1
|
Wang Q, Huang YX, Liu L, Zhao XH, Sun Y, Mao X, Li SW. Pancreatic islet transplantation: current advances and challenges. Front Immunol 2024; 15:1391504. [PMID: 38887292 PMCID: PMC11180903 DOI: 10.3389/fimmu.2024.1391504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetes is a prevalent chronic disease that traditionally requires severe reliance on medication for treatment. Oral medication and exogenous insulin can only temporarily maintain blood glucose levels and do not cure the disease. Most patients need life-long injections of exogenous insulin. In recent years, advances in islet transplantation have significantly advanced the treatment of diabetes, allowing patients to discontinue exogenous insulin and avoid complications.Long-term follow-up results from recent reports on islet transplantation suggest that they provide significant therapeutic benefit although patients still require immunotherapy, suggesting the importance of future transplantation strategies. Although organ shortage remains the primary obstacle for the development of islet transplantation, new sources of islet cells, such as stem cells and porcine islet cells, have been proposed, and are gradually being incorporated into clinical research. Further research on new transplantation sites, such as the subcutaneous space and mesenteric fat, may eventually replace the traditional portal vein intra-islet cell infusion. Additionally, the immunological rejection reaction in islet transplantation will be resolved through the combined application of immunosuppressant agents, islet encapsulation technology, and the most promising mesenchymal stem cells/regulatory T cell and islet cell combined transplantation cell therapy. This review summarizes the progress achieved in islet transplantation, and discusses the research progress and potential solutions to the challenges faced.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-xi Huang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University, Taizhou, Zhejiang, China
| | - Yi Sun
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
2
|
Yao J, Chen Y, Huang Y, Sun X, Shi X. The role of cardiac microenvironment in cardiovascular diseases: implications for therapy. Hum Cell 2024; 37:607-624. [PMID: 38498133 DOI: 10.1007/s13577-024-01052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuqing Huang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Long HY, Qian ZP, Lan Q, Xu YJ, Da JJ, Yu FX, Zha Y. Human pluripotent stem cell-derived kidney organoids: Current progress and challenges. World J Stem Cells 2024; 16:114-125. [PMID: 38455108 PMCID: PMC10915962 DOI: 10.4252/wjsc.v16.i2.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.
Collapse
Affiliation(s)
- Hong-Yan Long
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Zu-Ping Qian
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qin Lan
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yong-Jie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Jing-Jing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Fu-Xun Yu
- Key Laboratory of Diagnosis and Treatment of Pulmonary Immune Diseases, National Health Commission, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Yan Zha
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
4
|
Wang Z, Bi M, Zhe X, Wang X, Dai B, Han X, Ren B, Liang H, Liu D. Molecular mechanism underlying miR-204-5p regulation of adipose-derived stem cells differentiation into cells from three germ layers. Cell Death Discov 2024; 10:95. [PMID: 38388551 PMCID: PMC10884001 DOI: 10.1038/s41420-024-01852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The limited differentiation ability of adipose-derived stem cells (ADSCs) limits their application in stem cell therapy and regenerative medicine. Here, we explore the molecular mechanism by which miR-204-5p regulates ADSCs differentiation into cells derived from the three germ layers (i.e., adipocytes, neurocytes, and hepatocytes). Although miR-204-5p overexpression inhibited ADSCs differentiation into adipocytes, neurocyte and hepatocyte differentiation were promoted. Mechanistically, miR-204-5p inhibited the expression of PPARG by regulating the AMPK signaling pathway, thereby inhibiting ADSCs differentiation into adipocytes. Further, miR-204-5p regulated JAG1/NOTCH3 axis for the inhibition of differentiation into adipocytes and promotion of differentiation into neurocytes. miR-204-5p might also promote ADSCs differentiation into hepatocytes by upregulating E2F8. The findings of this study provide novel insights into the regulatory mechanisms underlying early embryonic development and will help to facilitate the application of ADSCs in stem cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Zhimin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, P.R. China
| | - Meiyu Bi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Bai Dai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
- Reproductive Medicine Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, P.R. China
| | - Xiaoyu Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Bingxu Ren
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, P.R. China.
| |
Collapse
|
5
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
6
|
Induced Pluripotent Stem Cells as a Tool for Modeling Hematologic Disorders and as a Potential Source for Cell-Based Therapies. Cells 2021; 10:cells10113250. [PMID: 34831472 PMCID: PMC8623953 DOI: 10.3390/cells10113250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The breakthrough in human induced pluripotent stem cells (hiPSCs) has revolutionized the field of biomedical and pharmaceutical research and opened up vast opportunities for drug discovery and regenerative medicine, especially when combined with gene-editing technology. Numerous healthy and patient-derived hiPSCs for human disease modeling have been established, enabling mechanistic studies of pathogenesis, platforms for preclinical drug screening, and the development of novel therapeutic targets/approaches. Additionally, hiPSCs hold great promise for cell-based therapy, serving as an attractive cell source for generating stem/progenitor cells or functional differentiated cells for degenerative diseases, due to their unlimited proliferative capacity, pluripotency, and ethical acceptability. In this review, we provide an overview of hiPSCs and their utility in the study of hematologic disorders through hematopoietic differentiation. We highlight recent hereditary and acquired genetic hematologic disease modeling with patient-specific iPSCs, and discuss their applications as instrumental drug screening tools. The clinical applications of hiPSCs in cell-based therapy, including the next-generation cancer immunotherapy, are provided. Lastly, we discuss the current challenges that need to be addressed to fulfill the validity of hiPSC-based disease modeling and future perspectives of hiPSCs in the field of hematology.
