1
|
Qiao Z, Chen Y, Wang X, Li Y, Liu S, Deng F, Liao D, Cai N, Zeng H, Chen J. Genome assembly and multiomic analyses reveal insights into flower and bark colors of Lagerstroemia excelsa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109482. [PMID: 39818068 DOI: 10.1016/j.plaphy.2025.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Lagerstroemia excelsa is a unique plant species from China, holds a significant aesthetic and economic value, and plays a crucial role in landscape architecture and horticulture. Thus far, there is little genetic and genomic information available about this species, which limits its use in development of new cultivars. In this study, a high-quality genome map of L. excelsa was obtained via whole-genome sequencing. Results showed that its genome size is about 330.4 Mb and a scaffold mapping rate is approximately 97.20%, resulting in 24 pseudochromosomes. L. excelsa might have undergone a recent whole-genome triplication event and diverged from the pomegranate about 32.3 million years ago (MYA). Subsequently, the divergence time between L. indica and L. excelsa was around 5.9 MYA. The transcriptomic and metabolomic analyses of L. excelsa and L. indica indicated that the chalcone synthase pathway may play a key role in regulating flower color differentiation between the two species. Additionally, a transcription factor LeMYB103 may be involved in regulating anthocyanin synthesis by interacting with LeMYB66, resulting in the accumulation of anthocyanins in the stem bark. This study is the first step toward genomic analysis of L. excelsa, which may provide a foundation for further molecular investigation of this species and offer valuable insights into the molecular mechanisms underlying the flower and stem bark colors in L. excelsa, two important ornamental traits in Lagerstroemia breeding.
Collapse
Affiliation(s)
- Zhongquan Qiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Yi Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Xiaoming Wang
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Yongxin Li
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Sisi Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China; Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Fuyuan Deng
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Dezhi Liao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China
| | - Neng Cai
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, China.
| | - Huijie Zeng
- Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan, 410004, China.
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, University of Florida, 2725 S. Binion Road, Apopka, FL, 32703, USA.
| |
Collapse
|
2
|
Leslie AB, Mander L. Genomic correlates of vascular plant reproductive complexity and the uniqueness of angiosperms. THE NEW PHYTOLOGIST 2025; 245:1733-1745. [PMID: 39611474 DOI: 10.1111/nph.20302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Whole genome duplication (WGD) likely plays an important role in plant macroevolution, and has been implicated in diversification rate shifts, structural innovations, and increased disparity. But the general effects of WGD are challenging to evaluate, in part due to the difficulty of directly comparing morphological patterns across disparate clades. We explored relationships between WGD and the evolution of reproductive complexity across vascular plants using a metric based on the number of reproductive part types. We used multiple regression models to evaluate the relative importance of inferred WGD events, genome size, and a suite of additional variables relating to growth habit and reproductive biology in explaining part type complexity. WGD was a consistent predictor of reproductive complexity only among angiosperms. Across vascular plants generally, reproductive biology, clade identity, and the presence of bisexual strobili (those that produce microsporangiate and megasporangiate organs) were better predictors of complexity. Angiosperms are unique among vascular plants in combining frequent polyploidy with high-reproductive complexity. Whether WGD is mechanistically linked to floral complexity is unclear, but we suggest widespread polyploidy and increased complexity were ultimately facilitated by the evolution of herbaceous growth habits in early angiosperms.
Collapse
Affiliation(s)
- Andrew B Leslie
- Earth and Planetary Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA, 94305, USA
| | - Luke Mander
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
3
|
Dong Z, Jin S, Fan R, Sun P, Shao L, Zhao T, Jiang H, Zhang Z, Shang H, Guan X, Hu Y, Zhang T, Zhu F, Fang L. High-quality genome of Firmiana hainanensis provides insights into the evolution of Malvaceae subfamilies and the mechanism of their wood density formation. J Genet Genomics 2024:S1673-8527(24)00362-X. [PMID: 39709049 DOI: 10.1016/j.jgg.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
The Malvaceae family, the most diverse family in the order Malvales, consists of nine subfamilies. Within the Firmiana genus of the Sterculioideae subfamily, most species are considered globally vulnerable, yet their genomes remain unexplored. Here, we present a chromosome-level genome assembly for a representative Firmiana species, F. hainanensis, 2n = 40, totaling 1536 Mb. Phylogenomic analysis shows that F. hainanensis and Durio zibethinus have the closest evolutionary relationship, with an estimated divergence time of approximately 21 MYA and distinct polyploidization events in their histories. Evolutionary trajectory analyses indicate that fissions and fusions may play a crucial role in chromosome number variation (2n = 14 to 2n = 96). Analysis of repetitive elements among Malvaceae reveals that the Tekay subfamily (belonging to the Gypsy group) contributes to variation in genome size (ranging from 324 Mb to 1620 Mb). Additionally, genes associated with P450, peroxidase, and microtubules, and thereby related to cell wall biosynthesis, are significantly contracted in F. hainanensis, potentially leading to its lower wood density relative to Hopea hainanensis. Overall, our study provides insights into the evolution of chromosome number, genome size, and the genetic basis of cell wall biosynthesis in Malvaceae species.
