1
|
Chavas LMG, Coulibaly F, Garriga D. Bridging the microscopic divide: a comprehensive overview of micro-crystallization and in vivo crystallography. IUCRJ 2024; 11:476-485. [PMID: 38958014 PMCID: PMC11220871 DOI: 10.1107/s205225252400513x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.
Collapse
Affiliation(s)
| | - Fasséli Coulibaly
- Biomedicine Discovery Institute & Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | | |
Collapse
|
2
|
Itoh K, Tsukimoto J. Lysosomal sialidase NEU1, its intracellular properties, deficiency, and use as a therapeutic agent. Glycoconj J 2023; 40:611-619. [PMID: 38147151 DOI: 10.1007/s10719-023-10135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/27/2023]
Abstract
Neuraminidase 1 (NEU1) is a lysosomal sialidase that cleaves terminal α-linked sialic acid residues from sialylglycans. NEU1 is biosynthesized in the rough endoplasmic reticulum (RER) lumen as an N-glycosylated protein to associate with its protective protein/cathepsin A (CTSA) and then form a lysosomal multienzyme complex (LMC) also containing β-galactosidase 1 (GLB1). Unlike other mammalian sialidases, including NEU2 to NEU4, NEU1 transport to lysosomes requires association of NEU1 with CTSA, binding of the CTSA carrying terminal mannose 6-phosphate (M6P)-type N-glycan with M6P receptor (M6PR), and intralysosomal NEU1 activation at acidic pH. In contrast, overexpression of the single NEU1 gene in mammalian cells causes intracellular NEU1 protein crystallization in the RER due to self-aggregation when intracellular CTSA is reduced to a relatively low level. Sialidosis (SiD) and galactosialidosis (GS) are autosomal recessive lysosomal storage diseases caused by the gene mutations of NEU1 and CTSA, respectively. These incurable diseases associate with the NEU1 deficiency, excessive accumulation of sialylglycans in neurovisceral organs, and systemic manifestations. We established a novel GS model mouse carrying homozygotic Ctsa IVS6 + 1 g/a mutation causing partial exon 6 skipping with simultaneous deficiency of Ctsa and Neu1. Symptoms developed in the GS mice like those in juvenile/adult GS patients, such as myoclonic seizures, suppressed behavior, gargoyle-like face, edema, proctoptosis due to Neu1 deficiency, and sialylglycan accumulation associated with neurovisceral inflammation. We developed a modified NEU1 (modNEU1), which does not form protein crystals but is transported to lysosomes by co-expressed CTSA. In vivo gene therapy for GS and SiD utilizing a single adeno-associated virus (AAV) carrying modNEU1 and CTSA genes under dual promoter control will be created.
Collapse
Affiliation(s)
- Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan.
| | - Jun Tsukimoto
- Department of Medicinal Biotechnology, Institute for Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
3
|
Tsukimoto J, Takeuchi Y, Horii Y, Iniwa T, Fukushi Y, Nishioka SI, Itoh K. In Cellulo Crystallization of Human Neuraminidase 1 and Biological Roles of N-Glycans. ACS APPLIED BIO MATERIALS 2022; 5:205-213. [DOI: 10.1021/acsabm.1c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Tsukimoto
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Yoshie Takeuchi
- Department of Medicinal Biotechnology, Faculty of Pharmacy, Tokushima University, Tokushima 770-8505, Japan
| | - Yuto Horii
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Toshiki Iniwa
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Yuri Fukushi
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - So-ichiro Nishioka
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan
| |
Collapse
|
4
|
Lahey-Rudolph JM, Schönherr R, Barthelmess M, Fischer P, Seuring C, Wagner A, Meents A, Redecke L. Fixed-target serial femtosecond crystallography using in cellulo grown microcrystals. IUCRJ 2021; 8:665-677. [PMID: 34258014 PMCID: PMC8256716 DOI: 10.1107/s2052252521005297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/18/2021] [Indexed: 05/05/2023]
Abstract
The crystallization of recombinant proteins in living cells is an exciting new approach in structural biology. Recent success has highlighted the need for fast and efficient diffraction data collection, optimally directly exposing intact crystal-containing cells to the X-ray beam, thus protecting the in cellulo crystals from environmental challenges. Serial femtosecond crystallography (SFX) at free-electron lasers (XFELs) allows the collection of detectable diffraction even from tiny protein crystals, but requires very fast sample exchange to utilize each XFEL pulse. Here, an efficient approach is presented for high-resolution structure elucidation using serial femtosecond in cellulo diffraction of micometre-sized crystals of the protein HEX-1 from the fungus Neurospora crassa on a fixed target. Employing the fast and highly accurate Roadrunner II translation-stage system allowed efficient raster scanning of the pores of micro-patterned, single-crystalline silicon chips loaded with living, crystal-containing insect cells. Compared with liquid-jet and LCP injection systems, the increased hit rates of up to 30% and reduced background scattering enabled elucidation of the HEX-1 structure. Using diffraction data from only a single chip collected within 12 min at the Linac Coherent Light Source, a 1.8 Å resolution structure was obtained with significantly reduced sample consumption compared with previous SFX experiments using liquid-jet injection. This HEX-1 structure is almost superimposable with that previously determined using synchrotron radiation from single HEX-1 crystals grown by sitting-drop vapour diffusion, validating the approach. This study demonstrates that fixed-target SFX using micro-patterned silicon chips is ideally suited for efficient in cellulo diffraction data collection using living, crystal-containing cells, and offers huge potential for the straightforward structure elucidation of proteins that form intracellular crystals at both XFELs and synchrotron sources.