Collapse
|
7
|
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater 2021; 10:e2100965. [PMID: 34480420 DOI: 10.1002/adhm.202100965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic β-cells in response to autoimmune reactions. Shapiro et al. conducted novel islet transplantation with a glucocorticoid-free immunosuppressive agent in 2000 and achieved great success; since then, islet transplantation has been increasingly regarded as a promising strategy for the curative treatment of T1DM. However, many unavoidable challenges, such as a lack of donors, poor revascularization, blood-mediated inflammatory reactions, hypoxia, and side effects caused by immunosuppression have severely hindered the widespread application of islet transplantation in clinics. Biomaterial-based encapsulation and delivery strategies are proposed for overcoming these obstacles, and have demonstrated remarkable improvements in islet transplantation outcomes. Herein, the major problems faced by islet transplantation are summarized and updated biomaterial-based strategies for islet transplantation, including islet encapsulation across different scales, delivery of stem cell-derived beta cells, co-delivery of islets with accessory cells and immunomodulatory molecules are highlighted.
Collapse
Affiliation(s)
- Siying Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hai Huang
- Department of Urology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 P. R. China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
8
|
Continuous Inhibition of Sonic Hedgehog Signaling Leads to Differentiation of Human-Induced Pluripotent Stem Cells into Functional Insulin-Producing β Cells. Stem Cells Int 2021. [DOI: 10.1155/2021/6681257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human-induced pluripotent stem cell- (iPSC-) derived insulin-producing cells (IPCs) can be used for islet cell transplantation into type 1 diabetic patients and as patient-specific cells for the development of novel antidiabetic drugs. However, a method is needed to generate functional IPCs from iPSCs and simplify the protocol. We compared combinations of small molecules that could induce the differentiation of cells into a definitive endoderm and preferentially into islet precursor cells. When generated using an optimal combination of small molecules, IPCs secreted insulin in response to glucose stimulation. We constructed spheroid IPCs and optimized the culture and maturation conditions. Quantitative PCR revealed that the expression of definitive endoderm-specific markers differed depending on the combination of the small molecules. The small molecule, N-[(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)methylene]-4-(phenylmethyl)-1-piperazinamine, induced the differentiation of cells into functional IPCs by inhibiting Sonic hedgehog signaling. Images of the 2D culture showed that IPCs formed spheroids from day 5 and continuously secreted insulin. We developed a simple differentiation method using small molecules that produced functional IPCs that responded to glucose stimulation within a relatively short period. We posit that this method along with further refinement of the differentiation process can be applied to culture IPCs that can be used in clinical trials.
Collapse
|
9
|
Haellman V, Saxena P, Jiang Y, Fussenegger M. Rational design and optimization of synthetic gene switches for controlling cell-fate decisions in pluripotent stem cells. Metab Eng 2021; 65:99-110. [PMID: 33744461 DOI: 10.1016/j.ymben.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Advances in synthetic biology have enabled robust control of cell behavior by using tunable genetic circuits to regulate gene expression in a ligand-dependent manner. Such circuits can be used to direct the differentiation of pluripotent stem cells (PSCs) towards desired cell types, but rational design of synthetic gene circuits in PSCs is challenging due to the variable intracellular environment. Here, we provide a framework for implementing synthetic gene switches in PSCs based on combinations of tunable transcriptional, structural, and posttranslational elements that can be engineered as required, using the vanillic acid-controlled transcriptional activator (VanA) as a model system. We further show that the VanA system can be multiplexed with the well-established reverse tetracycline-controlled transcriptional activator (rtTA) system to enable independent control of the expression of different transcription factors in human induced PSCs in order to enhance lineage specification towards early pancreatic progenitors. This work represents a first step towards standardizing the design and construction of synthetic gene switches for building robust gene-regulatory networks to guide stem cell differentiation towards a desired cell fate.
