1
|
Hillman C, Theriault H, Dmitriev A, Hansra S, Rosa PA, Wachter J. Borrelia burgdorferi lacking all cp32 prophage plasmids retains full infectivity in mice. EMBO Rep 2025; 26:1997-2012. [PMID: 40108404 PMCID: PMC12018966 DOI: 10.1038/s44319-025-00378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 03/22/2025] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, contains a unique, segmented genome comprising multiple linear and circular plasmids. To date, the genomes of over 63 sequenced Lyme disease Borrelia carry one or more 32 kbp circular plasmids (cp32) or cp32-like elements. The cp32 plasmids are endogenous prophages and encode, among other elements, a family of surface exposed lipoproteins termed OspEF-related proteins. These lipoproteins are synthesized during mammalian infection and are considered important components of the spirochete's adaptive response to the vertebrate host. Here, we detail the construction and infectivity of the first described B. burgdorferi strain lacking all cp32 plasmids. Despite their universal presence, our findings indicate that B. burgdorferi does not require any cp32 plasmids to complete the experimental mouse-tick-mouse infectious cycle and a total lack of cp32s does not impair spirochete infectivity.
Collapse
Affiliation(s)
- Chad Hillman
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Hannah Theriault
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, 12144, USA
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, 12159, USA
| | - Anton Dmitriev
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Satyender Hansra
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patricia A Rosa
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
2
|
Różańska-Wróbel J, Migalska M, Urbanowicz A, Grzybek M, Rego ROM, Bajer A, Dwuznik-Szarek D, Alsarraf M, Behnke-Borowczyk J, Behnke JM, Radwan J. Interplay between vertebrate adaptive immunity and bacterial infectivity genes: Bank vole MHC versus Borrelia afzelii OspC. Mol Ecol 2024; 33:e17534. [PMID: 39314079 DOI: 10.1111/mec.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Coevolution of parasites with their hosts may lead to balancing selection on genes involved in determining the specificity of host-parasite interactions, but examples of such specific interactions in wild vertebrates are scarce. Here, we investigated whether the polymorphic outer surface protein C (OspC), used by the Lyme disease agent, Borrelia afzelii, to manipulate vertebrate host innate immunity, interacts with polymorphic major histocompatibility genes (MHC), while concurrently eliciting a strong antibody response, in one of its main hosts in Europe, the bank vole. We found signals of balancing selection acting on OspC, resulting in little differentiation in OspC variant frequencies between years. Neither MHC alleles nor their inferred functional groupings (supertypes) significantly predicted the specificity of infection with strains carrying different OspC variants. However, we found that MHC alleles, but not supertypes, significantly predicted the level of IgG antibodies against two common OspC variants among seropositive individuals. Our results thus indicate that MHC alleles differ in their ability to induce antibody responses against specific OspC variants, which may contribute to selection of OspC polymorphism by the vole immune system.
Collapse
Affiliation(s)
- Joanna Różańska-Wróbel
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Gdynia, Poland
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Dwuznik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mohammed Alsarraf
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Phytopathology, Faculty of Forestry, Poznań University of Life Sciences, Poznań, Poland
| | - Jerzy M Behnke
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Jacek Radwan
- Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Genné D, Jiricka W, Sarr A, Voordouw MJ. Tick-to-host transmission differs between Borrelia afzelii strains. Microbiol Spectr 2023; 11:e0167523. [PMID: 37676027 PMCID: PMC10580945 DOI: 10.1128/spectrum.01675-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 09/08/2023] Open
Abstract
Many vector-borne pathogens establish multiple-strain infections in the vertebrate host and the arthropod vector. Multiple-strain infections in the host influence strain acquisition by naive vectors. Whether multiple-strain infections in the vector influence strain-specific transmission to naive hosts remains unknown. The spirochete, Borrelia afzelii, causes Lyme borreliosis and multiple-strain infections are common in both the tick vector and vertebrate host. Our study used two B. afzelii strains: Fin-Jyv-A3 and NE4049. Donor mice were infected with Fin-Jyv-A3 alone, NE4049 alone, or with both strains. Larval ticks fed on donor mice and molted into nymphal ticks infected with either strain or both strains. These nymphs were fed on test mice to determine whether multiple-strain infections in the nymph influence nymph-to-host transmission (NHT). Multiple-strain infection in the donor mice reduced the acquisition of both strains by ticks by 23%. Thus, a substantial fraction of infected nymphs from the multiple strain treatment were infected with the "wrong" competitor strain rather than the "right" focal strain. As a result, nymphs from the multiple strain treatment were 46% less likely to infect the test mice with the focal strain compared to nymphs from the single strain treatment. However, multiple-strain infection in the nymphal tick had no effect on the NHT of either strain. The nymphal spirochete load of Fin-Jyv-A3 was 1.9 times higher compared to NE4049. NHT of Fin-Jyv-A3 (79%) was 1.5 times higher compared to NE4049 (53%). Our study suggests that B. afzelii strains with higher nymphal spirochete loads have higher NHT. IMPORTANCE For many vector-borne pathogens, multiple-strain infections in the vertebrate host or arthropod vector are common. Multiple-strain infections in the host reduce strain acquisition by feeding vectors. Whether multiple-strain infections in the vector influence strain transmission to the host remains unknown. In our study, we used two strains of the tick-borne spirochete Borrelia afzelii, which causes Lyme borreliosis, to investigate whether multiple-strain infections in the nymphal tick influenced nymph-to-host transmission (NHT) of strains. Multiple-strain infections in mice reduced the acquisition of both B. afzelii strains by nymphal ticks. As a result, nymphs from the multiple strain treatment were less likely to infect naive test mice with the focal strain. Multiple-strain infection in the nymphal ticks did not influence the NHT of either strain. The strain with the higher bacterial abundance in the nymph had higher NHT. Our study suggests that pathogen abundance in the arthropod vector is important for vector-to-host transmission.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Whitney Jiricka
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Zinck CB, Raveendram Thampy P, Uhlemann EME, Adam H, Wachter J, Suchan D, Cameron ADS, Rego ROM, Brisson D, Bouchard C, Ogden NH, Voordouw MJ. Variation among strains of Borrelia burgdorferi in host tissue abundance and lifetime transmission determine the population strain structure in nature. PLoS Pathog 2023; 19:e1011572. [PMID: 37607182 PMCID: PMC10473547 DOI: 10.1371/journal.ppat.1011572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/01/2023] [Accepted: 07/23/2023] [Indexed: 08/24/2023] Open
Abstract
Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.