Collapse
Affiliation(s)
- Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Fan
- Spices and Beverages Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Pengcheng Sun
- College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lei Shao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Haojie Jiang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Fuyuan Zhu
- College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China.
| |
Collapse
|
4
|
Shao L, Jin S, Chen J, Yang G, Fan R, Zhang Z, Deng Q, Han J, Ma X, Dong Z, Lu H, Hu W, Wang K, Hu L, Shen Z, Huang S, Zhao T, Guan X, Hu Y, Zhang T, Fang L. High-quality genomes of Bombax ceiba and Ceiba pentandra provide insights into the evolution of Malvaceae species and differences in their natural fiber development. PLANT COMMUNICATIONS 2024; 5:100832. [PMID: 38321741 PMCID: PMC11121743 DOI: 10.1016/j.xplc.2024.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Members of the Malvaceae family, including Corchorus spp., Gossypium spp., Bombax spp., and Ceiba spp., are important sources of natural fibers. In the past decade, the genomes of several Malvaceae species have been assembled; however, the evolutionary history of Malvaceae species and the differences in their fiber development remain to be clarified. Here, we report the genome assembly and annotation of two natural fiber plants from the Malvaceae, Bombax ceiba and Ceiba pentandra, whose assembled genome sizes are 783.56 Mb and 1575.47 Mb, respectively. Comparative analysis revealed that whole-genome duplication and Gypsy long terminal repeat retroelements have been the major causes of differences in chromosome number (2n = 14 to 2n = 96) and genome size (234 Mb to 2676 Mb) among Malvaceae species. We also used comparative genomic analyses to reconstruct the ancestral Malvaceae karyotype with 11 proto-chromosomes, providing new insights into the evolutionary trajectories of Malvaceae species. MYB-MIXTA-like 3 is relatively conserved among the Malvaceae and functions in fiber cell-fate determination in the epidermis. It appears to perform this function in any tissue where it is expressed, i.e. in fibers on the endocarp of B. ceiba and in ovule fibers of cotton. We identified a structural variation in a cellulose synthase gene and a higher copy number of cellulose synthase-like genes as possible causes of the finer, less spinnable, weaker fibers of B. ceiba. Our study provides two high-quality genomes of natural fiber plants and offers insights into the evolution of Malvaceae species and differences in their natural fiber formation and development through multi-omics analysis.
Collapse
Affiliation(s)
- Lei Shao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guangsui Yang
- Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Rui Fan
- Spices and Beverages Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Qian Deng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaowei Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hejun Lu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wanying Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Lisong Hu
- Spices and Beverages Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Zhen Shen
- Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Surong Huang
- Tropical Crop Germplasm Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
5
|
Yang L, Qiao X, He HE, Yi WW, Gao YN, Tan XM, Cheng H, Hou XF, Ma YY, Wang HL, Huang X, Ma YQ, Xu ZQ. IiAGL6 participates in the regulation of stamen development and pollen formation in Isatis indigotica. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111974. [PMID: 38199385 DOI: 10.1016/j.plantsci.2024.111974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The AGL6 (AGMOUSE LIKE 6) gene is a member of the SEP subfamily and functions as an E-class floral homeotic gene in the development of floral organs. In this study, we cloned IiAGL6, the orthologous gene of AGL6 in Isatis indigotica. The constitutive expression of IiAGL6 in Arabidopsis thaliana resulted in a late-flowering phenotype and the development of curly leaves during the vegetative growth period. Abnormal changes in floral organ development were observed during the reproductive stage. In woad plants, suppression of IiAGL6 using TRV-VIGS (tobacco rattle virus-mediated virus-induced gene silencing) decreased the number of stamens and led to the formation of aberrant anthers. Similar changes in stamen development were also observed in miRNA-AGL6 transgenic Arabidopsis plants. Yeast two-hybrid and BiFC tests showed that IiAGL6 can interact with other MADS-box proteins in woad; thus, playing a key role in defining the identities of floral organs, particularly during stamen formation. These findings might provide novel insights and help investigate the biological roles of MADS transcription factors in I. indigotica.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xin Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hao-En He
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Wei-Wei Yi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ya-Nan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Hong-Li Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China; Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions Key Laboratory of Ministry of Agriculture and Rural Affairs, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
6
|
Su S, Lei Y, Zhou X, Suzuki T, Xiao W, Higashiyama T. A BLADE-ON-PETIOLE orthologue regulates corolla differentiation in the proximal region in Torenia fournieri. Nat Commun 2023; 14:4763. [PMID: 37553331 PMCID: PMC10409793 DOI: 10.1038/s41467-023-40399-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The three-dimensional shape of a flower is integrated by morphogenesis along different axes. Differentiation along the petal proximodistal axis is tightly linked to the specification of pollinators; however, it is still unclear how a petal patterns this axis. The corolla of Torenia fournieri exhibits strong differentiation along the proximodistal axis, and we previously found a proximal regulator, TfALOG3, controlling corolla neck differentiation. Here, we report another gene, TfBOP2, which is predominantly expressed in the proximal region of the corolla. TfBOP2 mutants have shorter proximal corolla tubes and longer distal lobe, demonstrating its function as a proximal regulator. Arabidopsis BOPs mutant shows similar defects, favouring a shared role of BOPs homologues. Genetic analysis demonstrates the interaction between TfBOP2 and TfALOG3, and we further found that TfALOG3 physically interacts with TfBOP2 and can recruit TfBOP2 to the nuclear region. Our study favours a hypothetical shared BOP-ALOG complex that is recruited to regulate corolla differentiation in the proximal region axis of T. fournieri.