Collapse
Affiliation(s)
- Viktor Haellman
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Yanrui Jiang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH, 4058, Basel, Switzerland.
| |
Collapse
|
10
|
Shao J, Qiu X, Xie M. Engineering Mammalian Cells to Control Glucose Homeostasis. Methods Mol Biol 2021; 2312:35-57. [PMID: 34228283 DOI: 10.1007/978-1-0716-1441-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Diabetes mellitus is a complex metabolic disease characterized by chronically deregulated blood-glucose levels. To restore glucose homeostasis, therapeutic strategies allowing well-controlled production and release of insulinogenic hormones into the blood circulation are required. In this chapter, we describe how mammalian cells can be engineered for applications in diabetes treatment. While closed-loop control systems provide automated and self-sufficient synchronization of glucose sensing and drug production, drug production in open-loop control systems is engineered to depend on exogenous user-defined trigger signals. Rational, robust, and reliable manufacture practices for mammalian cell engineering are essential for industrial-scale mass-production in view of clinical and commercial applications.
Collapse
Affiliation(s)
- Jiawei Shao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xinyuan Qiu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, China
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Dettmer R, Cirksena K, Münchhoff J, Kresse J, Diekmann U, Niwolik I, Buettner FFR, Naujok O. FGF2 Inhibits Early Pancreatic Lineage Specification during Differentiation of Human Embryonic Stem Cells. Cells 2020; 9:cells9091927. [PMID: 32825270 PMCID: PMC7565644 DOI: 10.3390/cells9091927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Growth factors are important regulators during organ development. For many vertebrates (but not humans) it is known how they contribute to the formation and expansion of PDX1-positive cells during pancreas organogenesis. Here, the effects of the fibroblast growth factors FGF2, FGF7, FGF10, and epidermal growth factor (EGF) on pancreas development in humans were assessed by using human pluripotent stem cells (hPSCs). During this, FGF2 was identified as a potent anti-pancreatic factor whereas FGF7, FGF10, and EGF increased the cell mass while retaining PDX1-positivity. FGF2 increased the expression of the anti-pancreatic factor sonic hedgehog (SHH) while suppressing PDX1 in a dose-dependent manner. Differentiating cells secreted SHH to the medium and we interrogated the cells’ secretome during differentiation to globally examine the composition of secreted signaling factors. Members of the TGF-beta-, Wnt-, and FGF-pathways were detected. FGF17 showed a suppressive anti-pancreatic effect comparable to FGF2. By inhibition of specific branches of FGF-receptor signaling, we allocated the SHH-induction by FGF2 to MEK/ERK-signaling and the anti-pancreatic effect of FGF2 to the receptor variant FGFR1c or 3c. Altogether, we report findings on the paracrine activity of differentiating hPSCs during generation of pancreatic progenitors. These observations suggest a different role for FGF2 in humans compared to animal models of pancreas organogenesis.
Collapse
|
13
|
Martin RM, Fowler JL, Cromer MK, Lesch BJ, Ponce E, Uchida N, Nishimura T, Porteus MH, Loh KM. Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards. Nat Commun 2020; 11:2713. [PMID: 32483127 PMCID: PMC7264334 DOI: 10.1038/s41467-020-16455-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >106-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies. Human pluripotent stem cell derived therapies can have serious safety risks. Here the authors design two drug inducible genetic safeguards to deplete undifferentiated hPSCs and hPSC-derived cell types.
Collapse
Affiliation(s)
- Renata M Martin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - M Kyle Cromer
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Benjamin J Lesch
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ezequiel Ponce
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nobuko Uchida
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.,ReGen Med Division, BOCO Silicon Valley, Palo Alto, CA, 94303, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Tran R, Moraes C, Hoesli CA. Controlled clustering enhances PDX1 and NKX6.1 expression in pancreatic endoderm cells derived from pluripotent stem cells. Sci Rep 2020; 10:1190. [PMID: 31988329 PMCID: PMC6985188 DOI: 10.1038/s41598-020-57787-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/07/2020] [Indexed: 01/26/2023] Open
Abstract
Pluripotent stem cell (PSC)-derived insulin-producing cells are a promising cell source for diabetes cellular therapy. However, the efficiency of the multi-step process required to differentiate PSCs towards pancreatic beta cells is variable between cell lines, batches and even within cultures. In adherent pancreatic differentiation protocols, we observed spontaneous local clustering of cells expressing elevated nuclear expression of pancreatic endocrine transcription factors, PDX1 and NKX6.1. Since aggregation has previously been shown to promote downstream differentiation, this local clustering may contribute to the variability in differentiation efficiencies observed within and between cultures. We therefore hypothesized that controlling and directing the spontaneous clustering process would lead to more efficient and consistent induction of pancreatic endocrine fate. Micropatterning cells in adherent microwells prompted clustering, local cell density increases, and increased nuclear accumulation of PDX1 and NKX6.1. Improved differentiation profiles were associated with distinct filamentous actin architectures, suggesting a previously overlooked role for cell-driven morphogenetic changes in supporting pancreatic differentiation. This work demonstrates that confined differentiation in cell-adhesive micropatterns may provide a facile, scalable, and more reproducible manufacturing route to drive morphogenesis and produce well-differentiated pancreatic cell clusters.