Collapse
Affiliation(s)
- Christopher B. Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Prasobh Raveendram Thampy
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eva-Maria E. Uhlemann
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jenny Wachter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Danae Suchan
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Andrew D. S. Cameron
- Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine Bouchard
- Public Health Risk Sciences, National Microbiology Laboratory, Public Health Agency of Canada, St Hyacinthe, Quebec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
| | - Nicholas H. Ogden
- Public Health Risk Sciences, National Microbiology Laboratory, Public Health Agency of Canada, St Hyacinthe, Quebec, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique (GREZOSP), Faculté de Médecine Vétérinaire, Université de Montréal, Montreal, Canada
- Centre de recherche en santé publique (CReSP), Université de Montréal, Montreal, QC, Canada
| | - Maarten J. Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Bourgeois B, Koloski C, Foley-Eby A, Zinck CB, Hurry G, Boulanger N, Voordouw MJ. Clobetasol increases the abundance of Borrelia burgdorferi in the skin 70 times more in male mice compared to female mice. Ticks Tick Borne Dis 2022; 13:102058. [PMID: 36288683 DOI: 10.1016/j.ttbdis.2022.102058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022]
Abstract
Lyme borreliosis is caused by the spirochete Borrelia burgdorferi and is transmitted among vertebrate hosts by Ixodes scapularis ticks in eastern North America. Treatment with topical corticosteroids increases the abundance of B. burgdorferi in the skin of lab mice that have been experimentally infected via needle inoculation. In the present study, female and male C3H/HeJ mice were infected with B. burgdorferi via nymphal tick bite. Infected mice were treated with clobetasol on the skin of the right hindleg on days 35 and 36 post-infection and euthanized at days -2, 1, 3, 5, and 7 post-treatment; a group of control mice was infected but not treated with clobetasol. The spirochete abundance was quantified in 8 mouse tissues including bladder, heart, left hindleg skin, right hindleg skin, dorsal skin, ventral skin, left ear and right ear. Averaged across the 8 mouse tissues, the abundance of B. burgdorferi on days 3 and 5 were 21.4x and 14.4x higher in mice treated with clobetasol compared to the untreated control mice, but there were large differences among tissues. There was a dramatic sex-specific effect of the clobetasol treatment; the peak abundance of B. burgdorferi in the skin (left hindleg, right hindleg, dorsal, ventral) was 72.6x higher in male mice compared to female mice. In contrast, there was little difference between the sexes in the tissue spirochete load in the ears, bladder, and heart. Topical application of clobetasol could increase the sensitivity of direct diagnostic methods (e.g., culture, PCR) to detect B. burgdorferi in host skin biopsies.
Collapse
Affiliation(s)
- Brooklyn Bourgeois
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Cody Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Christopher B Zinck
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nathalie Boulanger
- UR7290, Virulence bactérienne précoce, groupe Borréliose de Lyme, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France; National French Reference Center Borrelia, Strasbourg Hospital, France
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
6
|
Råberg L, Clough D, Hagström Å, Scherman K, Andersson M, Drews A, Strandh M, Tschirren B, Westerdahl H. MHC class II genotype-by-pathogen genotype interaction for infection prevalence in a natural rodent-Borrelia system. Evolution 2022; 76:2067-2075. [PMID: 35909235 PMCID: PMC9541904 DOI: 10.1111/evo.14590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/22/2023]
Abstract
MHC genes are extraordinarily polymorphic in most taxa. Host-pathogen coevolution driven by negative frequency-dependent selection (NFDS) is one of the main hypotheses for the maintenance of such immunogenetic variation. Here, we test a critical but rarely tested assumption of this hypothesis-that MHC alleles affect resistance/susceptibility to a pathogen in a strain-specific way, that is, there is a host genotype-by-pathogen genotype interaction. In a field study of bank voles naturally infected with the tick-transmitted bacterium Borrelia afzelii, we tested for MHC class II (DQB) genotype-by-B. afzelii strain interactions for infection prevalence between 10 DQB alleles and seven strains. One allele (DQB*37) showed an interaction, such that voles carrying DQB*37 had higher prevalence of two strains and lower prevalence of one strain than individuals without the allele. These findings were corroborated by analyses of strain composition of infections, which revealed an effect of DQB*37 in the form of lower β diversity among infections in voles carrying the allele. Taken together, these results provide rare support at the molecular genetic level for a key assumption of models of antagonistic coevolution through NFDS.
Collapse
Affiliation(s)
- Lars Råberg
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Dagmar Clough
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Åsa Hagström
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | | | | | - Anna Drews
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Maria Strandh
- Department of BiologyLund UniversityLundSE‐22362Sweden
| | - Barbara Tschirren
- Department of BiologyLund UniversityLundSE‐22362Sweden,Centre for Ecology and ConservationUniversity of ExeterPenrynTR10 9FEUnited Kingdom
| | | |
Collapse
|
7
|
Competition between strains of Borrelia afzelii in the host tissues and consequences for transmission to ticks. THE ISME JOURNAL 2021; 15:2390-2400. [PMID: 33658621 PMCID: PMC8319436 DOI: 10.1038/s41396-021-00939-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
Pathogen species often consist of genetically distinct strains, which can establish mixed infections or coinfections in the host. In coinfections, interactions between pathogen strains can have important consequences for their transmission success. We used the tick-borne bacterium Borrelia afzelii, which is the most common cause of Lyme disease in Europe, as a model multi-strain pathogen to investigate the relationship between coinfection, competition between strains, and strain-specific transmission success. Mus musculus mice were infected with one or two strains of B. afzelii, strain transmission success was measured by feeding ticks on mice, and the distribution of each strain in six different mouse organs and the ticks was measured using qPCR. Coinfection and competition reduced the tissue infection prevalence of both strains and changed their bacterial abundance in some tissues. Coinfection and competition also reduced the transmission success of the B. afzelii strains from the infected hosts to feeding ticks. The ability of the B. afzelii strains to establish infection in the host tissues was strongly correlated with their transmission success to the tick vector. Our study demonstrates that coinfection and competition between pathogen strains inside the host tissues can have major consequences for their transmission success.
Collapse
|
8
|
Nouri M, Latorre-Margalef N, Czopek A, Råberg L. Cross-reactivity of antibody responses to Borrelia afzelii OspC: Asymmetry and host heterogeneity. INFECTION GENETICS AND EVOLUTION 2021; 91:104793. [PMID: 33652116 DOI: 10.1016/j.meegid.2021.104793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 11/27/2022]
Abstract
The tick-transmitted bacterium Borrelia afzelii consists of a number of antigenically different strains - often defined by outer surface protein C (OspC) genotype - that coexist at stable frequencies in host populations. To investigate how host antibody responses affect strain coexistence, we measured antibody cross-reactivity to three different OspC types (OspC 2, 3 and 9) in three different strains of laboratory mice (BALB/c, C3H and C57BL/6). The extent of cross-reactivity differed between mouse strains, being higher in C3H than BALB/c and C57BL/6. In one of three pairwise comparisons of OspC types (OspC2 vs OspC9), there was evidence for asymmetry of cross-reactivity, with antibodies to OspC2 cross-reacting more strongly with OspC9 than vice versa. These results indicate that the extent of antibody-mediated competition between OspC types may depend on the composition of the host population, and that such competition may be asymmetric. We discuss the implications of these results for understanding the coexistence of OspC types.