Collapse
Affiliation(s)
- J. Mia Lahey-Rudolph
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Miriam Barthelmess
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Pontus Fischer
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Carolin Seuring
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, 22671 Hamburg, Germany
| | - Armin Wagner
- Diamond Light Source, Diamond House DH2-52, Chilton, Didcot OX11 0DE, United Kingdom
| | - Alke Meents
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Tetreau G, Andreeva EA, Banneville AS, De Zitter E, Colletier JP. Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins? Toxins (Basel) 2021; 13:toxins13070441. [PMID: 34206749 PMCID: PMC8309801 DOI: 10.3390/toxins13070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
The development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, we explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, we discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains.
Collapse
|
6
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
7
|
Han H, Round E, Schubert R, Gül Y, Makroczyová J, Meza D, Heuser P, Aepfelbacher M, Barák I, Betzel C, Fromme P, Kursula I, Nissen P, Tereschenko E, Schulz J, Uetrecht C, Ulicný J, Wilmanns M, Hajdu J, Lamzin VS, Lorenzen K. The XBI BioLab for life science experiments at the European XFEL. J Appl Crystallogr 2021; 54:7-21. [PMID: 33833637 PMCID: PMC7941304 DOI: 10.1107/s1600576720013989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.
Collapse
Affiliation(s)
- Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Ekaterina Round
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Yasmin Gül
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jana Makroczyová
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Domingo Meza
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Philipp Heuser
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK – 8000 Aarhus C, Denmark
| | - Elena Tereschenko
- Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky prospekt, Moscow, 117333, Russian Federation
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Charlotte Uetrecht
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jozef Ulicný
- Department of Biophysics, Institute of Physics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Janos Hajdu
- The European Extreme Light Infrastructure, Institute of Physics, Academy of Sciences of the Czech Republic, Za Radnici 835, 25241 Dolní Břežany, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
8
|
Bergfors T, Majumdar S. Screening cells for crystals: a synergistic approach. J Appl Crystallogr 2020; 53:1414-1415. [PMID: 33304219 PMCID: PMC7710486 DOI: 10.1107/s1600576720014971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lahey-Rudolph and co-workers [J. Appl. Cryst. (2020), 53, 1169-1180] have reported a rapid and sensitive method to screen for crystals in cellulo - a welcome addition to the structural biology toolbox.
Collapse
Affiliation(s)
- Terese Bergfors
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Soneya Majumdar
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| |
Collapse
|
9
|
Tang Y, Saul J, Nagaratnam N, Martin-Garcia JM, Fromme P, Qiu J, LaBaer J. Construction of gateway-compatible baculovirus expression vectors for high-throughput protein expression and in vivo microcrystal screening. Sci Rep 2020; 10:13323. [PMID: 32770037 PMCID: PMC7414197 DOI: 10.1038/s41598-020-70163-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Baculovirus mediated-insect cell expression systems have been widely used for producing heterogeneous proteins. However, to date, there is still the lack of an easy-to-manipulate system that enables the high-throughput protein characterization in insect cells by taking advantage of large existing Gateway clone libraries. To resolve this limitation, we have constructed a suite of Gateway-compatible pIEx-derived baculovirus expression vectors that allow the rapid and cost-effective construction of expression clones for mass parallel protein expression in insect cells. This vector collection also supports the attachment of a variety of fusion tags to target proteins to meet the needs for different research applications. We first demonstrated the utility of these vectors for protein expression and purification using a set of 40 target proteins of various sizes, cellular localizations and host organisms. We then established a scalable pipeline coupled with the SONICC and TEM techniques to screen for microcrystal formation within living insect cells. Using this pipeline, we successfully identified microcrystals for ~ 16% of the tested protein set, which can be potentially used for structure elucidation by X-ray crystallography. In summary, we have established a versatile pipeline enabling parallel gene cloning, protein expression and purification, and in vivo microcrystal screening for structural studies.
