1
|
Brückner DB, Hannezo E. Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models. Cold Spring Harb Perspect Biol 2025; 17:a041653. [PMID: 38951023 PMCID: PMC11960702 DOI: 10.1101/cshperspect.a041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
2
|
Zeng M, Chen X, Zhang J. Manipulation of Hierarchical Chiral Self-assembly and Anion Recognition by Supramolecular Systems of β-Glucopyranoside, Pillar[5]arenes, and Polyoxometalates. Chemistry 2023; 29:e202301827. [PMID: 37522265 DOI: 10.1002/chem.202301827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Hierarchical chiral structures have broad applications in optical devices, asymmetric catalysis, and biological systems. The delicate balance of various interactions are key to the self-assembly of chiral structures. Herein, a ternary co-assembly consisting of cationic pillar[5]arenes (P5As), anionic β-glucopyranoside (βGlcD/βGlcL), and Anderson-type polyoxometalates (POMs) were constructed. Through adjusting the stoichiometry of βGlcD, the assemblies were effectively controlled to form hierarchical nano-leaf assemblies with twisted nanoribbons in a homochiral direction. The co-assemblies exhibit strong Cotton effects, and successfully induced the chirality of Anderson-type POMs. More interestingly, by changing the central metal in Anderson-type POMs (XMo6 O24 3- (X=Cr, Al, and Ga)), even though the three clusters have the same numbers of charge and size, the hierarchical chirality of the related assemblies varied in the morphology of the assemblies and the Cotton effect in the CD spectra. Results in theoretical calculations and ITC titration indicates that the tiny difference in long-range electrostatic interaction would result in the anion recognition of POMs, modulated by βGlcD through host-guest inclusion and hydrogen bonding in the assembly process.
Collapse
Affiliation(s)
- Mengyan Zeng
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer, Chemistry and Physics of Minister of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin Chen
- Department of Chemistry, Department of Physics, Rutgers University, Newark, New Jersey, 07102, USA
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer, Chemistry and Physics of Minister of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Polino AJ, Sviben S, Melena I, Piston DW, Hughes JW. Scanning electron microscopy of human islet cilia. Proc Natl Acad Sci U S A 2023; 120:e2302624120. [PMID: 37205712 PMCID: PMC10235940 DOI: 10.1073/pnas.2302624120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Human islet primary cilia are vital glucose-regulating organelles whose structure remains uncharacterized. Scanning electron microscopy (SEM) is a useful technique for studying the surface morphology of membrane projections like cilia, but conventional sample preparation does not reveal the submembrane axonemal structure, which holds key implications for ciliary function. To overcome this challenge, we combined SEM with membrane-extraction techniques to examine primary cilia in native human islets. Our data show well-preserved cilia subdomains which demonstrate both expected and unexpected ultrastructural motifs. Morphometric features were quantified when possible, including axonemal length and diameter, microtubule conformations, and chirality. We further describe a ciliary ring, a structure that may be a specialization in human islets. Key findings are correlated with fluorescence microscopy and interpreted in the context of cilia function as a cellular sensor and communications locus in pancreatic islets.
Collapse
Affiliation(s)
- Alexander J. Polino
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO63110
| | - Isabella Melena
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110
| | - David W. Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Jing W. Hughes
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
4
|
Polino AJ, Sviben S, Melena I, Piston DW, Hughes J. Scanning electron microscopy of human islet cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528685. [PMID: 36824775 PMCID: PMC9949088 DOI: 10.1101/2023.02.15.528685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Human islet primary cilia are vital glucose-regulating organelles whose structure remains uncharacterized. Scanning electron microscopy (SEM) is a useful technique for studying the surface morphology of membrane projections like primary cilia, but conventional sample preparation does not reveal the sub-membrane axonemal structure which holds key implications for cilia function. To overcome this challenge, we combined SEM with membrane-extraction techniques to examine cilia in native human islets. Our data show well-preserved cilia subdomains which demonstrate both expected and unexpected ultrastructural motifs. Morphometric features were quantified when possible, including axonemal length and diameter, microtubule conformations and chirality. We further describe a novel ciliary ring, a structure that may be a specialization in human islets. Key findings are correlated with fluorescence microscopy and interpreted in the context of cilia function as a cellular sensor and communications locus in pancreatic islets.