Collapse
Affiliation(s)
- Mehrnaz Nouri
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Neus Latorre-Margalef
- Department of Biology and Environmental Sciences, Linnaeus University, 391 82 Kalmar, Sweden
| | - Agnieszka Czopek
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - Lars Råberg
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden.
| |
Collapse
|
9
|
Zhong X, Lundberg M, Råberg L. Divergence in Coding Sequence and Expression of Different Functional Categories of Immune Genes between Two Wild Rodent Species. Genome Biol Evol 2021; 13:6132239. [PMID: 33565592 PMCID: PMC7936018 DOI: 10.1093/gbe/evab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Differences in immune function between species could be a result of interspecific divergence in coding sequence and/or expression of immune genes. Here, we investigate how the degree of divergence in coding sequence and expression differs between functional categories of immune genes, and if differences between categories occur independently of other factors (expression level, pleiotropy). To this end, we compared spleen transcriptomes of wild-caught yellow-necked mice and bank voles. Immune genes expressed in the spleen were divided into four categories depending on the function of the encoded protein: pattern recognition receptors (PRR); signal transduction proteins; transcription factors; and cyto- and chemokines and their receptors. Genes encoding PRR and cyto-/chemokines had higher sequence divergence than genes encoding signal transduction proteins and transcription factors, even when controlling for potentially confounding factors. Genes encoding PRR also had higher expression divergence than genes encoding signal transduction proteins and transcription factors. There was a positive correlation between expression divergence and coding sequence divergence, in particular for PRR genes. We propose that this is a result of that divergence in PRR coding sequence leads to divergence in PRR expression through positive feedback of PRR ligand binding on PRR expression. When controlling for sequence divergence, expression divergence of PRR genes did not differ from other categories. Taken together, the results indicate that coding sequence divergence of PRR genes is a major cause of differences in immune function between species.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Sweden
| |
Collapse
|
10
|
Abstract
With one exception (epidemic relapsing fever), borreliae are obligately maintained in nature by ticks. Although some Borrelia spp. may be vertically transmitted to subsequent generations of ticks, most require amplification by a vertebrate host because inheritance is not stable. Enzootic cycles of borreliae have been found globally; those receiving the most attention from researchers are those whose vectors have some degree of anthropophily and, thus, cause zoonoses such as Lyme disease or relapsing fever. To some extent, our views on the synecology of the borreliae has been dominated by an applied focus, viz., analyses that seek to understand the elements of human risk for borreliosis. But, the elements of borrelial perpetuation do not necessarily bear upon risk, nor do our concepts of risk provide the best structure for analyzing perpetuation. We identify the major global themes for the perpetuation of borreliae, and summarize local variations on those themes, focusing on key literature to outline the factors that serve as the basis for the distribution and abundance of borreliae.
Collapse
Affiliation(s)
- Sam R. Telford
- Dept of Infectious Disease and Global Health, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Heidi K. Goethert
- Dept of Infectious Disease and Global Health, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
11
|
Norte AC, Lopes de Carvalho I, Núncio MS, Araújo PM, Matthysen E, Albino Ramos J, Sprong H, Heylen D. Getting under the birds' skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts. MICROBIAL ECOLOGY 2020; 79:756-769. [PMID: 31612324 DOI: 10.1007/s00248-019-01442-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Wild birds are frequently exposed to the zoonotic tick-borne bacteria Borrelia burgdorferi sensu lato (s.l.), and some bird species act as reservoirs for some Borrelia genospecies. Studying the tropism of Borrelia in the host, how it is sequestered in different organs, and whether it is maintained in circulation and/or in the host's skin is important to understand pathogenicity, infectivity to vector ticks and reservoir competency.We evaluated tissue dissemination of Borrelia in blackbirds (Turdus merula) and great tits (Parus major), naturally and experimentally infected with Borrelia genospecies from enzootic foci. We collected both minimally invasive biological samples (feathers, skin biopsies and blood) and skin, joint, brain and visceral tissues from necropsied birds. Infectiousness of the host was evaluated through xenodiagnoses and infection rates in fed and moulted ticks. Skin biopsies were the most reliable method for assessing avian hosts' Borrelia infectiousness, which was supported by the agreement of infection status results obtained from the analysis of chin and lore skin samples from necropsied birds and of their xenodiagnostic ticks, including a significant correlation between the estimated concentration of Borrelia genome copies in the skin and the Borrelia infection rate in the xenodiagnostic ticks. This confirms a dermatropism of Borrelia garinii, B. valaisiana and B. turdi in its avian hosts. However, time elapsed from exposure to Borrelia and interaction between host species and Borrelia genospecies may affect the reliability of skin biopsies. The blood was not useful to assess infectiousness of birds, even during the period of expected maximum spirochetaemia. From the tissues sampled (foot joint, liver, spleen, heart, kidney, gut and brain), Borrelia was detected only in the gut, which could be related with infection mode, genospecies competition, genospecies-specific seasonality and/or excretion processes.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Isabel Lopes de Carvalho
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria Sofia Núncio
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Pedro Miguel Araújo
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jaime Albino Ramos
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), vhNational Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dieter Heylen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
12
|
Genné D, Sarr A, Rais O, Voordouw MJ. Competition Between Strains of Borrelia afzelii in Immature Ixodes ricinus Ticks Is Not Affected by Season. Front Cell Infect Microbiol 2019; 9:431. [PMID: 31921706 PMCID: PMC6930885 DOI: 10.3389/fcimb.2019.00431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Vector-borne pathogens often consist of genetically distinct strains that can establish co-infections in the vertebrate host and the arthropod vector. Co-infections (or mixed infections) can result in competitive interactions between strains with important consequences for strain abundance and transmission. Here we used the spirochete bacterium, Borrelia afzelii, as a model system to investigate the interactions between strains inside its tick vector, Ixodes ricinus. Larvae were fed on mice infected with either one or two strains of B. afzelii. Engorged larvae were allowed to molt into nymphs that were subsequently exposed to three seasonal treatments (artificial summer, artificial winter, and natural winter), which differed in temperature and light conditions. We used strain-specific qPCRs to quantify the presence and abundance of each strain in the immature ticks. Co-infection in the mice reduced host-to-tick transmission to larval ticks and this effect was maintained in the resultant nymphs at 1 and 4 months after the larva-to-nymph molt. Competition between strains in co-infected ticks reduced the abundance of both strains. This inter-strain competition occurred in the three life stages that we investigated: engorged larvae, recently molted nymphs, and overwintered nymphs. The abundance of B. afzelii in the nymphs declined by 40.5% over a period of 3 months, but this phenomenon was not influenced by the seasonal treatment. Future studies should investigate whether inter-strain competition in the tick influences the subsequent strain-specific transmission success from the tick to the vertebrate host.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Gan GL, Willie E, Chauve C, Chindelevitch L. Deconvoluting the diversity of within-host pathogen strains in a multi-locus sequence typing framework. BMC Bioinformatics 2019; 20:637. [PMID: 31842753 PMCID: PMC6915855 DOI: 10.1186/s12859-019-3204-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Bacterial pathogens exhibit an impressive amount of genomic diversity. This diversity can be informative of evolutionary adaptations, host-pathogen interactions, and disease transmission patterns. However, capturing this diversity directly from biological samples is challenging. RESULTS We introduce a framework for understanding the within-host diversity of a pathogen using multi-locus sequence types (MLST) from whole-genome sequencing (WGS) data. Our approach consists of two stages. First we process each sample individually by assigning it, for each locus in the MLST scheme, a set of alleles and a proportion for each allele. Next, we associate to each sample a set of strain types using the alleles and the strain proportions obtained in the first step. We achieve this by using the smallest possible number of previously unobserved strains across all samples, while using those unobserved strains which are as close to the observed ones as possible, at the same time respecting the allele proportions as closely as possible. We solve both problems using mixed integer linear programming (MILP). Our method performs accurately on simulated data and generates results on a real data set of Borrelia burgdorferi genomes suggesting a high level of diversity for this pathogen. CONCLUSIONS Our approach can apply to any bacterial pathogen with an MLST scheme, even though we developed it with Borrelia burgdorferi, the etiological agent of Lyme disease, in mind. Our work paves the way for robust strain typing in the presence of within-host heterogeneity, overcoming an essential challenge currently not addressed by any existing methodology for pathogen genomics.
