1
|
Bejagam V, Sharma A, Wei X. Projected decline in the strength of vegetation carbon sequestration under climate change in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170166. [PMID: 38253099 DOI: 10.1016/j.scitotenv.2024.170166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Tropical vegetation plays a critical role in terrestrial carbon budget and supply many ecological functions such as carbon sequestration. In recent decades, India has witnessed an increase in net primary productivity (NPP), an important measure of carbon sequestration. However, uncertainties persist regarding the sustainability of these land carbon sinks in the face of climate change. The enhanced NPP is driven by the strong CO2 fertilization effect (CFE), but the temporal patterns of this feedback remain unclear. Using the carbon flux data from the Earth System Models (ESMs), an increasing trend in NPP was observed, with projections of NPP to 2.00 ± 0.12 PgCyr-1 (25 % increase) during 2021-2049, 2.36 ± 0.12 PgCyr-1 (18 % increase) during 2050-2079, and 2.67 ± 0.07 PgCyr-1 (13 % increase) during 2080-2099 in Indian vegetation under SSP585 scenario. This suggests a significant decline in the NPP growth rate. To understand the feedback mechanisms driving NPP, the relative effects of CFE and warming were analyzed. Comparing simulations from the biogeochemically coupled model (BGC) with the fully coupled model, the BGC model projected a 74.7 % increase in NPP, significantly higher than the 55.9 % increase projected by the fully coupled model by the end of the century. This indicates that the consistent increase in NPP was associated with CO2 fertilization. More importantly, results reveal that the decrease in the NPP growth rate was due to the declining contribution of CFE at a rate of -0.62 % per 100 ppm CO2 increase. This decline could be attributed to factors such as nutrient limitations and high temperatures. Additionally, significant shifts in the strength of carbon sinks in offsetting the CO2 emissions were identified, decreasing at a rate of -1.15 % per decade. This decline in the strength of vegetation carbon sequestration may increase the societal dependence on mitigation measures to address climate change.
Collapse
Affiliation(s)
- Vijaykumar Bejagam
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Department of Earth, Environmental and Geographic Sciences, The University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Ashutosh Sharma
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Xiaohua Wei
- Department of Earth, Environmental and Geographic Sciences, The University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
2
|
Rius BF, Filho JPD, Fleischer K, Hofhansl F, Blanco CC, Rammig A, Domingues TF, Lapola DM. Higher functional diversity improves modeling of Amazon forest carbon storage. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
3
|
Climatic and biotic factors influencing regional declines and recovery of tropical forest biomass from the 2015/16 El Niño. Proc Natl Acad Sci U S A 2022; 119:e2101388119. [PMID: 35733266 PMCID: PMC9245643 DOI: 10.1073/pnas.2101388119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 2015/16 El Niño brought severe drought and record-breaking temperatures in the tropics. Here, using satellite-based L-band microwave vegetation optical depth, we mapped changes of above-ground biomass (AGB) during the drought and in subsequent years up to 2019. Over more than 60% of drought-affected intact forests, AGB reduced during the drought, except in the wettest part of the central Amazon, where it declined 1 y later. By the end of 2019, only 40% of AGB reduced intact forests had fully recovered to the predrought level. Using random-forest models, we found that the magnitude of AGB losses during the drought was mainly associated with regionally distinct patterns of soil water deficits and soil clay content. For the AGB recovery, we found strong influences of AGB losses during the drought and of [Formula: see text]. [Formula: see text] is a parameter related to canopy structure and is defined as the ratio of two relative height (RH) metrics of Geoscience Laser Altimeter System (GLAS) waveform data-RH25 (25% energy return height) and RH100 (100% energy return height; i.e., top canopy height). A high [Formula: see text] may reflect forests with a tall understory, thick and closed canopy, and/or without degradation. Such forests with a high [Formula: see text] ([Formula: see text] ≥ 0.3) appear to have a stronger capacity to recover than low-[Formula: see text] ones. Our results highlight the importance of forest structure when predicting the consequences of future drought stress in the tropics.