Collapse
|
5
|
Rahman T, Peters F, Wan LQ. Cell jamming regulates epithelial chiral morphogenesis. J Biomech 2023; 147:111435. [PMID: 36641827 PMCID: PMC10020895 DOI: 10.1016/j.jbiomech.2023.111435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Internal organs such as the heart demonstrate apparent left-right (LR) asymmetric morphology and positioning. Cellular chirality and associated LR biased mechanical behavior such as cell migration have been attributed to LR symmetry breaking during embryonic development. Mathematical models have shown that chiral directional migration can be driven by cellular intrinsic torque. Tissue jamming state (i.e., solid-like vs fluid-like state) strongly regulates collective migratory behavior, but how it might affect chiral morphogenesis is still unknown. Here, we develop a cell vertex model to study the role of tissue rigidity or jamming state on chiral morphogenesis of the cells on a patterned ring-shaped tissue, simulating a previously reported experimental setup for measuring cell chirality. We simulate chirality as torsional forces acting on cell vertices. As expected, the cells undergo bidirectional migration at the opposing (inner and outer) boundaries of the ring-shaped tissue. We discover that more fluid-like tissues (unjammed) demonstrate a stronger chiral cell alignment and elongation than more solid-like (jammed) tissues and maintain a bigger difference in migration velocity between opposing tissue boundaries. Finally, we find that fluid-like tissues undergo more cell-neighbor exchange events. This study reveals that chiral torque is sufficient to achieve a biased cellular alignment as seen in vitro. It further sheds light on the mechanical regulation of chiral morphogenesis of tissues and reveals a role of cell density-independent tissue rigidity in this process.
Collapse
Affiliation(s)
- Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Frank Peters
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
6
|
Fundamental Cause of Bio-Chirality: Space-Time Symmetry—Concept Review. Symmetry (Basel) 2022. [DOI: 10.3390/sym15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The search for fundamental determinants of bio-molecular chirality is a hot topic in biology, clarifying the meaning of evolution and the enigma of life’s origin. The question of origin may be resolved assuming that non-biological and biological entities obey nature’s universal laws grounded on space-time symmetry (STS) and space-time relativity (SPR). The fabric of STS is our review’s primary subject. This symmetry, encompassing the behavior of elementary particles and galaxy structure, imposes its fundamental laws on all hierarchical levels of the biological world. From the perspective of STS, objects across spatial scales may be classified as chiral or achiral concerning a specific space-related symmetry transformation: mirror reflection. The chiral object is not identical (i.e., not superimposable) to its mirror image. In geometry, distinguish two kinds of chiral objects. The first one does not have any reflective symmetry elements (a point or plane of symmetry) but may have rotational symmetry axes (dissymmetry). The second one does not have any symmetry elements (asymmetry). As the form symmetry deficiency, Chirality is the critical structural feature of natural systems, including sub-atomic particles and living matter. According to the Standard Model (SM) theory and String Theory (StrT), elementary particles associated with the four fundamental forces of nature determine the existence of micro- and galaxy scales of nature. Therefore, the inheritance of molecular symmetry from the symmetry of elementary particles indicates a bi-directional (internal [(micro-scale) and external (galaxy sale)] causal pathway of prevalent bio-chirality. We assume that the laws of the physical world impact the biological matter’s appearance through both extremities of spatial dimensions. The extended network of multi-disciplinary experimental evidence supports this hypothesis. However, many experimental results are derived and interpreted based on the narrow-view prerogative and highly specific terminology. The current review promotes a holistic approach to experimental results in two fast-developing, seemingly unrelated, divergent branches of STS and biological chirality. The generalized view on the origin of prevalent bio-molecular chirality is necessary for understanding the link between a diverse range of biological events. The chain of chirality transfer links ribosomal protein synthesis, cell morphology, and neuronal signaling with the laterality of cognitive functions.