Collapse
Affiliation(s)
- Yanyang Tang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Justin Saul
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Nirupa Nagaratnam
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Jose M Martin-Garcia
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA.
| | - Joshua LaBaer
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
10
|
Abstract
The advent of the X-ray free electron laser (XFEL) in the last decade created the discipline of serial crystallography but also the challenge of how crystal samples are delivered to X-ray. Early sample delivery methods demonstrated the proof-of-concept for serial crystallography and XFEL but were beset with challenges of high sample consumption, jet clogging and low data collection efficiency. The potential of XFEL and serial crystallography as the next frontier of structural solution by X-ray for small and weakly diffracting crystals and provision of ultra-fast time-resolved structural data spawned a huge amount of scientific interest and innovation. To utilize the full potential of XFEL and broaden its applicability to a larger variety of biological samples, researchers are challenged to develop better sample delivery methods. Thus, sample delivery is one of the key areas of research and development in the serial crystallography scientific community. Sample delivery currently falls into three main systems: jet-based methods, fixed-target chips, and drop-on-demand. Huge strides have since been made in reducing sample consumption and improving data collection efficiency, thus enabling the use of XFEL for many biological systems to provide high-resolution, radiation damage-free structural data as well as time-resolved dynamics studies. This review summarizes the current main strategies in sample delivery and their respective pros and cons, as well as some future direction.
Collapse
|
11
|
Mudogo CN, Falke S, Brognaro H, Duszenko M, Betzel C. Protein phase separation and determinants of in cell crystallization. Traffic 2019; 21:220-230. [DOI: 10.1111/tra.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Celestin N. Mudogo
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Department of Basic Sciences, School of MedicineUniversity of Kinshasa Kinshasa Democratic Republic of Congo
| | - Sven Falke
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| | - Hévila Brognaro
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
- Centre for Free‐Electron‐Laser Science Hamburg Germany
| | - Michael Duszenko
- Institute of Neurophysiology, University of Tübingen Tübingen Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and InflammationInstitute of Biochemistry and Molecular Biology, University of Hamburg Hamburg Germany
| |
Collapse
|
12
|
Koiwai K, Tsukimoto J, Higashi T, Mafuné F, Miyajima K, Nakane T, Matsugaki N, Kato R, Sirigu S, Jakobi A, Wilmanns M, Sugahara M, Tanaka T, Tono K, Joti Y, Yabashi M, Nureki O, Mizohata E, Nakatsu T, Nango E, Iwata S, Chavas LMG, Senda T, Itoh K, Yumoto F. Improvement of Production and Isolation of Human Neuraminidase-1 in Cellulo Crystals. ACS APPLIED BIO MATERIALS 2019; 2:4941-4952. [DOI: 10.1021/acsabm.9b00686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kotaro Koiwai
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Jun Tsukimoto
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima 770-8501, Japan
| | - Tetsuya Higashi
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima 770-8501, Japan
| | - Fumitaka Mafuné
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ken Miyajima
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- School of High Energy Accelerator Science, SOKENDAI University, Tsukuba, Ibaraki 305-0801, Japan
| | - Serena Sirigu
- PROXIMA-1, Synchrotron SOLEIL, BP 48, L’Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Arjen Jakobi
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Matthias Wilmanns
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toru Nakatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Leonard M. G. Chavas
- PROXIMA-1, Synchrotron SOLEIL, BP 48, L’Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- School of High Energy Accelerator Science, SOKENDAI University, Tsukuba, Ibaraki 305-0801, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Science, Tokushima University, Tokushima 770-8501, Japan
| | - Fumiaki Yumoto
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
13
|
Schönherr R, Rudolph JM, Redecke L. Protein crystallization in living cells. Biol Chem 2019; 399:751-772. [PMID: 29894295 DOI: 10.1515/hsz-2018-0158] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Protein crystallization in living cells has been observed surprisingly often as a native assembly process during the past decades, and emerging evidence indicates that this phenomenon is also accessible for recombinant proteins. But only recently the advent of high-brilliance synchrotron sources, X-ray free-electron lasers, and improved serial data collection strategies has allowed the use of these micrometer-sized crystals for structural biology. Thus, in cellulo crystallization could offer exciting new possibilities for proteins that do not crystallize applying conventional approaches. In this review, we comprehensively summarize the current knowledge of intracellular protein crystallization. This includes an overview of the cellular functions, the physical properties, and, if known, the mode of regulation of native in cellulo crystal formation, complemented with a discussion of the reported crystallization events of recombinant proteins and the current method developments to successfully collect X-ray diffraction data from in cellulo crystals. Although the intracellular protein self-assembly mechanisms are still poorly understood, regulatory differences between native in cellulo crystallization linked to a specific function and accidently crystallizing proteins, either disease associated or recombinantly introduced, become evident. These insights are important to systematically exploit living cells as protein crystallization chambers in the future.
