1
|
Gao L, Yuan Z, Mao X, Ma T. Salinity levels, trends and drivers of surface water salinization across China's river basins. WATER RESEARCH 2025; 281:123556. [PMID: 40156995 DOI: 10.1016/j.watres.2025.123556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The salinization of freshwater resources constitutes an increasingly global challenge, exacerbated by climate change and human activities. Despite its growing significance, comprehensive assessments of salinity dynamics and the roles of natural and anthropogenic factors remain scarce. This study investigates surface water salinity levels and their long-term (2003-2022) and seasonal trends across 1356 sampling sites in ten major Chinese river basins. Our results reveal that >20 % of the sites exhibit relatively high long-term average salinity levels compared to the irrigation water threshold, primary in arid or semi-arid regions experiencing intensified human activities. Nearly 20 % of low-salinity sites exhibit significant trends towards increased salinity, primarily in humid region. Southern basins, such as the Pearl River and Yangtze River, generally have relatively low salinity but demonstrate upward trends, whereas northern basins, like the Yellow River and Huai River, experience moderate to high salinity levels with more rapid increases. Winter salinity levels and their rate of increase surpass those of other seasons. Anthropogenic drivers, particularly population density and agricultural water use, emerge as key contributors to rising salinity, in conjunction with hydroclimatic variables. Furthermore, seasonal salinity trends underscore the critical role of agricultural water use during summer and autumn months. These findings emphasize the necessity to address the compounded pressures of climate variability and human activities, which are increasingly threatening surface water quality through rising salinity and extreme weather events.
Collapse
Affiliation(s)
- Lin Gao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ze Yuan
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoteng Mao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ting Ma
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Fanelli RM, Moore J, Stillwell CC, Sekellick AJ, Walker RH. Predictive Modeling Reveals Elevated Conductivity Relative to Background Levels in Freshwater Tributaries within the Chesapeake Bay Watershed, USA. ACS ES&T WATER 2024; 4:4978-4989. [PMID: 39539760 PMCID: PMC11555677 DOI: 10.1021/acsestwater.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Elevated conductivity (i.e., specific conductance or SC) causes osmotic stress in freshwater aquatic organisms and may increase the toxicity of some contaminants. Indices of benthic macroinvertebrate integrity have declined in urban areas across the Chesapeake Bay watershed (CBW), and more information is needed about whether these declines may be due to elevated conductivity. A predictive SC model for the CBW was developed using monitoring data from the National Water Quality Portal. Predictor variables representing SC sources were compiled for nontidal reaches across the CBW. Random forests modeling was conducted to predict SC at four time periods (1999-2001, 2004-2006, 2009-2011, and 2014-2016), which were then compared to a national data set of background SC to quantify departures from background SC. Carbonate geology, impervious cover, forest cover, and snow depth were the most important variables for predicting SC. Observations and modeled results showed snow depth amplified the effect of impervious cover on SC. Elevated SC was predicted in two-thirds of reaches in the CBW, and these elevated conditions persisted over time in many areas. These results can be used in stressor identification assessments to prioritize future monitoring and to determine where management activities could be implemented to reduce salinization.
Collapse
Affiliation(s)
- Rosemary M. Fanelli
- U.S.
Geological Survey, South Atlantic Water
Science Center, 3916 Sunset Ridge Road, Raleigh, North Carolina 27607, United States
| | - Joel Moore
- Towson
University, 8000 York Road, Towson, Maryland 21252, United
States
| | - Charles C. Stillwell
- U.S.
Geological Survey, South Atlantic Water
Science Center, 3916 Sunset Ridge Road, Raleigh, North Carolina 27607, United States
| | - Andrew J. Sekellick
- U.S.