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada. .,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada. .,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada. .,Department of Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Lu S, Zhang Z, Du P, Chard LS, Yan W, El Khouri M, Wang Z, Zhang Z, Chu Y, Gao D, Zhang Q, Zhang L, Nagano A, Wang J, Chelala C, Liu J, Chen J, Liu P, Dong Y, Wang S, Li X, Dong J, Lemoine NR, Pei D, Wang Y. A Virus-Infected, Reprogrammed Somatic Cell-Derived Tumor Cell (VIReST) Vaccination Regime Can Prevent Initiation and Progression of Pancreatic Cancer. Clin Cancer Res 2019; 26:465-476. [PMID: 31767564 DOI: 10.1158/1078-0432.ccr-19-1395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic cancer remains one of the most lethal cancers, and late detection renders most tumors refractory to conventional therapies. Development of cancer prophylaxis may be the most realistic option for improving mortality associated with this disease. Here, we develop a novel individualized prophylactic and therapeutic vaccination regimen using induced pluripotent stem cells (iPSC), gene editing, and tumor-targeted replicating oncolytic viruses. EXPERIMENTAL DESIGN We created a Virus-Infected, Reprogrammed Somatic cell-derived Tumor cell (VIReST) regime. iPSCs from healthy cells were induced to pancreatic tumor cells using in situ gene editing via stable provision of KRas G12D and p53 R172H tumor driver mutations. These cells were preinfected with oncolytic Adenovirus (AdV) as prime or Vaccinia virus (VV) as boost, to improve vaccine immunogenicity, prior to delivery of vaccines in a sequential regime to young KPC transgenic mice, genetically programmed to develop pancreatic cancer, to prevent and delay disease development. RESULTS Tumor cells preinfected with oncolytic AdV as prime or VV as boost were the best regime to induce tumor-specific immunity. iPSC-derived tumor cells were highly related in antigen repertoire to pancreatic cancer cells of KPC transgenic mice, suggesting that an individual's stem cells can provide an antigenically matched whole tumor cell vaccine. The VIReST vaccination primed tumor-specific T-cell responses, resulting in delayed disease emergence and progression and significantly prolonged survival of KPC transgenic mice. Importantly, this regime was well-tolerated and nontoxic. CONCLUSIONS These results provide both proof of concept and a robust technology platform for the development of personalized prophylactic cancer vaccines to prevent pancreatic malignancies in at-risk individuals.
Collapse
Affiliation(s)
- Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pan Du
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Wenli Yan
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Margueritte El Khouri
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhizhong Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhongxian Zhang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongchao Chu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongling Gao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qinxian Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lirong Zhang
- School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ai Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yunshu Dong
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaozhu Li
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nick R Lemoine
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China. .,Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Fowler JL, Ang LT, Loh KM. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e368. [PMID: 31746148 DOI: 10.1002/wdev.368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
Too many choices can be problematic. This is certainly the case for human pluripotent stem cells (hPSCs): they harbor the potential to differentiate into hundreds of cell types; yet it is highly challenging to exclusively differentiate hPSCs into a single desired cell type. This review focuses on unresolved and fundamental questions regarding hPSC differentiation and critiquing the identity and purity of the resultant cell populations. These are timely issues in view of the fact that hPSC-derived cell populations have or are being transplanted into patients in over 30 ongoing clinical trials. While many in vitro differentiation protocols purport to "mimic development," the exact number and identity of intermediate steps that a pluripotent cell takes to differentiate into a given cell type in vivo remains largely unknown. Consequently, most differentiation efforts inevitably generate a heterogeneous cellular population, as revealed by single-cell RNA-sequencing and other analyses. The presence of unwanted cell types in differentiated hPSC populations does not portend well for transplantation therapies. This provides an impetus to precisely control differentiation to desired ends-for instance, by logically blocking the formation of unwanted cell types or by overexpressing lineage-specifying transcription factors-or by harnessing technologies to selectively purify desired cell types. Conversely, approaches to differentiate three-dimensional "organoids" from hPSCs intentionally generate heterogeneous cell populations. While this is intended to mimic the rich cellular diversity of developing tissues, whether all such organoids are spatially organized in a manner akin to native organs (and thus, whether they fully qualify as organoids) remains to be fully resolved. This article is categorized under: Adult Stem Cells > Tissue Renewal > Regeneration: Stem Cell Differentiation and Reversion Gene Expression > Transcriptional Hierarchies: Cellular Differentiation Early Embryonic Development: Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Jonas L Fowler
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California.,Department of Developmental Biology, Bio-X, Cancer Institute, Cardiovascular Institute, ChEM-H, Diabetes Research Center, Maternal & Child Health Research Institute, Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| | - Lay Teng Ang
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California.,Department of Developmental Biology, Bio-X, Cancer Institute, Cardiovascular Institute, ChEM-H, Diabetes Research Center, Maternal & Child Health Research Institute, Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
17
|