Collapse
Affiliation(s)
- Robert Schönherr
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Janine Mia Rudolph
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Center for Free-Electron Laser Science (CFEL), DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany.,Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
14
|
Martiel I, Müller-Werkmeister HM, Cohen AE. Strategies for sample delivery for femtosecond crystallography. Acta Crystallogr D Struct Biol 2019; 75:160-177. [PMID: 30821705 PMCID: PMC6400256 DOI: 10.1107/s2059798318017953] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/19/2018] [Indexed: 11/11/2022] Open
Abstract
Highly efficient data-collection methods are required for successful macromolecular crystallography (MX) experiments at X-ray free-electron lasers (XFELs). XFEL beamtime is scarce, and the high peak brightness of each XFEL pulse destroys the exposed crystal volume. It is therefore necessary to combine diffraction images from a large number of crystals (hundreds to hundreds of thousands) to obtain a final data set, bringing about sample-refreshment challenges that have previously been unknown to the MX synchrotron community. In view of this experimental complexity, a number of sample delivery methods have emerged, each with specific requirements, drawbacks and advantages. To provide useful selection criteria for future experiments, this review summarizes the currently available sample delivery methods, emphasising the basic principles and the specific sample requirements. Two main approaches to sample delivery are first covered: (i) injector methods with liquid or viscous media and (ii) fixed-target methods using large crystals or using microcrystals inside multi-crystal holders or chips. Additionally, hybrid methods such as acoustic droplet ejection and crystal extraction are covered, which combine the advantages of both fixed-target and injector approaches.
Collapse
Affiliation(s)
- Isabelle Martiel
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Henrike M. Müller-Werkmeister
- Institute of Chemistry – Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam-Golm, Germany
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
15
|
Itoh K, Nishioka SI, Hidaka T, Tsuji D, Maita N. Development of Enzyme Drugs Derived from Transgenic Silkworms to Treat Lysosomal Diseases. YAKUGAKU ZASSHI 2018; 138:885-893. [DOI: 10.1248/yakushi.17-00202-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University
- Department of Medicinal Biotechnology, Faculty of Pharmaceutical Sciences, Tokushima University
| | - So-ichiro Nishioka
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University
| | - Tomo Hidaka
- Department of Medicinal Biotechnology, Faculty of Pharmaceutical Sciences, Tokushima University
| | - Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, Tokushima University
- Department of Medicinal Biotechnology, Faculty of Pharmaceutical Sciences, Tokushima University
| | - Nobuo Maita
- Division of Disease Proteomics, Institute for Advanced Medical Sciences, Tokushima University
| |
Collapse
|
16
|
X-ray free electron laser: opportunities for drug discovery. Essays Biochem 2017; 61:529-542. [PMID: 29118098 DOI: 10.1042/ebc20170031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Abstract
Past decades have shown the impact of structural information derived from complexes of drug candidates with their protein targets to facilitate the discovery of safe and effective medicines. Despite recent developments in single particle cryo-electron microscopy, X-ray crystallography has been the main method to derive structural information. The unique properties of X-ray free electron laser (XFEL) with unmet peak brilliance and beam focus allow X-ray diffraction data recording and successful structure determination from smaller and weaker diffracting crystals shortening timelines in crystal optimization. To further capitalize on the XFEL advantage, innovations in crystal sample delivery for the X-ray experiment, data collection and processing methods are required. This development was a key contributor to serial crystallography allowing structure determination at room temperature yielding physiologically more relevant structures. Adding the time resolution provided by the femtosecond X-ray pulse will enable monitoring and capturing of dynamic processes of ligand binding and associated conformational changes with great impact to the design of candidate drug compounds.
Collapse
|
17
|
Espinosa S, Zhang L, Li X, Zhao R. Understanding pre-mRNA splicing through crystallography. Methods 2017; 125:55-62. [PMID: 28506657 PMCID: PMC5546983 DOI: 10.1016/j.ymeth.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes.
Collapse
|
18
|
Boudes M, Garriga D, Coulibaly F. Microcrystallography of Protein Crystals and In Cellulo Diffraction. J Vis Exp 2017. [PMID: 28784967 DOI: 10.3791/55793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The advent of high-quality microfocus beamlines at many synchrotron facilities has permitted the routine analysis of crystals smaller than 10 µm in their largest dimension, which used to represent a challenge. We present two alternative workflows for the structure determination of protein microcrystals by X-ray crystallography with a particular focus on crystals grown in vivo. The microcrystals are either extracted from cells by sonication and purified by differential centrifugation, or analyzed in cellulo after cell sorting by flow cytometry of crystal-containing cells. Optionally, purified crystals or crystal-containing cells are soaked in heavy atom solutions for experimental phasing. These samples are then prepared for diffraction experiments in a similar way by application onto a micromesh support and flash cooling in liquid nitrogen. We briefly describe and compare serial diffraction experiments of isolated microcrystals and crystal-containing cells using a microfocus synchrotron beamline to produce datasets suitable for phasing, model building and refinement. These workflows are exemplified with crystals of the Bombyx mori cypovirus 1 (BmCPV1) polyhedrin produced by infection of insect cells with a recombinant baculovirus. In this case study, in cellulo analysis is more efficient than analysis of purified crystals and yields a structure in ~8 days from expression to refinement.