Geological Survey, MD-DE-DC Water Science
Center, 5522 Research Park Drive, Catonsville, Maryland 21228, United States
| | - Richard H. Walker
- University
of Tennessee, 615 McCallie
Ave, Chattanooga, Tennessee 37403, United States
| |
Collapse
|
3
|
Gutierrez MF, Andrade VS, Flores-Mendez DN, Frau D, Licursi M, Negro L. The relative importance of salinization in lowland stream zooplankton: Implications of the ecosystem nutrient status. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169240. [PMID: 38072253 DOI: 10.1016/j.scitotenv.2023.169240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Salinization of aquatic systems is predicted to increase due to climate and land use changes. Nevertheless, community responses may be different according to the ecosystem characteristics and contextual scenarios. Small flowing waters are particularly vulnerable to salinization, which may impact on the biodiversity and ecosystem processes, but this remains unclear. We conducted a study in 42 lowland streams characterized by overall high nutrient levels along a salinity gradient between 2 and 160 g L-1 to analyze changes in zooplankton structural and functional metrics, and the grazing effects of zooplankton on phytoplankton affecting the energy transfer. Generalized additive models revealed that the analyzed metrics were relatively influenced by salinity, with factors related to trophic conditions playing an important role as well. Total abundance and biomass decreased along the salinity gradient while increasing at intermediate soluble reactive phosphorous concentrations (SRP) in the former and with a linear increase in the SRP in the latter case. Taxonomic richness decreased with salinity and dissolved inorganic nitrogen, with species replacement toward saline-tolerant ones according to the compositional and optimums analyses. In opposite, functional richness did not display any specific trend within the environmental gradients. This explains why zooplankton compositional changes were not reflected into shifts in the grazing pattern on phytoplankton, which was in turn driven by SRP and dissolved oxygen concentrations. Further research is a critical requirement in these poorly studied ecosystems for planning mitigation actions to the co-occurrence of eutrophication and salinization in a fast changing world.
Collapse
Affiliation(s)
- María Florencia Gutierrez
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Escuela Superior de Sanidad "Dr. Ramón Carrillo" (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina.
| | - Victoria Soledad Andrade
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Daniel Nino Flores-Mendez
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Diego Frau
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Magdalena Licursi
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Leandro Negro
- Instituto Nacional de Limnología (INALI, CONICET-UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Escuela Superior de Sanidad "Dr. Ramón Carrillo" (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| |
Collapse
|
4
|
Moyano Salcedo AJ, Prat N, Bertrans-Tubau L, Piñero-Fernandez M, Cunillera-Montcusí D, López-Doval JC, Abril M, Proia L, Cañedo-Argüelles M. What happens when salinization meets eutrophication? A test using stream microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168824. [PMID: 38030007 DOI: 10.1016/j.scitotenv.2023.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nutrient and salt pollution often co-occur in rivers and streams due to human activities (e.g., agriculture, urbanization). Thus, understanding the interactive effects of nutrients and salinity on freshwater ecosystems is critical for environmental management. We experimentally assessed the interactive effects of nutrient and salt pollution on stream microcosms using biofilm and macroinvertebrates as model systems. Six treatments were performed in triplicate: control (C: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 33.5 mg L-1), intermediate nutrient (IN: N-NH4+ = 0.4; P- PO43- = 0.271; Cl- = 33. 5 mg L-1), high nutrient (HN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 33.5 mg L-1), salt (S: N-NH4+ = 0.05; P- PO43- = 0.037; Cl- = 3000 mg L-1), salt with intermediate nutrient (SIN: N-NH4+ = 0.4; P- PO43- = 0.27; Cl- = 3000 mg L-1) and salt with high nutrient (SHN: N-NH4+ = 0.84; P- PO43- = 0.80; Cl- = 3000 mg L-1). After 14 days of exposure, biofilm chlorophyll-a increased across all treatments, with cyanobacteria replacing diatoms and green algae. Treatments with no added nutrients (C and S) had more P uptake capacity than the rest. The indicator species analysis showed 8 significant taxa, with Orthocladius (Orthocladius) gr. Wetterensis and Virganytarsus significantly associated with the salinity treatment. Overall, salt pollution led to a very strong decline in macroinvertebrate richness and diversity. However, salt toxicity seemed to be ameliorated by nutrient addition. Finally, both structural equation models and biotic-abiotic interaction networks showed that complex biological interactions could be modulating the response of the biological communities to our treatments. Thus, our study calls for species-level assessments of salt and nutrient effects on river ecosystems and advocates for better management of co-occurring pollutants.
