1
|
Ando T, Fukuda S, Ngo KX, Flechsig H. High-Speed Atomic Force Microscopy for Filming Protein Molecules in Dynamic Action. Annu Rev Biophys 2024; 53:19-39. [PMID: 38060998 DOI: 10.1146/annurev-biophys-030722-113353] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Kien X Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan;
| |
Collapse
|
2
|
Noshiro D, Noda NN. Immobilization of lipid nanorods onto two-dimensional crystals of protein tamavidin 2 for high-speed atomic force microscopy. STAR Protoc 2023; 4:102633. [PMID: 38043055 PMCID: PMC10701432 DOI: 10.1016/j.xpro.2023.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 12/05/2023] Open
Abstract
High-speed atomic force microscopy is a technique that allows real-time observation of biomolecules and biological phenomena reconstituted on a substrate. Here, we present a protocol for immobilizing lipid nanorods onto two-dimensional crystals of biotin-binding protein tamavidin 2. We describe steps for the preparation of tamavidin 2 protein, lipid nanorods, and two-dimensional crystals of tamavidin 2 formed on mica. Immobilized lipid nanorods are one of the useful tools for observation of specific proteins in action. For complete details on the use and execution of this protocol, please refer to Fukuda et al. (2023).1.
Collapse
Affiliation(s)
- Daisuke Noshiro
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan; Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
3
|
Fukuda T, Furukawa K, Maruyama T, Yamashita SI, Noshiro D, Song C, Ogasawara Y, Okuyama K, Alam JM, Hayatsu M, Saigusa T, Inoue K, Ikeda K, Takai A, Chen L, Lahiri V, Okada Y, Shibata S, Murata K, Klionsky DJ, Noda NN, Kanki T. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol Cell 2023; 83:2045-2058.e9. [PMID: 37192628 PMCID: PMC10330776 DOI: 10.1016/j.molcel.2023.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/30/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Mitophagy plays an important role in mitochondrial homeostasis by selective degradation of mitochondria. During mitophagy, mitochondria should be fragmented to allow engulfment within autophagosomes, whose capacity is exceeded by the typical mitochondria mass. However, the known mitochondrial fission factors, dynamin-related proteins Dnm1 in yeasts and DNM1L/Drp1 in mammals, are dispensable for mitophagy. Here, we identify Atg44 as a mitochondrial fission factor that is essential for mitophagy in yeasts, and we therefore term Atg44 and its orthologous proteins mitofissin. In mitofissin-deficient cells, a part of the mitochondria is recognized by the mitophagy machinery as cargo but cannot be enwrapped by the autophagosome precursor, the phagophore, due to a lack of mitochondrial fission. Furthermore, we show that mitofissin directly binds to lipid membranes and brings about lipid membrane fragility to facilitate membrane fission. Taken together, we propose that mitofissin acts directly on lipid membranes to drive mitochondrial fission required for mitophagy.
Collapse
Affiliation(s)
- Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kentaro Furukawa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tatsuro Maruyama
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Daisuke Noshiro
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan; Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Chihong Song
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi 444-8585, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi 444-8585, Japan
| | - Yuta Ogasawara
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan; Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Kentaro Okuyama
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Jahangir Md Alam
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Manabu Hayatsu
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Tetsu Saigusa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kazuho Ikeda
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka 565-0874, Japan
| | - Akira Takai
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka 565-0874, Japan
| | - Lin Chen
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi 444-8585, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi 444-8585, Japan
| | - Vikramjit Lahiri
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Osaka 565-0874, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; Universal Biology Institute (UBI) and International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi 444-8585, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi 444-8585, Japan
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa-ku, Tokyo 141-0021, Japan; Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
4
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Fukuda S, Ando T. Faster high-speed atomic force microscopy for imaging of biomolecular processes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033705. [PMID: 33820001 DOI: 10.1063/5.0032948] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
High-speed atomic force microscopy (HS-AFM) has enabled observing protein molecules during their functional activity at rates of 1-12.5 frames per second (fps), depending on the imaging conditions, sample height, and fragility. To meet the increasing demand for the great expansion of observable dynamic molecular processes, faster HS-AFM with less disturbance is imperatively needed. However, even a 50% improvement in the speed performance imposes tremendous challenges, as the optimization of major rate-limiting components for their fast response is nearly matured. This paper proposes an alternative method that can lower the feedback control error and thereby enhance the imaging rate. This method can be implemented in any HS-AFM system by minor modifications of the software and hardware. The resulting faster and less-disturbing imaging capabilities are demonstrated by the imaging of relatively fragile actin filaments and microtubules near the video rate, and of actin polymerization that occurs through weak intermolecular interactions, at ∼8 fps.
