos Flores
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William R Engels
- Department of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Weinert BT, Rio DC. DNA strand displacement, strand annealing and strand swapping by the Drosophila Bloom's syndrome helicase. Nucleic Acids Res 2007; 35:1367-76. [PMID: 17272294 PMCID: PMC1849897 DOI: 10.1093/nar/gkl831] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic analysis of the Drosophila Bloom's syndrome helicase homolog (mus309/DmBLM) indicates that DmBLM is required for the synthesis-dependent strand annealing (SDSA) pathway of homologous recombination. Here we report the first biochemical study of DmBLM. Recombinant, epitope-tagged DmBLM was expressed in Drosophila cell culture and highly purified protein was prepared from nuclear extracts. Purified DmBLM exists exclusively as a high molecular weight (∼1.17 MDa) species, is a DNA-dependent ATPase, has 3′→5′ DNA helicase activity, prefers forked substrate DNAs and anneals complementary DNAs. High-affinity DNA binding is ATP-dependent and low-affinity ATP-independent interactions contribute to forked substrate DNA binding and drive strand annealing. DmBLM combines DNA strand displacement with DNA strand annealing to catalyze the displacement of one DNA strand while annealing a second complementary DNA strand.
Collapse
Affiliation(s)
| | - Donald C. Rio
- To whom correspondence should be addressed. Tel: +1 510 642 1071; Fax: +1 510 642 6062;
| |
Collapse
|
46
|
Nagawa F, Kishishita N, Shimizu K, Hirose S, Miyoshi M, Nezu J, Nishimura T, Nishizumi H, Takahashi Y, Hashimoto SI, Takeuchi M, Miyajima A, Takemori T, Otsuka AJ, Sakano H. Antigen-receptor genes of the agnathan lamprey are assembled by a process involving copy choice. Nat Immunol 2006; 8:206-13. [PMID: 17187071 DOI: 10.1038/ni1419] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/06/2006] [Indexed: 12/20/2022]
Abstract
Jawless vertebrates have acquired immunity but do not have immunoglobulin-type antigen receptors. Variable lymphocyte receptors (VLRs) have been identified in lamprey that consist of multiple leucine-rich repeat (LRR) modules. An active VLR gene is generated by the assembly of a series of variable gene segments, including many that encode LRRs. Stepwise assembly of the gene segments seems to occur by replacement of the intervening DNA between the 5' and 3' constant-region genes. Here we report that lamprey (Lethenteron japonicum) assemble their VLR genes by a process involving 'copy choice'. Regions of short homology seemed to prime copying of donor LRR-encoding sequences into the recipient gene. Those LRR-encoding germline sequences were abundant and shared extensive sequence homologies. Such genomic organization permits initiation of copying anywhere in an LRR-encoding module for the generation of various hybrid LRRs. Thus, a vast repertoire of recombinant VLR genes could be generated not only by copying of various LRR segments in diverse combinations but also by the use of multiple sites in an LRR gene segment for priming.
Collapse
Affiliation(s)
- Fumikiyo Nagawa
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sugiyama T, Kantake N, Wu Y, Kowalczykowski SC. Rad52-mediated DNA annealing after Rad51-mediated DNA strand exchange promotes second ssDNA capture. EMBO J 2006; 25:5539-48. [PMID: 17093500 PMCID: PMC1679760 DOI: 10.1038/sj.emboj.7601412] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 10/10/2006] [Indexed: 11/08/2022] Open
Abstract
Rad51, Rad52, and RPA play central roles in homologous DNA recombination. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 has two distinct activities: to recruit Rad51 onto single-strand (ss)DNA that is complexed with the ssDNA-binding protein, RPA, and to anneal complementary ssDNA complexed with RPA. Here, we report that Rad52 promotes annealing of the ssDNA strand that is displaced by DNA strand exchange by Rad51 and RPA, to a second ssDNA strand. An RPA that is recombination-deficient (RPA(rfa1-t11)) failed to support annealing, explaining its in vivo phenotype. Escherichia coli RecO and SSB proteins, which are functional homologues of Rad52 and RPA, also facilitated the same reaction, demonstrating its conserved nature. We also demonstrate that the two activities of Rad52, recruiting Rad51 and annealing DNA, are coordinated in DNA strand exchange and second ssDNA capture.
Collapse
Affiliation(s)
- Tomohiko Sugiyama
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | | | | | | |
Collapse
|
48
|
Moore JD, Yazgan O, Ataian Y, Krebs JE. Diverse roles for histone H2A modifications in DNA damage response pathways in yeast. Genetics 2006; 176:15-25. [PMID: 17028320 PMCID: PMC1893062 DOI: 10.1534/genetics.106.063792] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
There are many types of DNA damage that are repaired by a multiplicity of different repair pathways. All damage and repair occur in the context of chromatin, and histone modifications are involved in many repair processes. We have analyzed the roles of H2A and its modifications in repair by mutagenizing modifiable residues in the N- and C-terminal tails of yeast H2A and by testing strains containing these mutations in multiple DNA repair assays. We show that residues in both tails are important for homologous recombination and nonhomologous end-joining pathways of double-strand break repair, as well as for survival of UV irradiation and oxidative damage. We show that H2A serine 122 is important for repair and/or survival in each of these assays. We also observe a complex pattern of H2A phosphorylation at residues S122, T126, and S129 in response to different damage conditions. We find that overlapping but nonidentical groups of H2A residues in both tails are involved in different pathways of repair. These data suggest the presence of a set of H2A "damage codes" in which distinct patterns of modifications on both tails of H2A may be used to identify specific types of damage or to promote specific repair pathways.
Collapse
Affiliation(s)
- John D Moore
- Department of Biological Sciences, University of Alaska, Anchorage, Alaska 99508, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Meiotic prophase I is a long and complex phase. Homologous recombination is an important process that occurs between homologous chromosomes during meiotic prophase I. Formation of chiasmata, which hold homologous chromosomes together until the metaphase I to anaphase I transition, is critical for proper chromosome segregation. Recent studies have suggested that the SPO11 proteins have conserved functions in a number of organisms in generating sites of double-stranded DNA breaks (DSBs) that are thought to be the starting points of homologous recombination. Processing of these sites of DSBs requires the function of RecA homologs, such as RAD51, DMC1, and others, as suggested by mutant studies; thus the failure to repair these meiotic DSBs results in abnormal chromosomal alternations, leading to disrupted meiosis. Recent discoveries on the functions of these RecA homologs have improved the understanding of the mechanisms underlying meiotic homologous recombination.
Collapse
Affiliation(s)
- Wuxing Li
- The Department of Biology, The Intercollege Graduate Degree Program in Plant Physiology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
50
|
Abstract
DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication and escape proofreading. MMR proteins also participate in many other DNA transactions, such that inactivation of MMR can have wide-ranging biological consequences, which can be either beneficial or detrimental. We begin this review by briefly considering the multiple functions of MMR proteins and the consequences of impaired function. We then focus on the biochemical mechanism of MMR replication errors. Emphasis is on structure-function studies of MMR proteins, on how mismatches are recognized, on the process by which the newly replicated strand is identified, and on excision of the replication error.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|