Collapse
Affiliation(s)
- Shihao Su
- School of Agriculture, Sun Yat-sen University, 518107, Shenzhen, China.
| | - Yawen Lei
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, 510316, Guangzhou, Guangdong, China
| | - Xuan Zhou
- School of Agriculture, Sun Yat-sen University, 518107, Shenzhen, China
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Wei Xiao
- MBP-Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
7
|
Abstract
The CoGe software suite at genomevolution.org hosts a number of tools that facilitate genomic research on plant and animal whole-genome multiplication-polyploidy. SynMap permits analysis and visualization of two-way syntenic dotplot alignments of genomes, includes many options and data/graphics download possibilities, and even permits three-genome synteny maps and interactive views. FractBias is a tool that operates within SynMap that permits calculation and graphic display of genome fragments (such as chromosomes) of one species mapped to another, displaying both blockwise homology depths and the extent of syntenic gene (syntelog) loss following polyploidy events. SynMap macrosynteny results can segue into the microsynteny tool GEvo, which provides genome-browser-like views of homologous genome blocks. CoGe FeatView allows call-up of given gene features already stored in the CoGe resource, and CoGeBlast permits searches for additional features that can be analyzed or downloaded further. Links from these tools can be fed into SynFind, which can find syntenic blocks surrounding a feature across multiple specified genomes while also simultaneously providing overall genome-wide syntenic depth calculations that can be interpreted to reflect polyploidy levels. Here, we describe basic use of these tools on the CoGe software suite.
Collapse
|
8
|
Elmi A, Mohamed AS, Said S, Bationo R. A Comparison Study of Medicinal Plants Used Against SARS-CoV-2 and Those Recommended Against Malaria in Africa. ETHNOPHARMACOLOGY AND DRUG DISCOVERY FOR COVID-19: ANTI-SARS-COV-2 AGENTS FROM HERBAL MEDICINES AND NATURAL PRODUCTS 2023:549-573. [DOI: 10.1007/978-981-99-3664-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Xuan L, Wang Q, Liu Z, Xu B, Cheng S, Zhang Y, Lu D, Dong B, Zhang D, Zhang L, Ma J, Shen Y. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia. BMC Mol Cell Biol 2022; 23:56. [DOI: 10.1186/s12860-022-00458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Magnolia, a traditional and important ornamental plant in urban greening, has been cultivated for about 2000 years in China for its elegant flower shape and gorgeous flower color. Most varieties of Magnolia bloom once a year in spring, whereas a few others, such as Magnolia liliiflora Desr. ‘Hongyuanbao’, also bloom for the second time in summer or early autumn. Such a twice flowering trait is desirable for its high ornamental value, while its underlying mechanism remains unclear.
Methods
Paraffin section was used to show the flowering time and phenotypic changes of M. liliiflora ‘Hongyuanbao’ during the twice flowering periods from March 28 to August 25, 2018. Gas chromatography-mass spectrometry (GC-MS) was then performed to explore the chemical metabolites through the twice flower bud differentiation process in ‘Hongyuanbao’, and the metabolites were screened and identified by orthogonal projection to latent structures discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was used to reveal the relationship between the sugar metabolites and twice-flowering characteristic. To further investigate the potential role of sucrose and trehalose on flowering regulation of ‘Hongyuanbao’, the plants once finished the spring flowering were regularly sprayed with sucrose and trehalose solutions at 30 mM, 60 mM, and 90 mM concentrations from April 22, 2019. The flower bud differentiation processes of sprayed plants were observed and the expression patterns of the genes involved in sucrose and trehalose metabolic pathways were studied by quantitative reverse transcription PCR (qRT-PCR).
Results
It showed that ‘Hongyuanbao’ could complete flower bud differentiation twice in a year and flowered in both spring and summer. The metabolites of flower bud differentiation had a significant variation between the first and second flower buds. Compared to the first flower bud differentiation process, the metabolites in the sucrose and trehalose metabolic pathways were significantly up-regulated during the second flower bud differentiation process. Besides that, the expression levels of a number of trehalose-6-phosphate synthase (TPS) genes including MlTPS1, MlTPS5, MlTPS6, MlTPS7 and MlTPS9 were substantially increased in the second flower differentiation process compared with the first process. Exogenous treatments indicated that compared to the control plants (sprayed with water, CK), all three concentrations of trehalose could accelerate flowering and the effect of 60 mM concentration was the most significant. For the sucrose foliar spray, only the 60 mM concentration accelerated flowering compared with CK. It suggested that different concentration of trehalose and sucrose might have different effects. Expression analysis showed that sucrose treatment increased the transcription levels of MlTPS5 and MlTPS6, whereas trehalose treatment increased MlTPS1, showing that different MlTPS genes took part in sucrose and trehalose metabolic pathways respectively. The expression levels of a number of flowering-related genes, such as MlFT, MlLFY, and MlSPL were also increased in response to the sprays of sucrose and trehalose.
Conclusions
We provide a novel insight into the effect of sucrose and trehalose on the flowering process in Magnolia. Under the different sugar contents treatments, the time of flower bud differentiation of Magnolia was advanced. Induced and accelerated flowering in response to sucrose and trehalose foliar spray, coupled with elevated expression of trehalose regulatory and response genes, suggests that secondary flower bud formation is a promoted by altered endogenous sucrose and trehalose levels. Those results give a new understanding of sucrose and trehalose on twice-flowering in Magnolia and provide a preliminary speculation for inducing and accelerating the flowering process in Magnolia.