Collapse
Affiliation(s)
- Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Amyot R, Flechsig H. BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics. PLoS Comput Biol 2020; 16:e1008444. [PMID: 33206646 PMCID: PMC7710046 DOI: 10.1371/journal.pcbi.1008444] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/02/2020] [Accepted: 10/15/2020] [Indexed: 11/28/2022] Open
Abstract
We provide a stand-alone software, the BioAFMviewer, which transforms biomolecular structures into the graphical representation corresponding to the outcome of atomic force microscopy (AFM) experiments. The AFM graphics is obtained by performing simulated scanning over the molecular structure encoded in the corresponding PDB file. A versatile molecular viewer integrates the visualization of PDB structures and control over their orientation, while synchronized simulated scanning with variable spatial resolution and tip-shape geometry produces the corresponding AFM graphics. We demonstrate the applicability of the BioAFMviewer by comparing simulated AFM graphics to high-speed AFM observations of proteins. The software can furthermore process molecular movies of conformational motions, e.g. those obtained from servers which model functional transitions within a protein, and produce the corresponding simulated AFM movie. The BioAFMviewer software provides the platform to employ the plethora of structural and dynamical data of proteins in order to help in the interpretation of biomolecular AFM experiments. Nowadays nanotechnology allows to observe single proteins at work. Under atomic force microscopy (AFM), e.g., their surface can be rapidly scanned and functional motions monitored, which is of great importance for applications in all fields of Life science. The analysis and interpretation of experimental results remains however challenging, because the resolution of obtained images or molecular movies is far from perfect. On the other side, high-resolution static structures of most proteins are known and their conformational dynamics can be computed in molecular simulations. This enormous amount of available data offers a great opportunity to better understand the outcome of resolution-limited scanning experiments. Our software provides the computational package towards this goal. The BioAFMviewer computationally emulates the scanning of any biomolecular structure to produce graphical images that mimic the outcome of AFM experiments. This makes the comparison of all available structural data and computational molecular movies to AFM results possible. We demonstrate that simulated AFM images are of great value to facilitate the interpretation of high-speed AFM observations. With its versatile interactive interface and rich functionality, the BioAFMviewer provides a convenient platform for the broad Bio-AFM community to better understand experiments.
Collapse
Affiliation(s)
- Romain Amyot
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
8
|
Bigman LS, Horovitz A. Reconciling the controversy regarding the functional importance of bullet- and football-shaped GroE complexes. J Biol Chem 2019; 294:13527-13529. [PMID: 31371450 DOI: 10.1074/jbc.ac119.010299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022] Open
Abstract
The chaperonin GroEL and its co-chaperonin GroES form both GroEL-GroES bullet-shaped and GroEL-GroES2 football-shaped complexes. The residence time of protein substrates in the cavities of these complexes is about 10 and 1 s, respectively. There has been much controversy regarding which of these complexes is the main functional form. Here, we show using computational analysis that GroEL protein substrates have a bimodal distribution of folding times, which matches these residence times, thereby suggesting that both bullet-shaped and football-shaped complexes are functional. More generally, co-existing complexes with different stoichiometries are not mutually exclusive with respect to having a functional role and can complement each other.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Umakoshi T, Fukuda S, Iino R, Uchihashi T, Ando T. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies. Biochim Biophys Acta Gen Subj 2019; 1864:129325. [PMID: 30890438 DOI: 10.1016/j.bbagen.2019.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND High-speed atomic force microscopy (HS-AFM) has successfully visualized a variety of protein molecules during their functional activity. However, it cannot visualize small molecules interacting with proteins and even protein molecules when they are encapsulated. Thus, it has been desired to achieve techniques enabling simultaneous optical/AFM imaging at high spatiotemporal resolution with high correlation accuracy. METHODS Scanning near-field optical microscopy (SNOM) is a candidate for the combination with HS-AFM. However, the imaging rate of SNOM has been far below that of HS-AFM. We here developed HS-SNOM and metal tip-enhanced total internal reflection fluorescence microscopy (TIRFM) by exploiting tip-scan HS-AFM and exploring methods to fabricate a metallic tip on a tiny HS-AFM cantilever. RESULTS In tip-enhanced TIRFM/HS-AFM, simultaneous video recording of the two modalities of images was demonstrated in the presence of fluorescent molecules in the bulk solution at relatively high concentration. By using fabricated metal-tip cantilevers together with our tip-scan HS-AFM setup equipped with SNOM optics, we could perform simultaneous HS-SNOM/HS-AFM imaging, with correlation analysis between the two overlaid images being facilitated. CONCLUSIONS This study materialized simultaneous tip-enhanced TIRFM/HS-AFM and HS-SNOM/HS-AFM imaging at high spatiotemporal resolution. Although some issues remain to be solved in the future, these correlative microscopy methods have a potential to increase the versatility of HS-AFM in biological research. GENERAL SIGNIFICANCE We achieved an imaging rate of ~3 s/frame for SNOM imaging, more than 100-times higher than the typical SNOM imaging rate. We also demonstrated ~39 nm resolution in HS-SNOM imaging of fluorescently labeled DNA in solution.
Collapse
Affiliation(s)
- Takayuki Umakoshi
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shingo Fukuda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|