Collapse
Affiliation(s)
- Guo Liang Gan
- School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby (BC), V5A 1S6, Canada
| | - Elijah Willie
- School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby (BC), V5A 1S6, Canada
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby (BC), V5A 1S6, Canada.,LaBRI, Université de Bordeaux, 351 Cours de la Libération, Talence, 33405, France
| | - Leonid Chindelevitch
- School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby (BC), V5A 1S6, Canada.
| |
Collapse
|
14
|
Michalik J, Wodecka B, Liberska J, Dabert M, Postawa T, Piksa K, Stańczak J. Diversity of Borrelia burgdorferi sensu lato species in Ixodes ticks (Acari: Ixodidae) associated with cave-dwelling bats from Poland and Romania. Ticks Tick Borne Dis 2019; 11:101300. [PMID: 31631051 DOI: 10.1016/j.ttbdis.2019.101300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/26/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Bats comprise one quarter of the world's mammal species. In Europe, three nidicolous Ixodes tick species, I. vespertilionis, I. simplex and I. ariadnae are specifically associated with cave-dwelling bats, but their role as potential vectors of zoonotic agents is unknown. In this study, we used PCR-based methods to provide the first evidence of Borrelia burgdorferi sensu lato (s.l.) infections in the three bat-associated tick species collected from ten bat species sampled in Poland and Romania. B. burgdorferi s.l. was detected in 24% (64/266) of tick samples, and 40.3% (60/149) of the bats carried infected chiropterophilic ticks. In Poland, the B. burgdorferi s.l. infection prevelance of I. ariadnae ticks parasitizing Myotis species was four times higher compared to the I. vespertilionis ticks derived from Rhinolophus hipposideros bats (44.4% vs.10%, respectively). The observed differences in infection prevalence could be explained by differences in reservoir potential between bat species. Bats from the genus Myotis and Miniopterus schreibersii carried more infected ticks than R. hipposideros regardless of the tick species. Analysis of the flaB gene sequences revealed seven species from the B. burgdorferi s.l. complex (B. afzelii, B. carolinensis, B. garinii, B. lanei, B. spielmanii, B. burgdorferi s.s., and B. valaisiana), of which five are considered as human pathogens. This large diversity of Borrelia species may reflect differences in susceptibility of chiropteran hosts and/or the tick vectors. Generally, mammal-associated B. burgdorferi s.l. species were more common than bird-associated species. Our study provides evidence for new enzootic transmission cycles of B. burgdorferi s.l. spirochetes involving nidicolous Ixodes tick species and cave-dwelling bats.
Collapse
Affiliation(s)
- Jerzy Michalik
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| | - Beata Wodecka
- Department of General and Molecular Genetics, Faculty of Biology, Szczecin University, Szczecin, Poland
| | - Justyna Liberska
- Molecular Biology Techniques Lab., Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mirosława Dabert
- Molecular Biology Techniques Lab., Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Tomasz Postawa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Krzysztof Piksa
- Department of Vertebrate Zoology and Human Biology, Institute of Biology, Cracow Pedagogical University, Kraków, Poland
| | - Joanna Stańczak
- Department of Tropical Parasitology, Medical University of Gdańsk, Gdynia, Poland
| |
Collapse
|
15
|
Gomez-Chamorro A, Battilotti F, Cayol C, Mappes T, Koskela E, Boulanger N, Genné D, Sarr A, Voordouw MJ. Susceptibility to infection with Borrelia afzelii and TLR2 polymorphism in a wild reservoir host. Sci Rep 2019; 9:6711. [PMID: 31040326 PMCID: PMC6491475 DOI: 10.1038/s41598-019-43160-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
The study of polymorphic immune genes in host populations is critical for understanding genetic variation in susceptibility to pathogens. Controlled infection experiments are necessary to separate variation in the probability of exposure from genetic variation in susceptibility to infection, but such experiments are rare for wild vertebrate reservoir hosts and their zoonotic pathogens. The bank vole (Myodes glareolus) is an important reservoir host of Borrelia afzelii, a tick-borne spirochete that causes Lyme disease. Bank vole populations are polymorphic for Toll-like receptor 2 (TLR2), an innate immune receptor that recognizes bacterial lipoproteins. To test whether the TLR2 polymorphism influences variation in the susceptibility to infection with B. afzelii, we challenged pathogen-free, lab-born individuals of known TLR2 genotype with B. afzelii-infected ticks. We measured the spirochete load in tissues of the bank voles. The susceptibility to infection with B. afzelii following an infected tick bite was very high (95%) and did not differ between TLR2 genotypes. The TLR2 polymorphism also had no effect on the spirochete abundance in the tissues of the bank voles. Under the laboratory conditions of our study, we did not find that the TLR2 polymorphism in bank voles influenced variation in the susceptibility to B. afzelii infection.
Collapse
Affiliation(s)
| | | | - Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Nathalie Boulanger
- Facultés de Médecine et de Pharmacie, Université de Strasbourg, Strasbourg, France
| | - Dolores Genné
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Maarten Jeroen Voordouw
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland.
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
16
|
Colonization and pathology of Borrelia afzelii in its natural hosts. Ticks Tick Borne Dis 2019; 10:822-827. [PMID: 31005618 DOI: 10.1016/j.ttbdis.2019.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 01/01/2023]
Abstract
Studies of Borrelia burgdorferi sensu lato in laboratory mice and humans have shown that spirochaetes disseminate from the site of infection (skin) to internal tissues, and cause various pathological effects. However, less is known about colonization and pathology of Lyme borreliosis spirochaetes in their natural hosts. In the present study, we assessed the colonization and manifestations during B. afzelii infection in reservoir hosts (yellow-necked mouse, Apodemus flavicollis; bank vole, Myodes glareolus; common shrew, Sorex araneus) infected in the wild. The infection prevalence and bacterial load was measured in skin (ear), joints and heart by quantitative PCR, and pathology in infected joints was evaluated by histology. The prevalence of B. afzelii was higher in skin than in joints and heart, but most animals that were positive in skin were also positive in internal tissues, and there was no difference between species in tissue-specific prevalence. Thus, spirochaetes disseminated from skin to other tissues in a similar way in all species. The bacterial load varied among host species and among different tissues within the same host species. In the case of skin and joints, bank voles and common shrews had higher bacterial loads than yellow-necked mice. In hearts, voles had higher bacterial loads than shrews and mice. Histological analyses showed no inflammation in joints of infected animals when compared to controls. We conclude that B. afzelii disseminates to internal tissues in natural hosts, but that levels of colonization vary between both species and tissues. There is as yet little evidence for pathological effects in natural hosts.