Collapse
|
4
|
Botía S, Komiya S, Marshall J, Koch T, Gałkowski M, Lavric J, Gomes-Alves E, Walter D, Fisch G, Pinho DM, Nelson BW, Martins G, Luijkx IT, Koren G, Florentie L, Carioca de Araújo A, Sá M, Andreae MO, Heimann M, Peters W, Gerbig C. The CO 2 record at the Amazon Tall Tower Observatory: A new opportunity to study processes on seasonal and inter-annual scales. GLOBAL CHANGE BIOLOGY 2022; 28:588-611. [PMID: 34562049 DOI: 10.1111/gcb.15905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
High-quality atmospheric CO2 measurements are sparse in Amazonia, but can provide critical insights into the spatial and temporal variability of sources and sinks of CO2 . In this study, we present the first 6 years (2014-2019) of continuous, high-precision measurements of atmospheric CO2 at the Amazon Tall Tower Observatory (ATTO, 2.1°S, 58.9°W). After subtracting the simulated background concentrations from our observational record, we define a CO2 regional signal ( ΔCO2obs ) that has a marked seasonal cycle with an amplitude of about 4 ppm. At both seasonal and inter-annual scales, we find differences in phase between ΔCO2obs and the local eddy covariance net ecosystem exchange (EC-NEE), which is interpreted as an indicator of a decoupling between local and non-local drivers of ΔCO2obs . In addition, we present how the 2015-2016 El Niño-induced drought was captured by our atmospheric record as a positive 2σ anomaly in both the wet and dry season of 2016. Furthermore, we analyzed the observed seasonal cycle and inter-annual variability of ΔCO2obs together with net ecosystem exchange (NEE) using a suite of modeled flux products representing biospheric and aquatic CO2 exchange. We use both non-optimized and optimized (i.e., resulting from atmospheric inverse modeling) NEE fluxes as input in an atmospheric transport model (STILT). The observed shape and amplitude of the seasonal cycle was captured neither by the simulations using the optimized fluxes nor by those using the diagnostic Vegetation and Photosynthesis Respiration Model (VPRM). We show that including the contribution of CO2 from river evasion improves the simulated shape (not the magnitude) of the seasonal cycle when using a data-driven non-optimized NEE product (FLUXCOM). The simulated contribution from river evasion was found to be 25% of the seasonal cycle amplitude. Our study demonstrates the importance of the ATTO record to better understand the Amazon carbon cycle at various spatial and temporal scales.
Collapse
Affiliation(s)
- Santiago Botía
- Biogeochemical Signals Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Shujiro Komiya
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Julia Marshall
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| | - Thomas Koch
- Biogeochemical Signals Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Michał Gałkowski
- Biogeochemical Signals Department, Max Planck Institute for Biogeochemistry, Jena, Germany
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Jost Lavric
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Eliane Gomes-Alves
- Biogeochemical Processes Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - David Walter
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gilberto Fisch
- Departamento de Ciência e Tecnologia Aeroespacial (DCTA), Instituto de Aeronautica e Espaço (IAE), São José dos Campos, Brazil
| | - Davieliton M Pinho
- Environmental Dynamics Department, Brazil's National Institute for Amazon Research - INPA, Manaus, Brazil
| | - Bruce W Nelson
- Environmental Dynamics Department, Brazil's National Institute for Amazon Research - INPA, Manaus, Brazil
| | - Giordane Martins
- Environmental Dynamics Department, Brazil's National Institute for Amazon Research - INPA, Manaus, Brazil
| | - Ingrid T Luijkx
- Meteorology and Air Quality Department, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Gerbrand Koren
- Meteorology and Air Quality Department, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Liesbeth Florentie
- Meteorology and Air Quality Department, Wageningen University and Research Center, Wageningen, The Netherlands
| | | | - Marta Sá
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Meinrat O Andreae
- Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Martin Heimann
- Biogeochemical Signals Department, Max Planck Institute for Biogeochemistry, Jena, Germany
- Institute for Atmospheric and Earth System Research (INAR) / Physics, University of Helsinki, Helsinki, Finland
| | - Wouter Peters
- Meteorology and Air Quality Department, Wageningen University and Research Center, Wageningen, The Netherlands
- Groningen University, Energy and Sustainability Research Institute Groningen, Groningen, The Netherlands
| | - Christoph Gerbig
- Biogeochemical Signals Department, Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
5
|
Wang K, Wang X, Piao S, Chevallier F, Mao J, Shi X, Huntingford C, Bastos A, Ciais P, Xu H, Keeling RF, Pacala SW, Chen A. Unusual characteristics of the carbon cycle during the 2015-2016 El Niño. GLOBAL CHANGE BIOLOGY 2021; 27:3798-3809. [PMID: 33934460 DOI: 10.1111/gcb.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
The 2015-2016 El Niño was one of the strongest on record, but its influence on the carbon balance is less clear. Using Northern Hemisphere atmospheric CO2 observations, we found both detrended atmospheric CO2 growth rate (CGR) and CO2 seasonal-cycle amplitude (SCA) of 2015-2016 were much higher than that of other El Niño events. The simultaneous high CGR and SCA were unusual, because our analysis of long-term CO2 observations at Mauna Loa revealed a significantly negative correlation between CGR and SCA. Atmospheric inversions and terrestrial ecosystem models indicate strong northern land carbon uptake during spring but substantially reduced carbon uptake (or high emissions) during early autumn, which amplified SCA but also resulted in a small anomaly in annual carbon uptake of northern ecosystems in 2015-2016. This negative ecosystem carbon uptake anomaly in early autumn was primarily due to soil water deficits and more litter decomposition caused by enhanced spring productivity. Our study demonstrates a decoupling between seasonality and annual carbon cycle balance in northern ecosystems over 2015-2016, which is unprecedented in the past five decades of El Niño events.