Collapse
|
7
|
Ye X, Li B, Wang Z, Li J, Zhang J, Wan X. Tuning organic crystal chirality by the molar masses of tailored polymeric additives. Nat Commun 2021; 12:6841. [PMID: 34824273 PMCID: PMC8617073 DOI: 10.1038/s41467-021-27236-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Hierarchically ordered chiral crystals have attracted intense research efforts for their huge potential in optical devices, asymmetric catalysis and pharmaceutical crystal engineering. Major barriers to the application have been the use of costly enantiomerically pure building blocks and the difficulty in precise control of chirality transfer from molecular to macroscopic level. Herein, we describe a strategy that offers not only the preferred formation of one enantiomorph from racemic solution but also the subsequent enantiomer-specific oriented attachment of this enantiomorph by balancing stereoselective and non-stereoselective interactions. It is demonstrated by on-demand switching the sign of fan-shaped crystal aggregates and the configuration of their components only by changing the molar mass of tailored polymeric additives. Owing to the simplicity and wide scope of application, this methodology opens an immediate opportunity for facile and efficient fabrication of one-handed macroscopic aggregates of homochiral organic crystals from racemic starting materials.
Collapse
Affiliation(s)
- Xichong Ye
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Bowen Li
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Zhaoxu Wang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Jing Li
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Jie Zhang
- grid.11135.370000 0001 2256 9319Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Bacterial Filamentation Drives Colony Chirality. mBio 2021; 12:e0154221. [PMID: 34724813 PMCID: PMC8561393 DOI: 10.1128/mbio.01542-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chirality is ubiquitous in nature, with consequences at the cellular and tissue scales. As Escherichia coli colonies expand radially, an orthogonal component of growth creates a pinwheel-like pattern that can be revealed by fluorescent markers. To elucidate the mechanistic basis of this colony chirality, we investigated its link to left-handed, single-cell twisting during E. coli elongation. While chemical and genetic manipulation of cell width altered single-cell twisting handedness, colonies ceased to be chiral rather than switching handedness, and anaerobic growth altered colony chirality without affecting single-cell twisting. Chiral angle increased with increasing temperature even when growth rate decreased. Unifying these findings, we discovered that colony chirality was associated with the propensity for cell filamentation. Inhibition of cell division accentuated chirality under aerobic growth and generated chirality under anaerobic growth. Thus, regulation of cell division is intrinsically coupled to colony chirality, providing a mechanism for tuning macroscale spatial patterning. IMPORTANCE Chiral objects, such as amino acids, are distinguishable from their mirror image. For living systems, the fundamental mechanisms relating cellular handedness to chirality at the multicellular scale remain largely mysterious. Here, we use chemical, genetic, and environmental perturbations of Escherichia coli to investigate whether pinwheel patterns in bacterial colonies are directly linked to single-cell growth behaviors. We discover that chirality can be abolished without affecting single-cell twisting; instead, the degree of chirality was linked to the proportion of highly elongated cells at the colony edge. Inhibiting cell division boosted the degree of chirality during aerobic growth and even introduced chirality to otherwise achiral colonies during anaerobic growth. These findings reveal a fascinating connection between cell division and macroscopic colony patterning.
Collapse
|
9
|
Tessadori F, Tsingos E, Colizzi ES, Kruse F, van den Brink SC, van den Boogaard M, Christoffels VM, Merks RM, Bakkers J. Twisting of the zebrafish heart tube during cardiac looping is a tbx5-dependent and tissue-intrinsic process. eLife 2021; 10:61733. [PMID: 34372968 PMCID: PMC8354640 DOI: 10.7554/elife.61733] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Organ laterality refers to the left-right asymmetry in disposition and conformation of internal organs and is established during embryogenesis. The heart is the first organ to display visible left-right asymmetries through its left-sided positioning and rightward looping. Here, we present a new zebrafish loss-of-function allele for tbx5a, which displays defective rightward cardiac looping morphogenesis. By mapping individual cardiomyocyte behavior during cardiac looping, we establish that ventricular and atrial cardiomyocytes rearrange in distinct directions. As a consequence, the cardiac chambers twist around the atrioventricular canal resulting in torsion of the heart tube, which is compromised in tbx5a mutants. Pharmacological treatment and ex vivo culture establishes that the cardiac twisting depends on intrinsic mechanisms and is independent from cardiac growth. Furthermore, genetic experiments indicate that looping requires proper tissue patterning. We conclude that cardiac looping involves twisting of the chambers around the atrioventricular canal, which requires correct tissue patterning by Tbx5a.