Kaitsuka T, Kojima R, Kawabe M, Noguchi H, Shiraki N, Kume S, Tomizawa K. A culture substratum with net-like polyamide fibers promotes the differentiation of mouse and human pluripotent stem cells to insulin-producing cells. ACTA ACUST UNITED AC 2019; 14:045019. [PMID: 31151115 DOI: 10.1088/1748-605x/ab261c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin-producing and -secreting cells derived from mouse pluripotent stem cells (PSCs) are useful for pancreatic development research and evaluating drugs that may induce insulin secretion. Previously, we have established a differentiation protocol to derive insulin-secreting cells from mouse embryonic stem cells (ESCs) using a combination of growth factors, recombinant proteins, and a culture substratum with net-like fibers. However, it has not been tested which materials and diameters of these fibers are more effective for the differentiation. Therefore, the present study aimed to produce net-like culture substratum formed from polyamide (PA) and polyacrylonitrile (PAN) fibers. Substrata were delineated into PA100, 300, 600, PAN100, 300, and 600 groups based on fiber diameters. The differentiation efficiencies of mouse ESCs cultured on the substrata were then examined by insulin 1 (Ins1) expression. Expression was found to be highest in PA300 differentiated cells, indicating the potential to produce high levels of insulin. To understand any differences in substratum properties, the adsorption capacities of laminin were measured, revealing that PA300 had the highest for it. We next examined the stage of differentiation affected by incubation with PA300. This showed that Sox17- and Pdx1-GFP-positive cells increased during the first step of differentiation. To show the production of insulin without absorption from the medium, we confirmed the expression of insulin C-peptide after differentiation. Finally, we tested the effects of PA300 on the differentiation of human-induced PSC, and found more Sox17-positive cells with the PA300 substratum at the definitive endoderm stage. Furthermore, these cells expressed insulin C-peptide and had glucose-responsive C-peptide secretion. In summary, our study identified and validated a novel substratum which is suitable for pancreatic differentiation of mouse and human PSCs.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
19
|
Ang LT, Tan AKY, Autio MI, Goh SH, Choo SH, Lee KL, Tan J, Pan B, Lee JJH, Lum JJ, Lim CYY, Yeo IKX, Wong CJY, Liu M, Oh JLL, Chia CPL, Loh CH, Chen A, Chen Q, Weissman IL, Loh KM, Lim B. A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Rep 2019; 22:2190-2205. [PMID: 29466743 PMCID: PMC5854481 DOI: 10.1016/j.celrep.2018.01.087] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/02/2023] Open
Abstract
How are closely related lineages, including liver, pancreas, and intestines, diversified from a common endodermal origin? Here, we apply principles learned from developmental biology to rapidly reconstitute liver progenitors from human pluripotent stem cells (hPSCs). Mapping the formation of multiple endodermal lineages revealed how alternate endodermal fates (e.g., pancreas and intestines) are restricted during liver commitment. Human liver fate was encoded by combinations of inductive and repressive extracellular signals at different doses. However, these signaling combinations were temporally re-interpreted: cellular competence to respond to retinoid, WNT, TGF-β, and other signals sharply changed within 24 hr. Consequently, temporally dynamic manipulation of extracellular signals was imperative to suppress the production of unwanted cell fates across six consecutive developmental junctures. This efficiently generated 94.1% ± 7.35% TBX3+HNF4A+ human liver bud progenitors and 81.5% ± 3.2% FAH+ hepatocyte-like cells by days 6 and 18 of hPSC differentiation, respectively; the latter improved short-term survival in the Fah-/-Rag2-/-Il2rg-/- mouse model of liver failure.
Collapse
Affiliation(s)
- Lay Teng Ang
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| | - Antson Kiat Yee Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Matias I Autio
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Su Hua Goh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Siew Hua Choo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Kian Leong Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianmin Tan
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Bangfen Pan
- Human Genetics Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Singapore 117599, Singapore
| | - Jane Jia Hui Lee
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jen Jen Lum
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Christina Ying Yan Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Isabelle Kai Xin Yeo
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chloe Jin Yee Wong
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Min Liu
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jueween Ling Li Oh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Cheryl Pei Lynn Chia
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; School of Engineering, Temasek Polytechnic, Singapore 529757, Singapore
| | - Chet Hong Loh
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Angela Chen
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingfeng Chen
- Humanized Mouse Unit, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Microbiology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Department of Developmental Biology, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bing Lim
- Stem Cell & Regenerative Biology Group, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore.
| |
Collapse
|
20
|
Cota-Coronado A, Ramírez-Rodríguez PB, Padilla-Camberos E, Díaz ÉNF, Flores-Fernández JM, Ávila-Gónzalez D, Diaz-Martinez NE. Implications of human induced pluripotent stem cells in metabolic disorders: from drug discovery toward precision medicine. Drug Discov Today 2018; 24:334-341. [PMID: 30292915 DOI: 10.1016/j.drudis.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) enable in vitro high-throughput pharmacological screening assays of diseased tissue. Together with recent genome-wide association studies (GWAS), hiPSCs enable the identification of key mutations for the development of effective treatments based on precise drugs. In concert with CRISPR/Cas9 systems, hiPSC technology can reveal therapeutic targets in metabolic disorders. The ex vivo CRISPR correction of autologous patient-derived hiPSCs has led to the development of replacement cell therapies, providing better patient prognoses.