Collapse
|
10
|
Harris BJ, Clark JW, Schrempf D, Szöllősi GJ, Donoghue PCJ, Hetherington AM, Williams TA. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nat Ecol Evol 2022; 6:1634-1643. [PMID: 36175544 PMCID: PMC9630106 DOI: 10.1038/s41559-022-01885-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The origin of plants and their colonization of land fundamentally transformed the terrestrial environment. Here we elucidate the basis of this formative episode in Earth history through patterns of lineage, gene and genome evolution. We use new fossil calibrations, a relative clade age calibration (informed by horizontal gene transfer) and new phylogenomic methods for mapping gene family origins. Distinct rooting strategies resolve tracheophytes (vascular plants) and bryophytes (non-vascular plants) as monophyletic sister groups that diverged during the Cambrian, 515-494 million years ago. The embryophyte stem is characterized by a burst of gene innovation, while bryophytes subsequently experienced an equally dramatic episode of reductive genome evolution in which they lost genes associated with the elaboration of vasculature and the stomatal complex. Overall, our analyses reveal that extant tracheophytes and bryophytes are both highly derived from a more complex ancestral land plant. Understanding the origin of land plants requires tracing character evolution across a diversity of modern lineages.
Collapse
Affiliation(s)
- Brogan J Harris
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - James W Clark
- School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE 'Lendület' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
11
|
Dreni L, Ferrándiz C. Tracing the Evolution of the SEPALLATA Subfamily across Angiosperms Associated with Neo- and Sub-Functionalization for Reproductive and Agronomically Relevant Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:2934. [PMID: 36365387 PMCID: PMC9656651 DOI: 10.3390/plants11212934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
SEPALLATA transcription factors (SEP TFs) have been extensively studied in angiosperms as pivotal components of virtually all the MADS-box tetrameric complex master regulators of floral organ identities. However, there are published reports that suggest that some SEP members also regulate earlier reproductive events, such as inflorescence meristem determinacy and inflorescence architecture, with potential for application in breeding programs in crops. The SEP subfamily underwent a quite complex pattern of duplications during the radiation of the angiosperms. Taking advantage of the many whole genomic sequences now available, we present a revised and expanded SEP phylogeny and link it to the known functions of previously characterized genes. This snapshot supports the evidence that the major SEP3 clade is highly specialized for the specification of the three innermost floral whorls, while its sister LOFSEP clade is functionally more versatile and has been recruited for diverse roles, such as the regulation of extra-floral bract formation and inflorescence determinacy and shape. This larger pool of angiosperm SEP genes confirms previous evidence that their evolution was driven by whole-genome duplications rather than small-scale duplication events. Our work may help to identify those SEP lineages that are the best candidates for the improvement of inflorescence traits, even in far distantly related crops.
Collapse
|
12
|
Genomic insights into rapid speciation within the world's largest tree genus Syzygium. Nat Commun 2022; 13:5031. [PMID: 36097018 PMCID: PMC9468008 DOI: 10.1038/s41467-022-32637-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.
Collapse
|
13
|
Zhou W, Jenny Xiang QY. Phylogenomics and Biogeography of Castanea (Chestnut) and Hamamelis (Witch-hazel) - Choosing between RAD-seq and Hyb-Seq Approaches. Mol Phylogenet Evol 2022; 176:107592. [DOI: 10.1016/j.ympev.2022.107592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 10/31/2022]
|
14
|
Birchler JA, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation. THE PLANT CELL 2022; 34:2466-2474. [PMID: 35253876 PMCID: PMC9252495 DOI: 10.1093/plcell/koac076] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/17/2022] [Indexed: 05/13/2023]
Abstract
Gene duplications have long been recognized as a contributor to the evolution of genes with new functions. Multiple copies of genes can result from tandem duplication, from transposition to new chromosomes, or from whole-genome duplication (polyploidy). The most common fate is that one member of the pair is deleted to return the gene to the singleton state. Other paths involve the reduced expression of both copies (hypofunctionalization) that are held in duplicate to maintain sufficient quantity of function. The two copies can split functions (subfunctionalization) or can diverge to generate a new function (neofunctionalization). Retention of duplicates resulting from doubling of the whole genome occurs for genes involved with multicomponent interactions such as transcription factors and signal transduction components. In contrast, these classes of genes are underrepresented in small segmental duplications. This complementary pattern suggests that the balance of interactors affects the fate of the duplicate pair. We discuss the different mechanisms that maintain duplicated genes, which may change over time and intersect.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
15
|
Garrido-Gala J, Higuera JJ, Rodríguez-Franco A, Muñoz-Blanco J, Amil-Ruiz F, Caballero JL. A Comprehensive Study of the WRKY Transcription Factor Family in Strawberry. PLANTS 2022; 11:plants11121585. [PMID: 35736736 PMCID: PMC9229891 DOI: 10.3390/plants11121585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
WRKY transcription factors play critical roles in plant growth and development or stress responses. Using up-to-date genomic data, a total of 64 and 257 WRKY genes have been identified in the diploid woodland strawberry, Fragaria vesca, and the more complex allo-octoploid commercial strawberry, Fragaria × ananassa cv. Camarosa, respectively. The completeness of the new genomes and annotations has enabled us to perform a more detailed evolutionary and functional study of the strawberry WRKY family members, particularly in the case of the cultivated hybrid, in which homoeologous and paralogous FaWRKY genes have been characterized. Analysis of the available expression profiles has revealed that many strawberry WRKY genes show preferential or tissue-specific expression. Furthermore, significant differential expression of several FaWRKY genes has been clearly detected in fruit receptacles and achenes during the ripening process and pathogen challenged, supporting a precise functional role of these strawberry genes in such processes. Further, an extensive analysis of predicted development, stress and hormone-responsive cis-acting elements in the strawberry WRKY family is shown. Our results provide a deeper and more comprehensive knowledge of the WRKY gene family in strawberry.