Collapse
Affiliation(s)
- Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Erika Tsingos
- Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Enrico Sandro Colizzi
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands
| | - Fabian Kruse
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Malou van den Boogaard
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Amsterdam UMC, University of Amsterdam, Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Roeland Mh Merks
- Mathematical Institute, Leiden University, Leiden, Netherlands.,Origins Center, Leiden University, Leiden, Netherlands.,Institute of Biology, Leiden University, Leiden, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.,Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
10
|
Schneiter M, Halm S, Odriozola A, Mogel H, Rička J, Stoffel MH, Zuber B, Frenz M, Tschanz SA. Multi-scale alignment of respiratory cilia and its relation to mucociliary function. J Struct Biol 2020; 213:107680. [PMID: 33359072 DOI: 10.1016/j.jsb.2020.107680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/13/2020] [Accepted: 12/05/2020] [Indexed: 11/27/2022]
Abstract
The tracheobronchial tree is lined by a mucociliary epithelium containing millions of multiciliated cells. Their integrated oscillatory activity continuously propels an overlying pollution-protecting mucus layer in cranial direction, leading to mucociliary clearance - the primary defence mechanism of the airways. Mucociliary transport is commonly thought to co-emerge with the collective ciliary motion pattern under appropriate geometrical and rheological conditions. Proper ciliary alignment is therefore considered essential to establish mucociliary clearance in the respiratory system. Here, we used volume electron microscopy in combination with high-speed reflection contrast microscopy in order to examine ciliary orientation and its spatial organization, as well as to measure the propagation direction of metachronal waves and the direction of mucociliary transport on bovine tracheal epithelia with reference to the tracheal long axis (TLA). Ciliary orientation is measured in terms of the basal body orientation (BBO) and the axonemal orientation (AO), which are commonly considered to coincide, both equivalently indicating the effective stroke as well as the mucociliary transport direction. Our results, however, reveal that only the AO is in line with the mucociliary transport, which was found to run along a left-handed helical trajectory, whereas the BBO was found to be aligned with the TLA. Furthermore, we show that even if ciliary orientation remains consistent between adjacent cells, ciliary orientation exhibits a gradual shift within individual cells. Together with the symplectic beating geometry, this intracellular orientational pattern could provide for the propulsion of highly viscous mucus and likely constitutes a compromise between efficiency and robustness.
Collapse
Affiliation(s)
- Martin Schneiter
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, Switzerland; Institute of Anatomy, University of Bern, Baltzerstrasse 2, Switzerland
| | - Sebastian Halm
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Switzerland
| | - Adolfo Odriozola
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Switzerland
| | - Helga Mogel
- Division of Veterinary Anatomy, University of Bern, Länggassstrasse 120, Switzerland
| | - Jaroslav Rička
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, University of Bern, Länggassstrasse 120, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Switzerland.
| | - Martin Frenz
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Switzerland.
| | - Stefan A Tschanz
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, Switzerland
| |
Collapse
|
11
|
Cells with Broken Left–Right Symmetry: Roles of Intrinsic Cell Chirality in Left–Right Asymmetric Epithelial Morphogenesis. Symmetry (Basel) 2019. [DOI: 10.3390/sym11040505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chirality is a fundamental feature in biology, from the molecular to the organismal level. An animal has chirality in the left–right asymmetric structure and function of its body. In general, chirality occurring at the molecular and organ/organism scales has been studied separately. However, recently, chirality was found at the cellular level in various species. This “cell chirality” can serve as a link between molecular chirality and that of an organ or animal. Cell chirality is observed in the structure, motility, and cytoplasmic dynamics of cells and the mechanisms of cell chirality formation are beginning to be understood. In all cases studied so far, proteins that interact chirally with F-actin, such as formin and myosin I, play essential roles in cell chirality formation or the switching of a cell’s enantiomorphic state. Thus, the chirality of F-actin may represent the ultimate origin of cell chirality. Links between cell chirality and left–right body asymmetry are also starting to be revealed in various animal species. In this review, the mechanisms of cell chirality formation and its roles in left–right asymmetric development are discussed, with a focus on the fruit fly Drosophila, in which many of the pioneering studies were conducted.