Collapse
|
17
|
Ross BD, Hayes B, Radey MC, Lee X, Josek T, Bjork J, Neitzel D, Paskewitz S, Chou S, Mougous JD. Ixodes scapularis does not harbor a stable midgut microbiome. THE ISME JOURNAL 2018; 12:2596-2607. [PMID: 29946195 PMCID: PMC6194123 DOI: 10.1038/s41396-018-0161-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 11/08/2022]
Abstract
Hard ticks of the order Ixodidae serve as vectors for numerous human pathogens, including the causative agent of Lyme Disease Borrelia burgdorferi. Tick-associated microbes can influence pathogen colonization, offering the potential to inhibit disease transmission through engineering of the tick microbiota. Here, we investigate whether B. burgdorferi encounters abundant bacteria within the midgut of wild adult Ixodes scapularis, its primary vector. Through the use of controlled sequencing methods and confocal microscopy, we find that the majority of field-collected adult I. scapularis harbor limited internal microbial communities that are dominated by endosymbionts. A minority of I. scapularis ticks harbor abundant midgut bacteria and lack B. burgdorferi. We find that the lack of a stable resident midgut microbiota is not restricted to I. scapularis since extension of our studies to I. pacificus, Amblyomma maculatum, and Dermacentor spp showed similar patterns. Finally, bioinformatic examination of the B. burgdorferi genome revealed the absence of genes encoding known interbacterial interaction pathways, a feature unique to the Borrelia genus within the phylum Spirochaetes. Our results suggest that reduced selective pressure from limited microbial populations within ticks may have facilitated the evolutionary loss of genes encoding interbacterial competition pathways from Borrelia.
Collapse
Affiliation(s)
- Benjamin D Ross
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Beth Hayes
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Matthew C Radey
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xia Lee
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | - Tanya Josek
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jenna Bjork
- Vectorborne Diseases Unit, Minnesota Department of Health, St. Paul, MN, 55164, USA
| | - David Neitzel
- Vectorborne Diseases Unit, Minnesota Department of Health, St. Paul, MN, 55164, USA
| | - Susan Paskewitz
- Department of Entomology, University of Wisconsin, Madison, WI, 53706, USA
| | - Seemay Chou
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
| | - Joseph D Mougous
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
18
|
Genné D, Sarr A, Gomez-Chamorro A, Durand J, Cayol C, Rais O, Voordouw MJ. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc Biol Sci 2018; 285:20181804. [PMID: 30381382 PMCID: PMC6235042 DOI: 10.1098/rspb.2018.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/08/2018] [Indexed: 01/20/2023] Open
Abstract
Multiple-strain pathogens often establish mixed infections inside the host that result in competition between strains. In vector-borne pathogens, the competitive ability of strains must be measured in both the vertebrate host and the arthropod vector to understand the outcome of competition. Such studies could reveal the existence of trade-offs in competitive ability between different host types. We used the tick-borne bacterium Borrelia afzelii to test for competition between strains in the rodent host and the tick vector, and to test for a trade-off in competitive ability between these two host types. Mice were infected via tick bite with either one or two strains, and these mice were subsequently used to create ticks with single or mixed infections. Competition in the rodent host reduced strain-specific host-to-tick transmission and competition in the tick vector reduced the abundance of both strains. The strain that was competitively superior in host-to-tick transmission was competitively inferior with respect to bacterial abundance in the tick. This study suggests that in multiple-strain vector-borne pathogens there are trade-offs in competitive ability between the vertebrate host and the arthropod vector. Such trade-offs could play an important role in the coexistence of pathogen strains.
Collapse
Affiliation(s)
- Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Andrea Gomez-Chamorro
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
19
|
Mysterud A, Jore S, Østerås O, Viljugrein H. Emergence of tick-borne diseases at northern latitudes in Europe: a comparative approach. Sci Rep 2017; 7:16316. [PMID: 29176601 PMCID: PMC5701145 DOI: 10.1038/s41598-017-15742-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
The factors that drive the emergence of vector-borne diseases are difficult to identify due to the complexity of the pathogen-vector-host triad. We used a novel comparative approach to analyse four long-term datasets (1995-2015) on the incidence of tick-borne diseases in humans and livestock (Lyme disease, anaplasmosis and babesiosis) over a geographic area that covered the whole of Norway. This approach allowed us to separate general (shared vector) and specific (pathogen reservoir host) limiting factors of tick-borne diseases, as well as the role of exposure (shared and non-shared pathogens in different hosts). We found broadly similar patterns of emergence across the four tick-borne diseases. Following initial increases during the first decade of the time series, the numbers of cases peaked at slightly different years and then stabilized or declined in the most recent years. Contrasting spatial patterns of disease incidence were consistent with exposure to ticks being an important factor influencing disease incidence in livestock. Uncertainty regarding the reservoir host(s) of the pathogens causing anaplasmosis and babesiosis prevented a firm conclusion regarding the role of the reservoir host-pathogen distribution. Our study shows that the emergence of tick-borne diseases at northern latitudes is linked to the shared tick vector and that variation in host-pathogen distribution and exposure causes considerable variation in emergence.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway.
| | - Solveig Jore
- Department of Food, Water, Zoonotic & Vector-borne Infections, The Norwegian Institute for Public Health, P.O. Box 4404 Nydalen, NO-0403, Oslo, Norway
| | - Olav Østerås
- Department of the Norwegian Cattle Health Services, TINE Norwegian Dairies BA, Oslo, NO-1431 Ås, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106, Oslo, Norway
| |
Collapse
|
20
|
Chastagner A, Pion A, Verheyden H, Lourtet B, Cargnelutti B, Picot D, Poux V, Bard É, Plantard O, McCoy KD, Leblond A, Vourc'h G, Bailly X. Host specificity, pathogen exposure, and superinfections impact the distribution of Anaplasma phagocytophilum genotypes in ticks, roe deer, and livestock in a fragmented agricultural landscape. INFECTION GENETICS AND EVOLUTION 2017; 55:31-44. [PMID: 28807858 DOI: 10.1016/j.meegid.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Anaplasma phagocytophilum is a bacterial pathogen mainly transmitted by Ixodes ricinus ticks in Europe. It infects wild mammals, livestock, and, occasionally, humans. Roe deer are considered to be the major reservoir, but the genotypes they carry differ from those that are found in livestock and humans. Here, we investigated whether roe deer were the main source of the A. phagocytophilum genotypes circulating in questing I. ricinus nymphs in a fragmented agricultural landscape in France. First, we assessed pathogen prevalence in 1837 I. ricinus nymphs (sampled along georeferenced transects) and 79 roe deer. Prevalence was dramatically different between ticks and roe deer: 1.9% versus 76%, respectively. Second, using high-throughput amplicon sequencing, we characterized the diversity of the A. phagocytophilum genotypes found in 22 infected ticks and 60 infected roe deer; the aim was to determine the frequency of co-infections. Only 22.7% of infected ticks carried genotypes associated with roe deer. This finding fits with others suggesting that cattle density is the major factor explaining infected tick density. To explore epidemiological scenarios capable of explaining these patterns, we constructed compartmental models that focused on how A. phagocytophilum exposure and infection dynamics affected pathogen prevalence in roe deer. At the exposure levels predicted by the results of this study and the literature, the high prevalence in roe deer was only seen in the model in which superinfections could occur during all infection phases and when the probability of infection post exposure was above 0.43. We then interpreted these results from the perspective of livestock and human health.