Collapse
Affiliation(s)
| | - José-Javier Higuera
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
| | - Antonio Rodríguez-Franco
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
| | - Francisco Amil-Ruiz
- Unidad de Bioinformática, Servicio Central de Apoyo a la Investigación (SCAI), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario ceiA3, Edificio Severo Ochoa-C6, Universidad de Córdoba, 14071 Córdoba, Spain; (J.-J.H.); (A.R.-F.); (J.M.-B.)
- Correspondence:
| |
Collapse
|
16
|
Teng J, Wang J, Zhang L, Wei C, Shen S, Xiao Q, Yue Y, Hao Y, Ge W, Wang J. Paleopolyploidies and Genomic Fractionation in Major Eudicot Clades. FRONTIERS IN PLANT SCIENCE 2022; 13:883140. [PMID: 35712579 PMCID: PMC9194900 DOI: 10.3389/fpls.2022.883140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Eudicots account for ~75% of living angiosperms, containing important food and energy crops. Recently, high-quality genome sequences of several eudicots including Aquilegia coerulea and Nelumbo nucifera have become available, providing an opportunity to investigate the early evolutionary characteristics of eudicots. We performed genomic hierarchical and event-related alignments to infer homology within and between representative species of eudicots. The results provide strong evidence for multiple independent polyploidization events during the early diversification of eudicots, three of which are likely to be allopolyploids: The core eudicot-common hexaploidy (ECH), Nelumbo-specific tetraploidy (NST), and Ranunculales-common tetraploidy (RCT). Using different genomes as references, we constructed genomic alignment to list the orthologous and paralogous genes produced by polyploidization and speciation. This could provide a fundamental framework for studying other eudicot genomes and gene(s) evolution. Further, we revealed significantly divergent evolutionary rates among these species. By performing evolutionary rate correction, we dated RCT to be ~118-134 million years ago (Mya), after Ranunculales diverged with core eudicots at ~123-139 Mya. Moreover, we characterized genomic fractionation resulting from gene loss and retention after polyploidizations. Notably, we revealed a high degree of divergence between subgenomes. In particular, synonymous nucleotide substitutions at synonymous sites (Ks) and phylogenomic analyses implied that A. coerulea might provide the subgenome(s) for the gamma-hexaploid hybridization.
Collapse
Affiliation(s)
- Jia Teng
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Jianyu Wang
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Lan Zhang
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Chendan Wei
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Shaoqi Shen
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Qimeng Xiao
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Yuanshuai Yue
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Yanan Hao
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Weina Ge
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
| | - Jinpeng Wang
- Department of Bioinformatics, School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Science, Beijing, China
| |
Collapse
|
17
|
Sork VL, Cokus SJ, Fitz-Gibbon ST, Zimin AV, Puiu D, Garcia JA, Gugger PF, Henriquez CL, Zhen Y, Lohmueller KE, Pellegrini M, Salzberg SL. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nat Commun 2022; 13:2047. [PMID: 35440538 PMCID: PMC9018854 DOI: 10.1038/s41467-022-29584-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Quercus, which emerged ∼55 million years ago during globally warm temperatures, diversified into ∼450 extant species. We present a high-quality de novo genome assembly of a California endemic oak, Quercus lobata, revealing features consistent with oak evolutionary success. Effective population size remained large throughout history despite declining since early Miocene. Analysis of 39,373 mapped protein-coding genes outlined copious duplications consistent with genetic and phenotypic diversity, both by retention of genes created during the ancient γ whole genome hexaploid duplication event and by tandem duplication within families, including numerous resistance genes and a very large block of duplicated DUF247 genes, which have been found to be associated with self-incompatibility in grasses. An additional surprising finding is that subcontext-specific patterns of DNA methylation associated with transposable elements reveal broadly-distributed heterochromatin in intergenic regions, similar to grasses. Collectively, these features promote genetic and phenotypic variation that would facilitate adaptability to changing environments.
Collapse
Affiliation(s)
- Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA.
- Institute of the Environment and Sustainability, University of California, Los Angeles, CA, 90095, USA.
| | - Shawn J Cokus
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Sorel T Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Aleksey V Zimin
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Daniela Puiu
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jesse A Garcia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, 21532, USA
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Ying Zhen
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-1438, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Steven L Salzberg
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Biomedical Engineering, Computer Science, and Biostatistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
18
|
Li L, Chen X, Fang D, Dong S, Guo X, Li N, Campos‐Dominguez L, Wang W, Liu Y, Lang X, Peng Y, Tian D, Thomas DC, Mu W, Liu M, Wu C, Yang T, Zhang S, Yang L, Yang J, Liu Z, Zhang L, Zhang X, Chen F, Jiao Y, Guo Y, Hughes M, Wang W, Liu X, Zhong C, Li A, Sahu SK, Yang H, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang S, Liu H. Genomes shed light on the evolution of Begonia, a mega-diverse genus. THE NEW PHYTOLOGIST 2022; 234:295-310. [PMID: 34997964 PMCID: PMC7612470 DOI: 10.1111/nph.17949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 05/02/2023]
Abstract
Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.