Collapse
Affiliation(s)
- Agustin Cota-Coronado
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | | | - Eduardo Padilla-Camberos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - éNstor F Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Jose M Flores-Fernández
- Department of Biochemistry, University of Alberta, 474 Medical Sciences Building, Edmonton, AB, T6G 2R3, Canada; División de Ingeniería en Industrias Alimentarias e Innovación Agrícola Sustentable, Tecnológico de Estudios Superiores de Villa Guerrero, Carretera Toluca-Ixtapan de la Sal, Km 64.5, La Finca, 61763, Villa Guerrero, Estado de Mexico, Mexico
| | - Daniela Ávila-Gónzalez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico; Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - N Emmanuel Diaz-Martinez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.
| |
Collapse
|
21
|
The potential of human induced pluripotent stem cells for modelling diabetic wound healing in vitro. Clin Sci (Lond) 2018; 132:1629-1643. [PMID: 30108152 DOI: 10.1042/cs20171483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Impaired wound healing and ulceration caused by diabetes mellitus, is a significant healthcare burden, markedly impairs quality of life for patients, and is the major cause of amputation worldwide. Current experimental approaches used to investigate the complex wound healing process often involve cultures of fibroblasts and/or keratinocytes in vitro, which can be limited in terms of complexity and capacity, or utilisation of rodent models in which the mechanisms of wound repair differ substantively from that in humans. However, advances in tissue engineering, and the discovery of strategies to reprogramme adult somatic cells to pluripotency, has led to the possibility of developing models of human skin on a large scale. Generation of induced pluripotent stem cells (iPSCs) from tissues donated by diabetic patients allows the (epi)genetic background of this disease to be studied, and the ability to differentiate iPSCs to multiple cell types found within skin may facilitate the development of more complex skin models; these advances offer key opportunities for improving modelling of wound healing in diabetes, and the development of effective therapeutics for treatment of chronic wounds.
Collapse
|
22
|
Trott J, Tan EK, Ong S, Titmarsh DM, Denil SLIJ, Giam M, Wong CK, Wang J, Shboul M, Eio M, Cooper-White J, Cool SM, Rancati G, Stanton LW, Reversade B, Dunn NR. Long-Term Culture of Self-renewing Pancreatic Progenitors Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2018; 8:1675-1688. [PMID: 28591650 PMCID: PMC5470345 DOI: 10.1016/j.stemcr.2017.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells have been proposed as an unlimited source of pancreatic β cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional β cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas. These cultured pancreatic progenitor (cPP) cells express key pancreatic transcription factors, including PDX1 and SOX9, and exhibit transcriptomes closely related to their in vivo counterparts. Upon exposure to differentiation cues, cPP cells give rise to pancreatic endocrine, acinar, and ductal lineages, indicating multilineage potency. Furthermore, cPP cells generate insulin+ β-like cells in vitro and in vivo, suggesting that they offer a convenient alternative to pluripotent cells as a source of adult cell types for modeling pancreatic development and diabetes. Culture on 3T3 cells enables long-term self-renewal of human pancreatic progenitors Proliferation requires EGF, FGF10, retinoic acid, and inhibition of Notch and TGF-β Cultured progenitors upregulate genes required for mitosis and telomere maintenance Pancreatic duct and β-like cells are generated in vitro and in vivo
Collapse
Affiliation(s)
- Jamie Trott
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | - Ee Kim Tan
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Sheena Ong
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Drew M Titmarsh
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Simon L I J Denil
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Maybelline Giam
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Cheng Kit Wong
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Jiaxu Wang
- Genome Institute of Singapore, Agency for Science Technology and Research (A(∗)STAR), 60 Biopolis Street, #02-01, Singapore 138672, Singapore
| | - Mohammad Shboul
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Michelle Eio
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Justin Cooper-White
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Lawrence W Stanton
- Genome Institute of Singapore, Agency for Science Technology and Research (A(∗)STAR), 60 Biopolis Street, #02-01, Singapore 138672, Singapore
| | - Bruno Reversade
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - N Ray Dunn
- Institute of Medical Biology, Agency for Science Technology and Research (A(∗)STAR), 8a Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
23
|