Collapse
Affiliation(s)
- Marion Boudes
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University
| | - Damià Garriga
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University
| | - Fasséli Coulibaly
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University;
| |
Collapse
|
19
|
Spence JCH. XFELs for structure and dynamics in biology. IUCRJ 2017; 4:322-339. [PMID: 28875020 PMCID: PMC5571796 DOI: 10.1107/s2052252517005760] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 05/20/2023]
Abstract
The development and application of the free-electron X-ray laser (XFEL) to structure and dynamics in biology since its inception in 2009 are reviewed. The research opportunities which result from the ability to outrun most radiation-damage effects are outlined, and some grand challenges are suggested. By avoiding the need to cool samples to minimize damage, the XFEL has permitted atomic resolution imaging of molecular processes on the 100 fs timescale under near-physiological conditions and in the correct thermal bath in which molecular machines operate. Radiation damage, comparisons of XFEL and synchrotron work, single-particle diffraction, fast solution scattering, pump-probe studies on photosensitive proteins, mix-and-inject experiments, caged molecules, pH jump and other reaction-initiation methods, and the study of molecular machines are all discussed. Sample-delivery methods and data-analysis algorithms for the various modes, from serial femtosecond crystallo-graphy to fast solution scattering, fluctuation X-ray scattering, mixing jet experiments and single-particle diffraction, are also reviewed.
Collapse
Affiliation(s)
- J. C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| |
Collapse
|
20
|
Altissimo M, Kiskinova M, Mincigrucci R, Vaccari L, Guarnaccia C, Masciovecchio C. Perspective: A toolbox for protein structure determination in physiological environment through oriented, 2D ordered, site specific immobilization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044017. [PMID: 28428974 PMCID: PMC5392127 DOI: 10.1063/1.4981224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/05/2017] [Indexed: 05/19/2023]
Abstract
Revealing the structure of complex biological macromolecules, such as proteins, is an essential step for understanding the chemical mechanisms that determine the diversity of their functions. Synchrotron based X-ray crystallography and cryo-electron microscopy have made major contributions in determining thousands of protein structures even from micro-sized crystals. They suffer from some limitations that have not been overcome, such as radiation damage, the natural inability to crystallize a number of proteins, and experimental conditions for structure determination that are incompatible with the physiological environment. Today, the ultra-short and ultra-bright pulses of X-ray free-electron lasers have made attainable the dream to determine protein structures before radiation damage starts to destroy the samples. However, the signal-to-noise ratio remains a great challenge to obtain usable diffraction patterns from a single protein molecule. With the perspective to overcome these challenges, we describe here a new methodology that has the potential to overcome the signal-to-noise-ratio and protein crystallization limits. Using a multidisciplinary approach, we propose to create ordered, two dimensional protein arrays with defined orientation attached on a self-assembled-monolayer. We develop a literature-based flexible toolbox capable of assembling different kinds of proteins on a functionalized surface and consider using a graphene cover layer that will allow performing experiments with proteins in physiological conditions.
Collapse
Affiliation(s)
- M Altissimo
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - M Kiskinova
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - R Mincigrucci
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - L Vaccari
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| | - C Guarnaccia
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | - C Masciovecchio
- Elettra Sincrotrone Trieste, S. S. 14 km 163, 34149 Trieste, Basovizza, Italy
| |
Collapse
|
21
|
Mishyna M, Volokh O, Danilova Y, Gerasimova N, Pechnikova E, Sokolova OS. Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Micron 2017; 96:57-64. [PMID: 28262565 DOI: 10.1016/j.micron.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/18/2017] [Accepted: 02/18/2017] [Indexed: 11/26/2022]
Abstract
Nucleic acids are responsible for the storage, transfer and realization of genetic information in the cell, which provides correct development and functioning of organisms. DNA interaction with ligands ensures the safety of this information. Over the past 10 years, advances in electron microscopy and image processing allowed to obtain the structures of key DNA-protein complexes with resolution below 4Å. However, radiation damage is a limiting factor to the potentially attainable resolution in cryo-EM. The prospect and limitations of studying protein-DNA complex interactions using cryo-electron microscopy are discussed here. We reviewed the ways to minimize radiation damage in biological specimens and the possibilities of using radiation damage (so-called 'bubblegrams') to obtain additional structural information.