Collapse
Affiliation(s)
- Kai Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Frédéric Chevallier
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Jiafu Mao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaoying Shi
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Ana Bastos
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
| | - Hao Xu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ralph F Keeling
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Huang S, Zhang Y. Interannual Variability of Air-Sea Exchange of Mercury in the Global Ocean: The "Seesaw Effect" in the Equatorial Pacific and Contributions to the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7145-7156. [PMID: 33929202 DOI: 10.1021/acs.est.1c00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air-sea exchange of gaseous elemental mercury (Hg(0)) is influenced by different meteorological factors and the availability of Hg in seawater. Here, we use the MITgcm ocean model to explore the interannual variability of this flux and the influence of oceanographic and atmospheric dynamics. We apply the GEOS-Chem model to further simulate the potential impact of the evasion variability on the atmospheric Hg levels. We find a latitudinal pattern in Hg(0) evasion with a relatively small variability in mid-latitudes (3.1-6.7%) and a large one in the high latitudes and Equator (>10%). Different factors dominate the patterns in the equatorial (wind speed), mid- (oceanic flow and temperature), and high-latitudinal (sea-ice, temperature, and dynamic processes) oceans. A seesaw pattern of Hg(0) evasion anomaly (±5-20%) in the equatorial Pacific is found from November to next January between El Niño and La Niña years, owing to the anomalies in wind speed, temperature, and vertical mixing. Higher atmospheric Hg level (2%-5%) are simulated for Hg(0) evasion fluxes with three-month lag, associated with the suppression of upwelling in the beginning of the El Niño event. Despite of the uncertainties, this study elucidates the spatial patterns of the interannual variability of the ocean Hg(0) evasion flux and its potential impact on atmospheric Hg levels.
Collapse
Affiliation(s)
- Shaojian Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
França FM, Ferreira J, Vaz‐de‐Mello FZ, Maia LF, Berenguer E, Ferraz Palmeira A, Fadini R, Louzada J, Braga R, Hugo Oliveira V, Barlow J. El Niño impacts on human‐modified tropical forests: Consequences for dung beetle diversity and associated ecological processes. Biotropica 2020. [DOI: 10.1111/btp.12756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Filipe M. França
- Embrapa Amazônia Oriental Belém Brazil
- Instituto de Ciências Biológicas Universidade Federal do Pará Belém Brazil
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Joice Ferreira
- Embrapa Amazônia Oriental Belém Brazil
- Instituto de Ciências Biológicas Universidade Federal do Pará Belém Brazil
| | | | - Laís F. Maia
- Bio‐Protection Research Centre School of Biological Sciences University of Canterbury Christchurch New Zealand
| | - Erika Berenguer
- Lancaster Environment Centre Lancaster University Lancaster UK
- Environmental Change Institute University of Oxford Oxford UK
| | | | - Rodrigo Fadini
- Instituto de Biodiversidade e Florestas Universidade Federal do Oeste do Pará Santarém Brazil
| | - Júlio Louzada
- Departamento de Biologia Universidade Federal de Lavras Lavras Brazil
| | - Rodrigo Braga
- Departamento de Biologia Universidade Federal de Lavras Lavras Brazil
- Unidade Divinópolis Universidade do Estado de Minas Gerais Divinópolis Brazil
| | | | - Jos Barlow
- Lancaster Environment Centre Lancaster University Lancaster UK
- Departamento de Biologia Universidade Federal de Lavras Lavras Brazil
- MCT/Museu Paraense Emílio Goeldi Belém Brazil
| |
Collapse
|
8
|
Silva CA, Valbuena R, Pinagé ER, Mohan M, Almeida DRA, North Broadbent E, Jaafar WSWM, Papa D, Cardil A, Klauberg C. F
orest
G
ap
R: An
r
Package for forest gap analysis from canopy height models. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13211] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carlos A. Silva
- Department of Geographical Sciences University of Maryland College Park Maryland
- NASA Goddard Space Flight Center Greenbelt Maryland
| | | | - Ekena R. Pinagé
- School of Life Sciences University of Technology Sydney Ultimo NSW Australia
- College of Forestry Oregon State University Corvallis Oregon
| | - Midhun Mohan
- Department of Forestry and Environmental Resources North Carolina State University Raleigh North Carolina
- Department of Agriculture and Forest Engineering University of Lleida, Av. de l'Alcalde Rovira Roure Lleida Spain
| | - Danilo R. A. Almeida
- Department of Forest Sciences University of São Paulo, “Luiz de Queiroz” College of Agriculture (USP/ESALQ) Piracicaba SP Brazil
| | - Eben North Broadbent
- Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation University of Florida Gainesville Florida
| | | | | | - Adrian Cardil
- Department of Agriculture and Forest Engineering University of Lleida, Av. de l'Alcalde Rovira Roure Lleida Spain
- Tecnosylva. Parque Tecnológico de León. 24009 León Spain
| | - Carine Klauberg
- Federal University of São João Del Rei – UFSJ Sete Lagoas Brazil
| |
Collapse
|