Collapse
|
12
|
Marcotti S, Reilly GC, Lacroix D. Effect of cell sample size in atomic force microscopy nanoindentation. J Mech Behav Biomed Mater 2019; 94:259-266. [PMID: 30928670 DOI: 10.1016/j.jmbbm.2019.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/21/2018] [Accepted: 03/17/2019] [Indexed: 11/25/2022]
Abstract
Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to study single cell mechanical properties. One important aspect related to single cell techniques is the need for sufficient statistical power to obtain reliable results. This aspect is often overlooked in AFM experiments were sample sizes are arbitrarily set. The aim of the present work was to propose a tool for sample size estimation in the context of AFM nanoindentation experiments of single cell. To this aim, a retrospective approach was used by acquiring a large dataset of experimental measurements on four bone cell types and by building saturation curves for increasing sample sizes with a bootstrap resampling method. It was observed that the coefficient of variation (CV%) decayed with a function of the form y = axb with similar parameters for all samples tested and that sample sizes of 21 and 83 cells were needed for the specific cells and protocol employed if setting a maximum threshold on CV% of 10% or 5%, respectively. The developed tool is made available as an open-source repository and guidelines are provided for its use for AFM nanoindentation experimental design.
Collapse
Affiliation(s)
- Stefania Marcotti
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Gwendolen C Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Materials Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
13
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
14
|
Epithelial Cell Chirality Revealed by Three-Dimensional Spontaneous Rotation. Proc Natl Acad Sci U S A 2018; 115:12188-12193. [PMID: 30429314 DOI: 10.1073/pnas.1805932115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Our understanding of the left-right (LR) asymmetry of embryonic development, in particular the contribution of intrinsic handedness of the cell or cell chirality, is limited due to the confounding systematic and environmental factors during morphogenesis and a ack of physiologically relevant in vitro 3D platforms. Here we report an efficient two-layered biomaterial platform for determining the chirality of individual cells, cell aggregates, and self-organized hollow epithelial spheroids. This bioengineered niche provides a uniform defined axis allowing for cells to rotate spontaneously with a directional bias toward either clockwise or counterclockwise directions. Mechanistic studies reveal an actin-dependent, cell-intrinsic property of 3D chirality that can be mediated by actin cross-linking via α-actinin-1. Our findings suggest that the gradient of extracellular matrix is an important biophysicochemical cue influencing cell polarity and chirality. Engineered biomaterial systems can serve as an effective platform for studying developmental asymmetry and screening for environmental factors causing birth defects.
Collapse
|
15
|
Ferreira RR, Pakula G, Klaeyle L, Fukui H, Vilfan A, Supatto W, Vermot J. Chiral Cilia Orientation in the Left-Right Organizer. Cell Rep 2018; 25:2008-2016.e4. [DOI: 10.1016/j.celrep.2018.10.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 01/28/2023] Open
|
16
|
Levin M, Klar AJS, Ramsdell AF. Introduction to provocative questions in left-right asymmetry. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150399. [PMID: 27821529 PMCID: PMC5104499 DOI: 10.1098/rstb.2015.0399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 12/13/2022] Open
Abstract
Left-right asymmetry is a phenomenon that has a broad appeal-to anatomists, developmental biologists and evolutionary biologists-because it is a morphological feature of organisms that spans scales of size and levels of organization, from unicellular protists, to vertebrate organs, to social behaviour. Here, we highlight a number of important aspects of asymmetry that encompass several areas of biology-cell-level, physiological, genetic, anatomical and evolutionary components-and that are based on research conducted in diverse model systems, ranging from single cells to invertebrates to human developmental disorders. Together, the contributions in this issue reveal a heretofore-unsuspected variety in asymmetry mechanisms, including ancient chirality elements that could underlie a much more universal basis to asymmetry development, and provide much fodder for thought with far reaching implications in biomedical, developmental, evolutionary and synthetic biology. The new emerging theme of binary cell-fate choice, promoted by asymmetric cell division of a deterministic cell, has focused on investigating asymmetry mechanisms functioning at the single cell level. These include cytoskeleton and DNA chain asymmetry-mechanisms that are amplified and coordinated with those employed for the determination of the anterior-posterior and dorsal-ventral axes of the embryo.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Amar J S Klar
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD 21702, USA
| | - Ann F Ramsdell
- Department of Cell Biology and Anatomy, School of Medicine and Program in Women's and Gender Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|