Collapse
Affiliation(s)
- Amélie Chastagner
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France; Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Angélique Pion
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Hélène Verheyden
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Lourtet
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Bruno Cargnelutti
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Denis Picot
- CEFS, UR0035, Comportement et Ecologie de la Faune Sauvage, Université de Toulouse, INRA, 24 chemin de Borde-Rouge, F-31326 Castanet-Tolosan, France
| | - Valérie Poux
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Émilie Bard
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Olivier Plantard
- BIOEPAR, UMR 1300, Biologie, Epidemiologie et Analyse de Risque, INRA, UNAM Université, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique, Atlanpôle, la Chantrerie, F-44307, Nantes, France
| | - Karen D McCoy
- MIVEGEC (UMR 5290), Maladie Infectieuses et Vecteurs: Ecologie, Génétique Evolution et Contrôle, Centre National de la Recherche Scientifique, Université de Montpellier, Institut de Recherche pour le Développement (UR224), 911 Avenue d'Agropolis, BP 64501, F-34394 Cedex 5, Montpellier, France
| | - Agnes Leblond
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Gwenaël Vourc'h
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France
| | - Xavier Bailly
- EPIA, UMR 0346, Epidémiologie des maladies Animales et zoonotiques, INRA, VetAgroSup, Route de Theix, F-63122 Saint Genes Champanelle, France.
| |
Collapse
|
21
|
Belli A, Sarr A, Rais O, Rego ROM, Voordouw MJ. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Sci Rep 2017; 7:5006. [PMID: 28694446 PMCID: PMC5503982 DOI: 10.1038/s41598-017-05231-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Vector-borne pathogens establish systemic infections in host tissues to maximize transmission to arthropod vectors. Co-feeding transmission occurs when the pathogen is transferred between infected and naive vectors that feed in close spatiotemporal proximity on a host that has not yet developed a systemic infection. Borrelia afzelii is a tick-borne spirochete bacterium that causes Lyme borreliosis (LB) and is capable of co-feeding transmission. Whether ticks that acquire LB pathogens via co-feeding are actually infectious to vertebrate hosts has never been tested. We created nymphs that had been experimentally infected as larvae with B. afzelii via co-feeding or systemic transmission, and compared their performance over one complete LB life cycle. Co-feeding nymphs had a spirochete load that was 26 times lower than systemic nymphs but both nymphs were highly infectious to mice (i.e., probability of nymph-to-host transmission of B. afzelii was ~100%). The mode of transmission had no effect on the other infection phenotypes of the LB life cycle. Ticks that acquire B. afzelii via co-feeding transmission are highly infectious to rodents, and the resulting rodent infection is highly infectious to larval ticks. This is the first study to show that B. afzelii can use co-feeding transmission to complete its life cycle.
Collapse
Affiliation(s)
- Alessandro Belli
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ryan O M Rego
- Institute of Parasitology, ASCR, Biology Centre, Ceske Budejovice, Czech Republic
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
22
|
Cutler SJ, Rudenko N, Golovchenko M, Cramaro WJ, Kirpach J, Savic S, Christova I, Amaro A. Diagnosing Borreliosis. Vector Borne Zoonotic Dis 2017; 17:2-11. [PMID: 28055580 DOI: 10.1089/vbz.2016.1962] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Borrelia species fall into two groups, the Borrelia burgdorferi sensu lato (Bbsl) complex, the cause of Lyme borreliosis (also known as Lyme disease), and the relapsing fever group. Both groups exhibit inter- and intraspecies diversity and thus have variations in both clinical presentation and diagnostic approaches. A further layer of complexity is derived from the fact that ticks may carry multiple infectious agents and are able to transmit them to the host during blood feeding, with potential overlapping clinical manifestations. Besides this, pathogens like Borrelia have developed strategies to evade the host immune system, which allows them to persist within the host, including humans. Diagnostics can be applied at different times during the clinical course and utilize sample types, each with their own advantages and limitations. These differing methods should always be considered in conjunction with potential exposure and compatible clinical features. Throughout this review, we aim to explore different approaches providing the reader with an overview of methods appropriate for various situations. This review will cover human pathogenic members of Bbsl and relapsing fever borreliae, including newly recognized Borrelia miyamotoi spirochetes.
Collapse
Affiliation(s)
- Sally J Cutler
- 1 School of Health, Sport & Bioscience, University of East London , London, United Kingdom
| | - Nataliia Rudenko
- 2 Biology Centre CAS, Institute of Parasitology , Ceske Budejovice, Czech Republic
| | - Maryna Golovchenko
- 2 Biology Centre CAS, Institute of Parasitology , Ceske Budejovice, Czech Republic
| | - Wibke J Cramaro
- 3 Department of Infection and Immunity, Luxembourg Institute of Health , Esch-sur-Alzette, Luxembourg
| | - Josiane Kirpach
- 3 Department of Infection and Immunity, Luxembourg Institute of Health , Esch-sur-Alzette, Luxembourg
| | - Sara Savic
- 4 Scientific Veterinary Institute "Novi Sad ," Rumenacki put 20, Novi Sad, Serbia
| | - Iva Christova
- 5 Department of Microbiology, National Center of Infectious and Parasitic Diseases , Sofia, Bulgaria
| | - Ana Amaro
- 6 National Institute for Agrarian and Veterinarian Research (INIAV) , Lisboa, Portugal
| |
Collapse
|
23
|
Durand J, Jacquet M, Rais O, Gern L, Voordouw MJ. Fitness estimates from experimental infections predict the long-term strain structure of a vector-borne pathogen in the field. Sci Rep 2017; 7:1851. [PMID: 28500292 PMCID: PMC5431797 DOI: 10.1038/s41598-017-01821-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022] Open
Abstract
The populations of many pathogen species consist of a collection of common and rare strains but the factors underlying this strain-specific variation in frequency are often unknown. Understanding frequency variation among strains is particularly challenging for vector-borne pathogens where the strain-specific fitness depends on the performance in both the vertebrate host and the arthropod vector. Two sympatric multiple-strain tick-borne pathogens, Borrelia afzelii and B. garinii, that use the same tick vector, Ixodes ricinus, but different vertebrate hosts were studied. 454-sequencing of the polymorphic ospC gene was used to characterize the community of Borrelia strains in a local population of I. ricinus ticks over a period of 11 years. Estimates of the reproduction number (R0), a measure of fitness, were obtained for six strains of B. afzelii from a previous laboratory study. There was substantial variation in prevalence among strains and some strains were consistently common whereas other strains were consistently rare. In B. afzelii, the strain-specific estimates of R0 in laboratory mice explained over 70% of the variation in the prevalences of the strains in our local population of ticks. Our study shows that laboratory estimates of fitness can predict the community structure of multiple-strain pathogens in the field.