Collapse
Affiliation(s)
- Alvaro Javier Moyano Salcedo
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Geohazards and Civil Engineering Research Group, Department of Civil Engineering, Saint Thomas Villavicencio University, C/22 No 1a, 500003 Villavicencio, Colombia; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Narcís Prat
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Lluís Bertrans-Tubau
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Martí Piñero-Fernandez
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - David Cunillera-Montcusí
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; WasserCluster Lunz - Biologische Station GmbH, Lunz am See, Austria
| | - Julio C López-Doval
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Miguel Cañedo-Argüelles
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
5
|
Lorrain-Soligon L, Robin F, Bertin X, Jankovic M, Rousseau P, Lelong V, Brischoux F. Long-term trends of salinity in coastal wetlands: Effects of climate, extreme weather events, and sea water level. ENVIRONMENTAL RESEARCH 2023; 237:116937. [PMID: 37611783 DOI: 10.1016/j.envres.2023.116937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Coastal freshwater ecosystems play major roles as reservoirs of biodiversity and provide many ecosystem services and protection from extreme weather events. While they are of particular importance worldwide, they are affected by a large variety of anthropogenic threats, among which salinization has been less studied, particularly regarding large temporal and spatial data sets based on real case scenarios, while salinity can impact biodiversity and ecosystem functioning. In this study, we investigated the variations of salinity across long-term (1996-2020) and seasonal (monthly records) temporal scales and spatial (varying distance to the coastline) scales in water bodies of two typical temperate coastal wetlands situated on the Atlantic coast of France. We complemented our analyses with models of sea water levels computed at both sites across 2000-2020. Our detailed data set allowed for highlighting that salinity in ponds varied seasonally (higher during summer, due to decreased precipitation and higher temperature), but also spatially (higher closer to the seashore, which pattern increased through time). Over the long term, decreased precipitation but not increased temperature induced increasing salinity. We also highlighted contrasted long-term patterns of salinity changes on these two coastal wetlands, with one site were salinity decreased over time linked to the responses to marine flood, allowing to document the temporal dynamics of salinity following a massive intrusion of sea water. Complementarily, at both sites, water levels at high tides increased through time, a pattern which can induce additional salinization. To our knowledge, our study is the first to investigate long-term changes in salinity in coastal wetlands through natural processes (e.g. seaspray, seasonal variations) and ongoing climate perturbations (e.g. marine surges linked to extreme weather events, increased temperature and decreased precipitations).
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372, CNRS - La Rochelle Université, 79360, Villiers en Bois, France.
| | | | - Xavier Bertin
- UMR 7266 LIENSs, CNRS-La Rochelle Université, La Rochelle, France
| | - Marko Jankovic
- Réserve Naturelle Du Marais d'Yves LPO, Ferme de La Belle Espérance, 17340, Yves, France
| | - Pierre Rousseau
- Réserve Naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, 17780, France
| | - Vincent Lelong
- Réserve Naturelle de Moëze-Oléron, LPO, Plaisance, Saint-Froult, 17780, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC UMR 7372, CNRS - La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
6
|
E B, Zhang S, Driscoll CT, Wen T. Human and natural impacts on the U.S. freshwater salinization and alkalinization: A machine learning approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164138. [PMID: 37182763 DOI: 10.1016/j.scitotenv.2023.164138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Ongoing salinization and alkalinization in U.S. rivers have been attributed to inputs of road salt and effects of human-accelerated weathering in previous studies. Salinization poses a severe threat to human and ecosystem health, while human derived alkalinization implies increasing uncertainty in the dynamics of terrestrial sequestration of atmospheric carbon dioxide. A mechanistic understanding of whether and how human activities accelerate weathering and contribute to the geochemical changes in U.S. rivers is lacking. To address this uncertainty, we compiled dissolved sodium (salinity proxy) and alkalinity values along with 32 watershed properties ranging from hydrology, climate, geomorphology, geology, soil chemistry, land use, and land cover for 226 river monitoring sites across the coterminous U.S. Using these data, we built two machine-learning models to predict monthly-aggregated sodium and alkalinity fluxes at these sites. The sodium-prediction model detected human activities (represented by population density and impervious surface area) as major contributors to the salinity of U.S. rivers. In contrast, the alkalinity-prediction model identified natural processes as predominantly contributing to variation in riverine alkalinity flux, including runoff, carbonate sediment or siliciclastic sediment, soil pH and soil moisture. Unlike prior studies, our analysis suggests that the alkalinization in U.S. rivers is largely governed by local climatic and hydrogeological conditions.