Collapse
Affiliation(s)
- M Mishyna
- Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - O Volokh
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Ya Danilova
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - N Gerasimova
- Lomonosov Moscow State University, 119234, Moscow, Russia
| | - E Pechnikova
- Thermo Fisher Scientific, Materials & Structural Analysis, 5651 GG Eindhoven, Netherlands
| | - O S Sokolova
- Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
22
|
|
23
|
Hungler A, Momin A, Diederichs K, Arold ST. ContaMiner and ContaBase: a webserver and database for early identification of unwantedly crystallized protein contaminants. J Appl Crystallogr 2016; 49:2252-2258. [PMID: 27980519 PMCID: PMC5140001 DOI: 10.1107/s1600576716014965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/21/2016] [Indexed: 01/22/2023] Open
Abstract
Solving the phase problem in protein X-ray crystallography relies heavily on the identity of the crystallized protein, especially when molecular replacement (MR) methods are used. Yet, it is not uncommon that a contaminant crystallizes instead of the protein of interest. Such contaminants may be proteins from the expression host organism, protein fusion tags or proteins added during the purification steps. Many contaminants co-purify easily, crystallize and give good diffraction data. Identification of contaminant crystals may take time, since the presence of the contaminant is unexpected and its identity unknown. A webserver (ContaMiner) and a contaminant database (ContaBase) have been established, to allow fast MR-based screening of crystallographic data against currently 62 known contaminants. The web-based ContaMiner (available at http://strube.cbrc.kaust.edu.sa/contaminer/) currently produces results in 5 min to 4 h. The program is also available in a github repository and can be installed locally. ContaMiner enables screening of novel crystals at synchrotron beamlines, and it would be valuable as a routine safety check for 'crystallization and preliminary X-ray analysis' publications. Thus, in addition to potentially saving X-ray crystallographers much time and effort, ContaMiner might considerably lower the risk of publishing erroneous data.
Collapse
Affiliation(s)
- Arnaud Hungler
- King Abdullah University of Science and Technology (KAUST), Center for Computational Bioscience Research (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Afaque Momin
- King Abdullah University of Science and Technology (KAUST), Center for Computational Bioscience Research (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Kay Diederichs
- Fachbereich Biologie, Universität Konstanz, M647, D-78457 Konstanz, Germany
| | - Stefan, T. Arold
- King Abdullah University of Science and Technology (KAUST), Center for Computational Bioscience Research (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Banerjee S, Coussens NP, Gallat FX, Sathyanarayanan N, Srikanth J, Yagi KJ, Gray JSS, Tobe SS, Stay B, Chavas LMG, Ramaswamy S. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata. IUCRJ 2016; 3:282-93. [PMID: 27437115 PMCID: PMC4937783 DOI: 10.1107/s2052252516008903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/02/2016] [Indexed: 05/20/2023]
Abstract
Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å) crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution.
Collapse
Affiliation(s)
- Sanchari Banerjee
- Institute of Stem Cell Biology and Regenerative Medicine, Bellary Road, GKVK Campus, Bangalore, Karnataka 560 065, India
| | - Nathan P. Coussens
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - François-Xavier Gallat
- Structural Biology Research Centre, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| | - Nitish Sathyanarayanan
- Institute of Stem Cell Biology and Regenerative Medicine, Bellary Road, GKVK Campus, Bangalore, Karnataka 560 065, India
| | - Jandhyam Srikanth
- Centre for Cellular and Molecular Platforms, Bellary Road, GKVK Campus, Bangalore, Karnataka 560 065, India
| | - Koichiro J. Yagi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - James S. S. Gray
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Bio-Research Products Inc., Cherry Street, North Liberty, IA 52317, USA
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Barbara Stay
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Leonard M. G. Chavas
- Structural Biology Research Centre, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
- Experimental Division, Synchrotron SOLEIL, BP 48, L’Orme des Merisiers, 91192 Gif-sur-Yvette, France
| | - Subramanian Ramaswamy
- Institute of Stem Cell Biology and Regenerative Medicine, Bellary Road, GKVK Campus, Bangalore, Karnataka 560 065, India
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Centre for Cellular and Molecular Platforms, Bellary Road, GKVK Campus, Bangalore, Karnataka 560 065, India
| |
Collapse
|
25
|
Abstract
A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last twenty years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
26
|
Martin-Garcia JM, Conrad CE, Coe J, Roy-Chowdhury S, Fromme P. Serial femtosecond crystallography: A revolution in structural biology. Arch Biochem Biophys 2016; 602:32-47. [PMID: 27143509 DOI: 10.1016/j.abb.2016.03.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 10/21/2022]
Abstract
Macromolecular crystallography at synchrotron sources has proven to be the most influential method within structural biology, producing thousands of structures since its inception. While its utility has been instrumental in progressing our knowledge of structures of molecules, it suffers from limitations such as the need for large, well-diffracting crystals, and radiation damage that can hamper native structural determination. The recent advent of X-ray free electron lasers (XFELs) and their implementation in the emerging field of serial femtosecond crystallography (SFX) has given rise to a remarkable expansion upon existing crystallographic constraints, allowing structural biologists access to previously restricted scientific territory. SFX relies on exceptionally brilliant, micro-focused X-ray pulses, which are femtoseconds in duration, to probe nano/micrometer sized crystals in a serial fashion. This results in data sets comprised of individual snapshots, each capturing Bragg diffraction of single crystals in random orientations prior to their subsequent destruction. Thus structural elucidation while avoiding radiation damage, even at room temperature, can now be achieved. This emerging field has cultivated new methods for nanocrystallogenesis, sample delivery, and data processing. Opportunities and challenges within SFX are reviewed herein.