Collapse
Affiliation(s)
- Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lise Gern
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
24
|
Råberg L, Hagström Å, Andersson M, Bartkova S, Scherman K, Strandh M, Tschirren B. Evolution of antigenic diversity in the tick-transmitted bacteriumBorrelia afzelii: a role for host specialization? J Evol Biol 2017; 30:1034-1041. [DOI: 10.1111/jeb.13075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/20/2017] [Indexed: 01/22/2023]
Affiliation(s)
- L. Råberg
- Department of Biology; Lund University; Lund Sweden
| | - Å. Hagström
- Department of Biology; Lund University; Lund Sweden
| | - M. Andersson
- Department of Biology; Lund University; Lund Sweden
| | - S. Bartkova
- Department of Biology; Lund University; Lund Sweden
| | - K. Scherman
- Department of Biology; Lund University; Lund Sweden
| | - M. Strandh
- Department of Biology; Lund University; Lund Sweden
| | - B. Tschirren
- Department of Biology; Lund University; Lund Sweden
| |
Collapse
|
25
|
Durand J, Herrmann C, Genné D, Sarr A, Gern L, Voordouw MJ. Multistrain Infections with Lyme Borreliosis Pathogens in the Tick Vector. Appl Environ Microbiol 2017; 83:e02552-16. [PMID: 27836839 PMCID: PMC5244308 DOI: 10.1128/aem.02552-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Mixed or multiple-strain infections are common in vector-borne diseases and have important implications for the epidemiology of these pathogens. Previous studies have mainly focused on interactions between pathogen strains in the vertebrate host, but little is known about what happens in the arthropod vector. Borrelia afzelii and Borrelia garinii are two species of spirochete bacteria that cause Lyme borreliosis in Europe and that share a tick vector, Ixodes ricinus Each of these two tick-borne pathogens consists of multiple strains that are often differentiated using the highly polymorphic ospC gene. For each Borrelia species, we studied the frequencies and abundances of the ospC strains in a wild population of I. ricinus ticks that had been sampled from the same field site over a period of 3 years. We used quantitative PCR (qPCR) and 454 sequencing to estimate the spirochete load and the strain diversity within each tick. For B. afzelii, there was a negative relationship between the two most common ospC strains, suggesting the presence of competitive interactions in the vertebrate host and possibly the tick vector. The flat relationship between total spirochete abundance and strain richness in the nymphal tick indicates that the mean abundance per strain decreases as the number of strains in the tick increases. Strains with the highest spirochete load in the nymphal tick were the most common strains in the tick population. The spirochete abundance in the nymphal tick appears to be an important life history trait that explains why some strains are more common than others in nature. IMPORTANCE Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere and is caused by spirochete bacteria that belong to the Borrelia burgdorferi sensu lato species complex. These tick-borne pathogens are transmitted among vertebrate hosts by hard ticks of the genus Ixodes Each Borrelia species can be further subdivided into genetically distinct strains. Multiple-strain infections are common in both the vertebrate host and the tick vector and can result in competitive interactions. To date, few studies on multiple-strain vector-borne pathogens have investigated patterns of cooccurrence and abundance in the arthropod vector. We demonstrate that the abundance of a given strain in the tick vector is negatively affected by the presence of coinfecting strains. In addition, our study suggests that the spirochete abundance in the tick is an important life history trait that can explain why some strains are more common in nature than others.
Collapse
Affiliation(s)
- Jonas Durand
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Coralie Herrmann
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lise Gern
- Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
26
|
Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds. Sci Rep 2017; 7:39596. [PMID: 28054584 PMCID: PMC5214756 DOI: 10.1038/srep39596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022] Open
Abstract
The spirochete bacterium Borrelia afzelii is the most common cause of Lyme borreliosis in Europe. This tick-borne pathogen can establish systemic infections in rodents but not in birds. However, several field studies have recovered larval Ixodes ricinus ticks infected with B. afzelii from songbirds suggesting successful transmission of B. afzelii. We reviewed the literature to determine which songbird species were the most frequent carriers of B. afzelii-infected I. ricinus larvae and nymphs. We tested experimentally whether B. afzelii is capable of co-feeding transmission on two common European bird species, the blackbird (Turdus merula) and the great tit (Parus major). For each bird species, four naïve individuals were infested with B. afzelii-infected I. ricinus nymphal ticks and pathogen-free larval ticks. None of the co-feeding larvae tested positive for B. afzelii in blackbirds, but a low percentage of infected larvae (3.33%) was observed in great tits. Transstadial transmission of B. afzelii DNA from the engorged nymphs to the adult ticks was observed in both bird species. However, BSK culture found that these spirochetes were not viable. Our study suggests that co-feeding transmission of B. afzelii is not efficient in these two songbird species.
Collapse
|
27
|
Jacquet M, Margos G, Fingerle V, Voordouw MJ. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii. Parasit Vectors 2016; 9:645. [PMID: 27986081 PMCID: PMC5162089 DOI: 10.1186/s13071-016-1929-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Transmission from the vertebrate host to the arthropod vector is a critical step in the life-cycle of any vector-borne pathogen. How the probability of host-to-vector transmission changes over the duration of the infection is an important predictor of pathogen fitness. The Lyme disease pathogen Borrelia afzelii is transmitted by Ixodes ricinus ticks and establishes a chronic infection inside rodent reservoir hosts. The present study compares the temporal pattern of host-to-tick transmission between two strains of B. afzelii. Methods Laboratory mice were experimentally infected via tick bite with one of two strains of B. afzelii: A3 and A10. Mice were repeatedly infested with pathogen-free larval Ixodes ricinus ticks over a period of 4 months. Engorged larval ticks moulted into nymphal ticks that were tested for infection with B. afzelii using qPCR. The proportion of infected nymphs was used to characterize the pattern of host-to-tick transmission over time. Results Both strains of B. afzelii followed a similar pattern of host-to-tick transmission. Transmission decreased from the acute to the chronic phase of the infection by 16.1 and 29.3% for strains A3 and A10, respectively. Comparison between strains found no evidence of a trade-off in transmission between the acute and chronic phase of infection. Strain A10 had higher lifetime fitness and established a consistently higher spirochete load in nymphal ticks than strain A3. Conclusion Quantifying the relationship between host-to-vector transmission and the age of infection in the host is critical for estimating the lifetime fitness of vector-borne pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1929-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gabriele Margos
- National Reference Centre for Borrelia, Munich, Oberschleissheim, Germany.,Bavarian Health and Food Safety Authority, Munich, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, Munich, Oberschleissheim, Germany.,Bavarian Health and Food Safety Authority, Munich, Oberschleissheim, Germany
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
28
|
Vectors as Epidemiological Sentinels: Patterns of Within-Tick Borrelia burgdorferi Diversity. PLoS Pathog 2016; 12:e1005759. [PMID: 27414806 PMCID: PMC4944968 DOI: 10.1371/journal.ppat.1005759] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/18/2016] [Indexed: 01/13/2023] Open
Abstract
Hosts including humans, other vertebrates, and arthropods, are frequently infected with heterogeneous populations of pathogens. Within-host pathogen diversity has major implications for human health, epidemiology, and pathogen evolution. However, pathogen diversity within-hosts is difficult to characterize and little is known about the levels and sources of within-host diversity maintained in natural populations of disease vectors. Here, we examine genomic variation of the Lyme disease bacteria, Borrelia burgdorferi (Bb), in 98 individual field-collected tick vectors as a model for study of within-host processes. Deep population sequencing reveals extensive and previously undocumented levels of Bb variation: the majority (~70%) of ticks harbor mixed strain infections, which we define as levels Bb diversity pre-existing in a diverse inoculum. Within-tick diversity is thus a sample of the variation present within vertebrate hosts. Within individual ticks, we detect signatures of positive selection. Genes most commonly under positive selection across ticks include those involved in dissemination in vertebrate hosts and evasion of the vertebrate immune complement. By focusing on tick-borne Bb, we show that vectors can serve as epidemiological and evolutionary sentinels: within-vector pathogen diversity can be a useful and unbiased way to survey circulating pathogen diversity and identify evolutionary processes occurring in natural transmission cycles. Lyme disease, caused by a bacteria carried by deer ticks, is the most common vector-borne disease in North America and over 30,000 cases are reported each year in the United States. Ticks may be infected with multiple strains of the Lyme disease bacteria, which differ in transmissibility and the harm they pose to humans. In this study, we collected 98 infected deer ticks from across the United States and southern Canada. We used genetic techniques to investigate the diversity of the Lyme disease bacteria infecting each individual tick. We find that 70% of ticks are infected with multiple strains of the Lyme disease bacteria, indicating that humans may be exposed to and infected with multiple bacterial strains from a single tick bite. We also find evidence that the Lyme disease bacteria is evolving in response to the immune defenses of its natural hosts (including rodents and birds). Our study shows that individual ticks and other disease vectors can be studied as epidemiological sentinels, which reveal the extensive diversity of pathogens circulating in natural disease cycles and how they are evolving.