Keller A, Dziedzicka D, Zambelli F, Markouli C, Sermon K, Spits C, Geens M. Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Hum Reprod Update 2018; 24:162-175. [PMID: 29377992 DOI: 10.1093/humupd/dmx042] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human pluripotent stem cell (hPSC) lines are known to have a bias in their differentiation. This gives individual cell lines a propensity to preferentially differentiate towards one germ layer or cell type over others. Chromosomal aberrations, mitochondrial mutations, genetic diversity and epigenetic variance are the main drivers of this phenomenon, and can lead to a wide range of phenotypes. OBJECTIVE AND RATIONALE Our aim is to provide a comprehensive overview of the different factors which influence differentiation propensity. Specifically, we sought to highlight known genetic variances and their mechanisms, in addition to more general observations from larger abnormalities. Furthermore, we wanted to provide an up-to-date list of a growing number of predictive indicators which are able to identify differentiation propensity before the initiation of differentiation. As differentiation propensity can lead to difficulties in both research as well as clinical translation, our thorough overview could be a useful tool. SEARCH METHODS Combinations of the following key words were applied as search criteria in the PubMed database: embryonic stem cells, induced pluripotent stem cells, differentiation propensity (also: potential, efficiency, capacity, bias, variability), epigenetics, chromosomal abnormalities, genetic aberrations, X chromosome inactivation, mitochondrial function, mitochondrial metabolism, genetic diversity, reprogramming, predictive marker, residual stem cell, clinic. Only studies in English were included, ranging from 2000 to 2017, with a majority ranging from 2010 to 1017. Further manuscripts were added from cross-references. OUTCOMES Differentiation propensity is affected by a wide variety of (epi)genetic factors. These factors clearly lead to a loss of differentiation capacity, preference towards certain cell types and oftentimes, phenotypes which begin to resemble cancer. Broad changes in (epi)genetics, such as aneuploidies or wide-ranging modifications to the epigenetic landscape tend to lead to extensive, less definite changes in differentiation capacity, whereas more specific abnormalities often have precise ramifications in which certain cell types become more preferential. Furthermore, there appears to be a greater, though often less considered, contribution to differentiation propensity by factors such as mitochondria and inherent genetic diversity. Varied differentiation capacity can also lead to potential consequences in the clinical translation of hPSC, including the occurrence of residual undifferentiated stem cells, and the transplantation of potentially transformed cells. WIDER IMPLICATIONS As hPSC continue to advance towards the clinic, our understanding of them progresses as well. As a result, the challenges faced become more numerous, but also more clear. If the transition to the clinic is to be achieved with a minimum number of potential setbacks, thorough evaluation of the cells will be an absolute necessity. Altered differentiation propensity represents at least one such hurdle, for which researchers and eventually clinicians will need to find solutions. Already, steps are being taken to tackle the issue, though further research will be required to evaluate any long-term risks it poses.
Collapse
Affiliation(s)
- Alexander Keller
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Dominika Dziedzicka
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Filippo Zambelli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Christina Markouli
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| | - Mieke Geens
- Research group Reproduction and Genetics (REGE), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Jette, Belgium
| |
Collapse
|
24
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
|
26
|
Krentz NAJ, van Hoof D, Li Z, Watanabe A, Tang M, Nian C, German MS, Lynn FC. Phosphorylation of NEUROG3 Links Endocrine Differentiation to the Cell Cycle in Pancreatic Progenitors. Dev Cell 2017; 41:129-142.e6. [PMID: 28441528 DOI: 10.1016/j.devcel.2017.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/28/2016] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
Abstract
During pancreatic development, proliferating pancreatic progenitors activate the proendocrine transcription factor neurogenin 3 (NEUROG3), exit the cell cycle, and differentiate into islet cells. The mechanisms that direct robust NEUROG3 expression within a subset of progenitor cells control the size of the endocrine population. Here we demonstrate that NEUROG3 is phosphorylated within the nucleus on serine 183, which catalyzes its hyperphosphorylation and proteosomal degradation. During progression through the progenitor cell cycle, NEUROG3 phosphorylation is driven by the actions of cyclin-dependent kinases 2 and 4/6 at G1/S cell-cycle checkpoint. Using models of mouse and human pancreas development, we show that lengthening of the G1 phase of the pancreatic progenitor cell cycle is essential for proper induction of NEUROG3 and initiation of endocrine cell differentiation. In sum, these studies demonstrate that progenitor cell-cycle G1 lengthening, through its actions on stabilization of NEUROG3, is an essential variable in normal endocrine cell genesis.
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Dennis van Hoof
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Zhongmei Li
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Akie Watanabe
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Mei Tang
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Cuilan Nian
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada
| | - Michael S German
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research and Diabetes Center, University of California San Francisco, San Francisco, CA 94143-0669, USA; Department of Medicine, University of California San Francisco, 35 Medical Center Way, RMB 1025, San Francisco, CA 94143-0669, USA.