Collapse
|
19
|
Buxus and Tetracentron genomes help resolve eudicot genome history. Nat Commun 2022; 13:643. [PMID: 35110570 PMCID: PMC8810787 DOI: 10.1038/s41467-022-28312-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
Ancient whole-genome duplications (WGDs) characterize many large angiosperm lineages, including angiosperms themselves. Prominently, the core eudicot lineage accommodates 70% of all angiosperms and shares ancestral hexaploidy, termed gamma. Gamma arose via two WGDs that occurred early in eudicot history; however, the relative timing of these is unclear, largely due to the lack of high-quality genomes among early-diverging eudicots. Here, we provide complete genomes for Buxus sinica (Buxales) and Tetracentron sinense (Trochodendrales), representing the lineages most closely related to core eudicots. We show that Buxus and Tetracentron are both characterized by independent WGDs, resolve relationships among early-diverging eudicots and their respective genomes, and use the RACCROCHE pipeline to reconstruct ancestral genome structure at three key phylogenetic nodes of eudicot diversification. Our reconstructions indicate genome structure remained relatively stable during early eudicot diversification, and reject hypotheses of gamma arising via inter-lineage hybridization between ancestral eudicot lineages, involving, instead, only stem lineage core eudicot ancestors. Gamma triplication arises via two whole-genome duplications early in eudicot history, but the relative timing of these is unclear. Here, the authors report the genomes of Buxales and Trochodendrales and reject the hypothesis of gamma arising via inter-lineage hybridization between ancestral eudicot lineages.
Collapse
|
20
|
Then There Were Plenty-Ring Meristems Giving Rise to Many Stamen Whorls. PLANTS 2021; 10:plants10061140. [PMID: 34205172 PMCID: PMC8228060 DOI: 10.3390/plants10061140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022]
Abstract
Floral meristems are dynamic systems that generate floral organ primordia at their flanks and, in most species, terminate while giving rise to the gynoecium primordia. However, we find species with floral meristems that generate additional ring meristems repeatedly throughout angiosperm history. Ring meristems produce only stamen primordia, resulting in polystemous flowers (having stamen numbers more than double that of petals or sepals), and act independently of the floral meristem activity. Most of our knowledge on floral meristem regulation is derived from molecular genetic studies of Arabidopsis thaliana, a species with a fixed number of floral organs and, as such of only limited value for understanding ring meristem function, regulation, and ecological value. This review provides an overview of the main molecular players regulating floral meristem activity in A. thaliana and summarizes our knowledge of ring primordia morphology and occurrence in dicots. Our work provides a first step toward understanding the significance and molecular genetics of ring meristem regulation and evolution.
Collapse
|
21
|
Kitazawa MS. Developmental stochasticity and variation in floral phyllotaxis. JOURNAL OF PLANT RESEARCH 2021; 134:403-416. [PMID: 33821352 PMCID: PMC8106590 DOI: 10.1007/s10265-021-01283-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Floral phyllotaxis is a relatively robust phenotype; trimerous and pentamerous arrangements are widely observed in monocots and core eudicots. Conversely, it also shows variability in some angiosperm clades such as 'ANA' grade (Amborellales, Nymphaeales, and Austrobaileyales), magnoliids, and Ranunculales. Regardless of the phylogenetic relationship, however, phyllotactic pattern formation appears to be a common process. What are the causes of the variability in floral phyllotaxis and how has the variation of floral phyllotaxis contributed to floral diversity? In this review, I summarize recent progress in studies on two related fields to develop answers to these questions. First, it is known that molecular and cellular stochasticity are inevitably found in biological systems, including plant development. Organisms deal with molecular stochasticity in several ways, such as dampening noise through gene networks or maintaining function through cellular redundancy. Recent studies on molecular and cellular stochasticity suggest that stochasticity is not always detrimental to plants and that it is also essential in development. Second, studies on vegetative and inflorescence phyllotaxis have shown that plants often exhibit variability and flexibility in phenotypes. Three types of phyllotaxis variations are observed, namely, fluctuation around the mean, transition between regular patterns, and a transient irregular organ arrangement called permutation. Computer models have demonstrated that stochasticity in the phyllotactic pattern formation plays a role in pattern transitions and irregularities. Variations are also found in the number and positioning of floral organs, although it is not known whether such variations provide any functional advantages. Two ways of diversification may be involved in angiosperm floral evolution: precise regulation of organ position and identity that leads to further specialization of organs and organ redundancy that leads to flexibility in floral phyllotaxis.
Collapse
Affiliation(s)
- Miho S Kitazawa
- Center for Education in Liberal Arts and Sciences, Osaka University, 1-16 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
22
|
Abstract
Plants and animals are both important for studies in evolutionary developmental biology (EvoDevo). Plant morphology as a valuable discipline of EvoDevo is set for a paradigm shift. Process thinking and the continuum approach in plant morphology allow us to perceive and interpret growing plants as combinations of developmental processes rather than as assemblages of structural units (“organs”) such as roots, stems, leaves, and flowers. These dynamic philosophical perspectives were already favored by botanists and philosophers such as Agnes Arber (1879–1960) and Rolf Sattler (*1936). The acceptance of growing plants as dynamic continua inspires EvoDevo scientists such as developmental geneticists and evolutionary biologists to move towards a more holistic understanding of plants in time and space. This review will appeal to many young scientists in the plant development research fields. It covers a wide range of relevant publications from the past to present.