Collapse
Affiliation(s)
- Jose M Martin-Garcia
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Chelsie E Conrad
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Jesse Coe
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA
| | - Petra Fromme
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-7401, USA.
| |
Collapse
|
27
|
Jakobi AJ, Passon DM, Knoops K, Stellato F, Liang M, White TA, Seine T, Messerschmidt M, Chapman HN, Wilmanns M. In cellulo serial crystallography of alcohol oxidase crystals inside yeast cells. IUCRJ 2016; 3:88-95. [PMID: 27006771 PMCID: PMC4775156 DOI: 10.1107/s2052252515022927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The possibility of using femtosecond pulses from an X-ray free-electron laser to collect diffraction data from protein crystals formed in their native cellular organelle has been explored. X-ray diffraction of submicrometre-sized alcohol oxidase crystals formed in peroxisomes within cells of genetically modified variants of the methylotrophic yeast Hansenula polymorpha is reported and characterized. The observations are supported by synchrotron radiation-based powder diffraction data and electron microscopy. Based on these findings, the concept of in cellulo serial crystallography on protein targets imported into yeast peroxisomes without the need for protein purification as a requirement for subsequent crystallization is outlined.
Collapse
Affiliation(s)
- Arjen J. Jakobi
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel M. Passon
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
| | - Kèvin Knoops
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Francesco Stellato
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mengning Liang
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas Seine
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Marc Messerschmidt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Henry N. Chapman
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Matthias Wilmanns
- Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22607 Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
28
|
Gavira JA. Current trends in protein crystallization. Arch Biochem Biophys 2015; 602:3-11. [PMID: 26747744 DOI: 10.1016/j.abb.2015.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 10/24/2022]
Abstract
UNLABELLED Proteins belong to the most complex colloidal system in terms of their physicochemical properties, size and conformational-flexibility. This complexity contributes to their great sensitivity to any external change and dictate the uncertainty of crystallization. The need of 3D models to understand their functionality and interaction mechanisms with other neighbouring (macro)molecules has driven the tremendous effort put into the field of crystallography that has also permeated other fields trying to shed some light into reluctant-to-crystallize proteins. This review is aimed at revising protein crystallization from a regular-laboratory point of view. It is also devoted to highlight the latest developments and achievements to produce, identify and deliver high-quality protein crystals for XFEL, Micro-ED or neutron diffraction. The low likelihood of protein crystallization is rationalized by considering the intrinsic polypeptide nature (folded state, surface charge, etc) followed by a description of the standard crystallization methods (batch, vapour diffusion and counter-diffusion), including high throughput advances. Other methodologies aimed at determining protein features in solution (NMR, SAS, DLS) or to gather structural information from single particles such as Cryo-EM are also discussed. Finally, current approaches showing the convergence of different structural biology techniques and the cross-methodologies adaptation to tackle the most difficult problems, are presented. SYNOPSIS Current advances in biomacromolecules crystallization, from nano crystals for XFEL and Micro-ED to large crystals for neutron diffraction, are covered with special emphasis in methodologies applicable at laboratory scale.
Collapse
Affiliation(s)
- José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. de las Palmeras, 4. 18100 Armilla, Granada, Spain
| |
Collapse
|
29
|
Levantino M, Yorke BA, Monteiro DC, Cammarata M, Pearson AR. Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules. Curr Opin Struct Biol 2015; 35:41-8. [PMID: 26342489 DOI: 10.1016/j.sbi.2015.07.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 11/17/2022]
Abstract
Time-resolved structural information is key to understand the mechanism of biological processes, such as catalysis and signalling. Recent developments in X-ray sources as well as data collection and analysis methods are making routine time-resolved X-ray crystallography and solution scattering experiments a real possibility for structural biologists. Here we review the information that can be obtained from these techniques and discuss the considerations that must be taken into account when designing a time-resolved experiment.