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28th Avenue West, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
27
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
28
|
Kaitsuka T, Kobayashi K, Otsuka W, Kubo T, Hakim F, Wei FY, Shiraki N, Kume S, Tomizawa K. Erythropoietin facilitates definitive endodermal differentiation of mouse embryonic stem cells via activation of ERK signaling. Am J Physiol Cell Physiol 2017; 312:C573-C582. [PMID: 28298334 DOI: 10.1152/ajpcell.00071.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
Artificially generated pancreatic β-cells from pluripotent stem cells are expected for cell replacement therapy for type 1 diabetes. Several strategies are adopted to direct pluripotent stem cells toward pancreatic differentiation. However, a standard differentiation method for clinical application has not been established. It is important to develop more effective and safer methods for generating pancreatic β-cells without toxic or mutagenic chemicals. In the present study, we screened several endogenous factors involved in organ development to identify the factor, which induced the efficiency of pancreatic differentiation and found that treatment with erythropoietin (EPO) facilitated the differentiation of mouse embryonic stem cells (ESCs) into definitive endoderm. At an early stage of differentiation, EPO treatment significantly increased Sox17 gene expression, as a marker of the definitive endoderm. Contrary to the canonical function of EPO, it did not affect the levels of phosphorylated JAK2 and STAT5, but stimulated the phosphorylation of ERK1/2 and Akt. The MEK inhibitor U0126 significantly inhibited EPO-induced Sox17 expression. The differentiation of ESCs into definitive endoderm is an important step for the differentiation into pancreatic and other endodermal lineages. This study suggests a possible role of EPO in embryonic endodermal development and a new agent for directing the differentiation into endodermal lineages like pancreatic β-cells.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Kobayashi
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Wakako Otsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Kubo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Farzana Hakim
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuaki Shiraki
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; and.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shoen Kume
- Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan; and.,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan;
| |
Collapse
|
29
|
Ding S, Kingshott P, Thissen H, Pera M, Wang PY. Modulation of human mesenchymal and pluripotent stem cell behavior using biophysical and biochemical cues: A review. Biotechnol Bioeng 2016; 114:260-280. [DOI: 10.1002/bit.26075] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/27/2016] [Accepted: 08/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sheryl Ding
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
| | | | - Martin Pera
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology; Swinburne University of Technology; Hawthorn 3122 Victoria Australia
- CSIRO Manufacturing; Clayton Victoria Australia
- Department of Anatomy and Neuroscience, Walter and Eliza Hall Institute of Medical Research, Florey Neuroscience and Mental Health Institute; The University of Melbourne; Victoria Australia
- Graduate Institute of Nanomedicine and Medical Engineering; College of Biomedical Engineering; Taipei Medical University; Taipei Taiwan
| |
Collapse
|
30
|
FTIR Spectroscopic and Molecular Analysis during Differentiation of Pluripotent Stem Cells to Pancreatic Cells. Stem Cells Int 2016; 2016:6709714. [PMID: 27651798 PMCID: PMC5019938 DOI: 10.1155/2016/6709714] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/12/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022] Open
Abstract
Some of the greatest challenges in stem cells (SCs) biology and regenerative medicine are differentiation control of SCs and ensuring the purity of differentiated cells. In this work, we differentiated mouse pluripotent stem cells (mPSCs) toward pancreatic cells characterizing this differentiation process by molecular and spectroscopic technics. Both mPSCs and Differentiated Pancreatic Cells (DPCs) were subjected to a genetic, phenotypic, and biochemical analysis by real-time quantitative PCR (RT-qPCR), immunocytochemistry, and Fourier Transform Infrared (FTIR) spectroscopy. Cultured mPCSs expressed pluripotent genes and proteins (Nanog and SOX2). DPCs expressed endodermal genes (SOX17 and Pdx1) at day 11, an inductor gene of embryonic pancreas development (Pdx1) at day 17 and pancreas genes and proteins (Insulin and Glucagon) at day 21 of differentiation. Likewise, FTIR spectra of mPSCs and DPCs at different maturation stages (11, 17, and 21 days) were obtained and showed absorption bands related with different types of biomolecules. These FTIR spectra exhibited significant spectral changes agreeing with the differentiation process, particularly in proteins and nucleic acids bands. In conclusion, the obtained DPCs passed through the chronological stages of embryonic pancreas development and FTIR spectra provide a new biophysical parameter based on molecular markers indicating the differentiation process of mPSCs to specialized cells.
Collapse
|
31
|
Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M. A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 2016; 7:11247. [PMID: 27063289 PMCID: PMC4831023 DOI: 10.1038/ncomms11247] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/04/2016] [Indexed: 02/06/2023] Open
Abstract
Synthetic biology has advanced the design of standardized transcription control
devices that programme cellular behaviour. By coupling synthetic signalling cascade-
and transcription factor-based gene switches with reverse and differential
sensitivity to the licensed food additive vanillic acid, we designed a synthetic
lineage-control network combining vanillic acid-triggered mutually exclusive
expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF)
and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant
induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A;
OFF-ON). This designer network consisting of different network topologies
orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA
variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived
pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like
cells, whose glucose-stimulated insulin-release dynamics are comparable to human
pancreatic islets. Synthetic lineage-control networks may provide the missing link
to genetically programme somatic cells into autologous cell phenotypes for
regenerative medicine. Synthetic biology offers the potential for the design and
implementation of rationally designed, complex genetic programmes. Here the authors
design a genetic network to trigger the differentiation of patient derived IPSCs into
beta-like cells.
Collapse
Affiliation(s)
- Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Boon Chin Heng
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Peng Bai
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marc Folcher
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Henryk Zulewski
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|