Collapse
|
23
|
Walden N, German DA, Wolf EM, Kiefer M, Rigault P, Huang XC, Kiefer C, Schmickl R, Franzke A, Neuffer B, Mummenhoff K, Koch MA. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat Commun 2020. [PMID: 32732942 DOI: 10.1038/s41467-020-1760.5-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.
Collapse
Affiliation(s)
- Nora Walden
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Dmitry A German
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- South-Siberian Botanical Garden, Altai State University, Lenina Ave. 61, 656049, Barnaul, Russia
| | - Eva M Wolf
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Markus Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Philippe Rigault
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- GYDLE, 1135 Grande Allée Ouest, Québec, QC, G1S 1E7, Canada
| | - Xiao-Chen Huang
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- School of Life Sciences, Nanchang University, 330031, Nanchang, China
| | - Christiane Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Andreas Franzke
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Barbara Neuffer
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Klaus Mummenhoff
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Marcus A Koch
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Walden N, German DA, Wolf EM, Kiefer M, Rigault P, Huang XC, Kiefer C, Schmickl R, Franzke A, Neuffer B, Mummenhoff K, Koch MA. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat Commun 2020; 11:3795. [PMID: 32732942 PMCID: PMC7393125 DOI: 10.1038/s41467-020-17605-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 07/09/2020] [Indexed: 01/24/2023] Open
Abstract
Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.
Collapse
Affiliation(s)
- Nora Walden
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Dmitry A German
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- South-Siberian Botanical Garden, Altai State University, Lenina Ave. 61, 656049, Barnaul, Russia
| | - Eva M Wolf
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Markus Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Philippe Rigault
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- GYDLE, 1135 Grande Allée Ouest, Québec, QC, G1S 1E7, Canada
| | - Xiao-Chen Huang
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- School of Life Sciences, Nanchang University, 330031, Nanchang, China
| | - Christiane Kiefer
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Andreas Franzke
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Barbara Neuffer
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Klaus Mummenhoff
- Department of Biology, Systematic Botany, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Marcus A Koch
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.
| |
Collapse
|
25
|
Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, Raffaele S. Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen Sclerotinia sclerotiorum. THE PLANT CELL 2020; 32:1820-1844. [PMID: 32265317 PMCID: PMC7268813 DOI: 10.1105/tpc.19.00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Quantitative disease resistance (QDR) is a conserved form of plant immunity that limits infections caused by a broad range of pathogens. QDR has a complex genetic determinism. The extent to which molecular components of the QDR response vary across plant species remains elusive. The fungal pathogen Sclerotinia sclerotiorum, causal agent of white mold diseases on hundreds of plant species, triggers QDR in host populations. To document the diversity of local responses to S. sclerotiorum at the molecular level, we analyzed the complete transcriptomes of six species spanning the Pentapetalae (Phaseolus vulgaris, Ricinus communis, Arabidopsis [Arabidopsis thaliana], Helianthus annuus, Solanum lycopersicum, and Beta vulgaris) inoculated with the same strain of S. sclerotiorum About one-third of plant transcriptomes responded locally to S. sclerotiorum, including a high proportion of broadly conserved genes showing frequent regulatory divergence at the interspecific level. Evolutionary inferences suggested a trend toward the acquisition of gene induction relatively recently in several lineages. Focusing on a group of ABCG transporters, we propose that exaptation by regulatory divergence contributed to the evolution of QDR. This evolutionary scenario has implications for understanding the QDR spectrum and durability. Our work provides resources for functional studies of gene regulation and QDR molecular mechanisms across the Pentapetalae.
Collapse
Affiliation(s)
- Justine Sucher
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Axel Dresen
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marielle Barascud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marie Didelon
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| |
Collapse
|
26
|
Developmental and Molecular Changes Underlying the Vernalization-Induced Transition to Flowering in Aquilegia coerulea (James). Genes (Basel) 2019; 10:genes10100734. [PMID: 31546687 PMCID: PMC6826667 DOI: 10.3390/genes10100734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/20/2023] Open
Abstract
Reproductive success in plants is dependent on many factors but the precise timing of flowering is certainly among the most crucial. Perennial plants often have a vernalization or over-wintering requirement in order to successfully flower in the spring. The shoot apical meristem undergoes drastic developmental and molecular changes as it transitions into inflorescence meristem (IM) identity, which then gives rise to floral meristems (FMs). In this study, we have examined the developmental and gene expression changes underlying the transition from the vegetative to reproductive phases in the basal eudicot Aquilegia coerulea, which has evolved a vernalization response independently relative to other established model systems. Results from both our histology and scanning electron studies demonstrate that developmental changes in the meristem occur gradually during the third and fourth weeks of vernalization. Based on RNAseq data and cluster analysis, several known flowering time loci, including AqFT and AqFL1, exhibit dramatic changes in expression during the fourth week. Further consideration of candidate gene homologs as well as unexpected loci of interest creates a framework in which we can begin to explore the genetic basis of the flowering time transition in Aquilegia.
Collapse
|
27
|
Chaw SM, Liu YC, Wu YW, Wang HY, Lin CYI, Wu CS, Ke HM, Chang LY, Hsu CY, Yang HT, Sudianto E, Hsu MH, Wu KP, Wang LN, Leebens-Mack JH, Tsai IJ. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. NATURE PLANTS 2019; 5:63-73. [PMID: 30626928 PMCID: PMC6784883 DOI: 10.1038/s41477-018-0337-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/26/2018] [Indexed: 05/19/2023]
Abstract
We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.