Collapse
Affiliation(s)
- Matteo Levantino
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | - Briony A Yorke
- Hamburg Centre for Ultrafast Imaging & Institute of Nanostructure and Solid State Physics, University of Hamburg, Hamburg 22607, Germany
| | - Diana Cf Monteiro
- Astbury Centre for Structural Molecular Biology & School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes 35042, France
| | - Arwen R Pearson
- Hamburg Centre for Ultrafast Imaging & Institute of Nanostructure and Solid State Physics, University of Hamburg, Hamburg 22607, Germany.
| |
Collapse
|
30
|
Duszenko M, Redecke L, Mudogo CN, Sommer BP, Mogk S, Oberthuer D, Betzel C. In vivo protein crystallization in combination with highly brilliant radiation sources offers novel opportunities for the structural analysis of post-translationally modified eukaryotic proteins. Acta Crystallogr F Struct Biol Commun 2015; 71:929-37. [PMID: 26249677 PMCID: PMC4528919 DOI: 10.1107/s2053230x15011450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/12/2015] [Indexed: 11/11/2022] Open
Abstract
During the last decade, the number of three-dimensional structures solved by X-ray crystallography has increased dramatically. By 2014, it had crossed the landmark of 100 000 biomolecular structures deposited in the Protein Data Bank. This tremendous increase in successfully crystallized proteins is primarily owing to improvements in cloning strategies, the automation of the crystallization process and new innovative approaches to monitor crystallization. However, these improvements are mainly restricted to soluble proteins, while the crystallization and structural analysis of membrane proteins or proteins that undergo major post-translational modifications remains challenging. In addition, the need for relatively large crystals for conventional X-ray crystallography usually prevents the analysis of dynamic processes within cells. Thus, the advent of high-brilliance synchrotron and X-ray free-electron laser (XFEL) sources and the establishment of serial crystallography (SFX) have opened new avenues in structural analysis using crystals that were formerly unusable. The successful structure elucidation of cathepsin B, accomplished by the use of microcrystals obtained by in vivo crystallization in baculovirus-infected Sf9 insect cells, clearly proved that crystals grown intracellularly are very well suited for X-ray analysis. Here, methods by which in vivo crystals can be obtained, isolated and used for structural analysis by novel highly brilliant XFEL and synchrotron-radiation sources are summarized and discussed.
Collapse
Affiliation(s)
- Michael Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural Biology and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Celestin Nzanzu Mudogo
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Benjamin Philip Sommer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
31
|
Schönherr R, Klinge M, Rudolph JM, Fita K, Rehders D, Lübber F, Schneegans S, Majoul IV, Duszenko M, Betzel C, Brandariz-Nuñez A, Martinez-Costas J, Duden R, Redecke L. Real-time investigation of dynamic protein crystallization in living cells. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041712. [PMID: 26798811 PMCID: PMC4711630 DOI: 10.1063/1.4921591] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 05/21/2023]
Abstract
X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus μNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. In vivo protein crystallization offers exciting new possibilities for proteins that do not form crystals in vitro.
Collapse
Affiliation(s)
- R Schönherr
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - M Klinge
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - K Fita
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - D Rehders
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | | | - I V Majoul
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - M Duszenko
- Interfaculty Institute of Biochemistry, University of Tübingen , Hoppe-Seyler-Straβe 4, 72076 Tübingen, Germany
| | - C Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg , c/o DESY, Notkestr. 85, 22603 Hamburg, Germany
| | - A Brandariz-Nuñez
- Department of Biochemistry and Molecular Biology, Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), University Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - J Martinez-Costas
- Department of Biochemistry and Molecular Biology, Centro de Investigación en Química Biológica y Materiales Moleculares (CIQUS), University Santiago de Compostela , 15782 Santiago de Compostela, Spain
| | - R Duden
- Institute of Biology, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - L Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck , Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
32
|
Affiliation(s)
- John C H Spence
- Department of Physics, Arizona State University, Tempe, AZ 85282, USA
| | - Henry N Chapman
- Department of Physics, University of Hamburg, Luruper Chaussee 149, Hamburg 22607, Germany
| |
Collapse
|
33
|
Boudes M, Garriga D, Coulibaly F. Reflections on the Many Facets of Protein Microcrystallography. Aust J Chem 2014. [DOI: 10.1071/ch14455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of X-ray crystallography for the structure determination of biological macromolecules has experienced a steady expansion over the last 20 years with the Protein Data Bank growing from <1000 deposited structures in 1992 to >100 000 in 2014. The large number of structures determined each year not only reflects the impact of X-ray crystallography on many disciplines in the biological and medical fields but also its accessibility to non-expert laboratories. Thus protein crystallography is now largely a mainstream research technique and is routinely integrated in high-throughput pipelines such as structural genomics projects and structure-based drug design. Yet, significant frontiers remain that continuously require methodological developments. In particular, membrane proteins, large assemblies, and proteins from scarce natural sources still represent challenging targets for which obtaining the large diffracting crystals required for classical crystallography is often difficult. These limitations have fostered the emergence of microcrystallography, novel approaches in structural biology that collectively aim at determining structures from the smallest crystals. Here, we review the state of the art of macromolecular microcrystallography and recent progress achieved in this field.
Collapse
|