Collapse
|
29
|
Bose J, Kloesener MH, Schulte RD. Multiple-genotype infections and their complex effect on virulence. ZOOLOGY 2016; 119:339-49. [PMID: 27389395 DOI: 10.1016/j.zool.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 11/17/2022]
Abstract
Multiple infections are common. Although in recent years our understanding of multiple infections has increased significantly, it has also become clear that a diversity of aspects has to be considered to understand the interplay between co-infecting parasite genotypes of the same species and its implications for virulence and epidemiology, resulting in high complexity. Here, we review different interaction mechanisms described for multiple infections ranging from competition to cooperation. We also list factors influencing the interaction between co-infecting parasite genotypes and their influence on virulence. Finally, we emphasise the importance of between-host effects and their evolution for understanding multiple infections and their implications.
Collapse
Affiliation(s)
- Joy Bose
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Michaela H Kloesener
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany
| | - Rebecca D Schulte
- Department of Behavioral Biology, University of Osnabrueck, Barbarastr. 11, D-49076 Osnabrueck, Germany.
| |
Collapse
|
30
|
Restif O, Graham AL. Within-host dynamics of infection: from ecological insights to evolutionary predictions. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0304. [PMID: 26150670 PMCID: PMC4528502 DOI: 10.1098/rstb.2014.0304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Olivier Restif
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
31
|
Mechai S, Margos G, Feil EJ, Barairo N, Lindsay LR, Michel P, Ogden NH. Evidence for Host-Genotype Associations of Borrelia burgdorferi Sensu Stricto. PLoS One 2016; 11:e0149345. [PMID: 26901761 PMCID: PMC4763156 DOI: 10.1371/journal.pone.0149345] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/29/2016] [Indexed: 11/18/2022] Open
Abstract
Different genotypes of the agent of Lyme disease in North America, Borrelia burgdorferi sensu stricto, show varying degrees of pathogenicity in humans. This variation in pathogenicity correlates with phylogeny and we have hypothesized that the different phylogenetic lineages in North America reflect adaptation to different host species. In this study, evidence for host species associations of B. burgdorferi genotypes was investigated using 41 B. burgdorferi-positive samples from five mammal species and 50 samples from host-seeking ticks collected during the course of field studies in four regions of Canada: Manitoba, northwestern Ontario, Quebec, and the Maritimes. The B. burgdorferi genotypes in the samples were characterized using three established molecular markers (multi-locus sequence typing [MLST], 16S-23S rrs-rrlA intergenic spacer, and outer surface protein C sequence [ospC] major groups). Correspondence analysis and generalized linear mixed effect models revealed significant associations between B. burgdorferi genotypes and host species (in particular chipmunks, and white-footed mice and deer mice), supporting the hypotheses that host adaptation contributes to the phylogenetic structure and possibly the observed variation in pathogenicity in humans.
Collapse
Affiliation(s)
- Samir Mechai
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Gabriele Margos
- National Reference Centre for Borrelia, Oberschleissheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Edward J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Nicole Barairo
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - L. Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Pascal Michel
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
| | - Nicholas H. Ogden
- Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| |
Collapse
|
32
|
Jacquet M, Durand J, Rais O, Voordouw MJ. Strain-specific antibodies reduce co-feeding transmission of the Lyme disease pathogen,Borrelia afzelii. Environ Microbiol 2015; 18:833-45. [DOI: 10.1111/1462-2920.13065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/20/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Jonas Durand
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites; Institute of Biology; University of Neuchâtel; Emile Argand 11 2000 Neuchâtel Switzerland
| |
Collapse
|
33
|
Cross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii. INFECTION GENETICS AND EVOLUTION 2015; 36:131-140. [DOI: 10.1016/j.meegid.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/04/2015] [Accepted: 09/13/2015] [Indexed: 11/23/2022]
|
34
|
Khatchikian CE, Nadelman RB, Nowakowski J, Schwartz I, Levy MZ, Brisson D, Wormser GP. Public health impact of strain specific immunity to Borrelia burgdorferi. BMC Infect Dis 2015; 15:472. [PMID: 26503011 PMCID: PMC4621928 DOI: 10.1186/s12879-015-1190-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lyme disease, caused by Borrelia burgdorferi, is the most common tick-borne infection in the United States. Although humans can be infected by at least 16 different strains of B. burgdorferi, the overwhelming majority of infections are due to only four strains. It was recently demonstrated that patients who are treated for early Lyme disease develop immunity to the specific strain of B. burgdorferi that caused their infection. The aim of this study is to estimate the reduction in cases of Lyme disease in the United States that may occur as a result of type specific immunity. METHODS The analysis was performed based on three analytical models that assessed the effects of type specific immunity. Observational data on the frequency with which different B. burgdorferi strains cause human infection in culture-confirmed patients with an initial episode of erythema migrans diagnosed between 1991 and 2005 in the Northeastern United States were used in the analyses. RESULTS Assuming a reinfection rate of 3 % and a total incidence of Lyme disease per year of 300,000, the estimated number of averted cases of Lyme disease per year ranges from 319 to 2378 depending on the duration of type specific immunity and the model used. CONCLUSION Given the assumptions of the analyses, this analysis suggests that type specific immunity is likely to have public health significance in the United States.
Collapse
Affiliation(s)
- Camilo E Khatchikian
- Evolution and Ecology of Disease Systems Laboratory, Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert B Nadelman
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA.
| | - John Nowakowski
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA.
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| | - Michael Z Levy
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dustin Brisson
- Evolution and Ecology of Disease Systems Laboratory, Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
35
|
Cross-Immunity and Community Structure of a Multiple-Strain Pathogen in the Tick Vector. Appl Environ Microbiol 2015; 81:7740-52. [PMID: 26319876 DOI: 10.1128/aem.02296-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
Many vector-borne pathogens consist of multiple strains that circulate in both the vertebrate host and the arthropod vector. Characterization of the community of pathogen strains in the arthropod vector is therefore important for understanding the epidemiology of mixed vector-borne infections. Borrelia afzelii and B. garinii are two species of tick-borne bacteria that cause Lyme disease in humans. These two sympatric pathogens use the same tick, Ixodes ricinus, but are adapted to different classes of vertebrate hosts. Both Borrelia species consist of multiple strains that are classified using the highly polymorphic ospC gene. Vertebrate cross-immunity against the OspC antigen is predicted to structure the community of multiple-strain Borrelia pathogens. Borrelia isolates were cultured from field-collected I. ricinus ticks over a period spanning 11 years. The Borrelia species of each isolate was identified using a reverse line blot (RLB) assay. Deep sequencing was used to characterize the ospC communities of 190 B. afzelii isolates and 193 B. garinii isolates. Infections with multiple ospC strains were common in ticks, but vertebrate cross-immunity did not influence the strain structure in the tick vector. The pattern of genetic variation at the ospC locus suggested that vertebrate cross-immunity exerts strong selection against intermediately divergent ospC alleles. Deep sequencing found that more than 50% of our isolates contained exotic ospC alleles derived from other Borrelia species. Two alternative explanations for these exotic ospC alleles are cryptic coinfections that were not detected by the RLB assay or horizontal transfer of the ospC gene between Borrelia species.
Collapse
|