Collapse
Affiliation(s)
- Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Han-Yu Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chan-Yi Ivy Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Lo-Yu Chang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yao Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ting Yang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Edi Sudianto
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Hung Hsu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ling-Ni Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
28
|
Zhang Z, Coenen H, Ruelens P, Hazarika RR, Al Hindi T, Oguis GK, Vandeperre A, van Noort V, Geuten K. Resurrected Protein Interaction Networks Reveal the Innovation Potential of Ancient Whole-Genome Duplication. THE PLANT CELL 2018; 30:2741-2760. [PMID: 30333148 PMCID: PMC6305981 DOI: 10.1105/tpc.18.00409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 05/29/2023]
Abstract
The evolution of plants is characterized by whole-genome duplications, sometimes closely associated with the origin of large groups of species. The gamma (γ) genome triplication occurred at the origin of the core eudicots, which comprise ∼75% of flowering plants. To better understand the impact of whole-genome duplication, we studied the protein interaction network of MADS domain transcription factors, which are key regulators of reproductive development. We reconstructed, synthesized, and tested the interactions of ancestral proteins immediately before and closely after the triplication and directly compared these ancestral networks to the extant networks of Arabidopsis thaliana and tomato (Solanum lycopersicum). We found that gamma expanded the MADS domain interaction network more strongly than subsequent genomic events. This event strongly rewired MADS domain interactions and allowed for the evolution of new functions and installed robustness through new redundancy. Despite extensive rewiring, the organization of the network was maintained through gamma. New interactions and protein retention compensated for its potentially destructive impact on network organization. Post gamma, the network evolved from an organization around the single hub SEP3 to a network organized around multiple hubs and well-connected proteins lost, rather than gained, interactions. The data provide a resource for comparative developmental biology in flowering plants.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Heleen Coenen
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Philip Ruelens
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Rashmi R Hazarika
- Department of Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium
| | - Tareq Al Hindi
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | | | | | - Vera van Noort
- Department of Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium
| | - Koen Geuten
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
29
|
Clark JW, Donoghue PCJ. Whole-Genome Duplication and Plant Macroevolution. TRENDS IN PLANT SCIENCE 2018; 23:933-945. [PMID: 30122372 DOI: 10.1016/j.tplants.2018.07.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 05/18/2023]
Abstract
Whole-genome duplication (WGD) is characteristic of almost all fundamental lineages of land plants. Unfortunately, the timings of WGD events are loosely constrained and hypotheses of evolutionary consequence are poorly formulated, making them difficult to test. Using examples from across the plant kingdom, we show that estimates of timing can be improved through the application of molecular clock methodology to multigene datasets. Further, we show that phenotypic change can be quantified in morphospaces and that relative phenotypic disparity can be compared in the light of WGD. Together, these approaches facilitate tests of hypotheses on the role of WGD in plant evolution, underscoring the potential of plants as a model system for investigating the role WGD in macroevolution.
Collapse
Affiliation(s)
- James W Clark
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TH, UK.
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol BS8 1TH, UK.
| |
Collapse
|
30
|
Jiggins CD, Wallbank RWR, Hanly JJ. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0485. [PMID: 27994126 DOI: 10.1098/rstb.2015.0485] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2016] [Indexed: 12/11/2022] Open
Abstract
A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Richard W R Wallbank
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
31
|
MacKintosh C, Ferrier DEK. Recent advances in understanding the roles of whole genome duplications in evolution. F1000Res 2017; 6:1623. [PMID: 28928963 PMCID: PMC5590085 DOI: 10.12688/f1000research.11792.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Ancient whole-genome duplications (WGDs)- paleopolyploidy events-are key to solving Darwin's 'abominable mystery' of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life.
Collapse
Affiliation(s)
- Carol MacKintosh
- Division of Cell and Developmental Biology, University of Dundee, Dundee, Scotland, DD1 5EH, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, University of St Andrews, Scotland, KY16 8LB, UK
| |
Collapse
|
32
|
Tickle C, Urrutia AO. Perspectives on the history of evo-devo and the contemporary research landscape in the genomics era. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150473. [PMID: 27994116 PMCID: PMC5182407 DOI: 10.1098/rstb.2015.0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in biology is how the extraordinary range of living organisms arose. In this theme issue, we celebrate how evolutionary studies on the origins of morphological diversity have changed over the past 350 years since the first publication of the Philosophical Transactions of The Royal Society Current understanding of this topic is enriched by many disciplines, including anatomy, palaeontology, developmental biology, genetics and genomics. Development is central because it is the means by which genetic information of an organism is translated into morphology. The discovery of the genetic basis of development has revealed how changes in form can be inherited, leading to the emergence of the field known as evolutionary developmental biology (evo-devo). Recent approaches include imaging, quantitative morphometrics and, in particular, genomics, which brings a new dimension. Articles in this issue illustrate the contemporary evo-devo field by considering general principles emerging from genomics and how this and other approaches are applied to specific questions about the evolution of major transitions and innovations in morphology, diversification and modification of structures, intraspecific morphological variation and developmental plasticity. Current approaches enable a much broader range of organisms to be studied, thus building a better appreciation of the origins of morphological diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|