Collapse
Affiliation(s)
- Beibei E
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY 13244, United States
| | - Shuang Zhang
- Department of Oceanography, Texas A&M University, College Station, TX 77843, United States
| | - Charles T Driscoll
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Tao Wen
- Department of Earth and Environmental Sciences, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
7
|
Rogalski MA, Ferah U. Lake water chemistry and population of origin interact to shape fecundity and growth in Daphnia ambigua. Ecol Evol 2023; 13:e10176. [PMID: 37351479 PMCID: PMC10282168 DOI: 10.1002/ece3.10176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Freshwater environments vary widely in ion availability, owing to both natural and anthropogenic drivers. Field and laboratory work point to the importance of overall salinity, as well as cation depletion, in shaping the physiology, behavior, and ecology of freshwater taxa. Yet, we currently have a poor understanding of the degree to which populations may vary in response to ion availability. Using Daphnia collected from three lakes that differ greatly in salinity and calcium availability, we conducted a laboratory reciprocal transplant experiment to assess how animals representing these populations vary in fecundity, body size, and survival when reared in lake water from each environment. The lake water environment and population of origin strongly interacted to shape Daphnia growth and reproduction. Surprisingly, we found only modest evidence that lake water with abundant calcium (5.5 vs. 1.2-2.3 mg/L) increased Daphnia growth or reproduction. By contrast, water from a relatively ion-rich lake (400 μS/cm specific conductance) strongly boosted Daphnia fecundity over lower-ion lake water (20-50 μS/cm), especially for the population originating from the high-ion environment. Our results suggest that ion-poor conditions common in regions around the world may exert stress on freshwater organisms, even for populations inhabiting these environments. Meanwhile, moderate salt enrichment may not prove harmful but could even benefit freshwater taxa in these ion-poor regions. The context dependence of how and when lake water chemistry affects Daphnia and other freshwater taxa deserves greater attention, in both ion-depleted and ion-rich conditions. Daphnia are key members of lake food webs and serve as an important model for ecology, evolution, and toxicology research. Consideration of how lake water chemistry may influence how Daphnia populations respond to abiotic and biotic stress may improve the ability to evaluate and predict ecological and evolutionary dynamics in lakes of varying chemical composition.
Collapse
|
8
|
Zuluaga-Guerra PA, Martinez-Fernandez J, Esteve-Selma MA, Dell'Angelo J. A socio-ecological model of the Segura River basin, Spain. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Mooney TJ, Harford AJ, Hanley J, Walker S, Sandgren M, Jansen A, Humphrey C. Seasonal responses of macroinvertebrate assemblages to magnesium in a seasonally flowing stream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120586. [PMID: 36379293 DOI: 10.1016/j.envpol.2022.120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/04/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Macroinvertebrates can be highly sensitive to elevated salinity in freshwater environments, and are known to respond to saline discharges. Magnesium (Mg) is a mine-related contaminant and is a potential environmental risk to a seasonally-flowing, receiving water stream in Kakadu National Park, located in the wet-dry tropics of Australia. The macroinvertebrate assemblage in the stream in the was characterised at four hydrographic phases, from early wet season flow to early dry season pools at flow cessation. On each of the four occasions representing the respective phases, individuals from the most abundant macroinvertebrate species present were collected and acutely exposed to a range (up to 19) of Mg concentrations under laboratory conditions. Sensitivity of taxa to Mg ranged between 39 mg/L Mg (Caenidae: Tasmanocoenis spp.) and 4400 mg/L Mg (Dytiscidae: Clypeodytes feryi), based on the 50% Lethal Concentration (LC50). Characterisation of the macroinvertebrate assemblage at each hydrographic phase indicated the seasons when Mg-sensitive species were present. Whilst no statistical differences in measures of seasonal sensitivity were found, the macroinvertebrate assemblages present during the early flow period had higher Mg-sensitivity than the assemblages present during other hydrographic phases. This could be attributed to the greater relative proportions of Mg-sensitive taxa (e.g. Ephemeroptera) present at early flow compared to greater relative proportions of more Mg-tolerant taxa (C. feryi and Hydacarina spp.) present during later hydrograph phases, especially periods of lower, or no, flow.
Collapse
Affiliation(s)
- Thomas J Mooney
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, NT, Australia.
| | - Andrew J Harford
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, NT, Australia
| | - Julie Hanley
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, NT, Australia
| | - Samantha Walker
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, NT, Australia
| | - Mia Sandgren
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, NT, Australia
| | - Andrew Jansen
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, NT, Australia
| | - Chris Humphrey
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, NT, Australia
| |
Collapse
|
10
|
Ersoy Z, Abril M, Cañedo-Argüelles M, Espinosa C, Vendrell-Puigmitja L, Proia L. Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120127. [PMID: 36089138 DOI: 10.1016/j.envpol.2022.120127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L-1 was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.
Collapse
Affiliation(s)
- Zeynep Ersoy
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Rui Nabeiro' Biodiversity Chair, MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
| | - Meritxell Abril
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Carmen Espinosa
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lidia Vendrell-Puigmitja
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Lorenzo Proia
- BETA Technological Center, University of Vic- Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|
11
|
Utz R, Bidlack S, Fisher B, Kaushal S. Urbanization drives geographically heterogeneous freshwater salinization in the northeastern United States. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:952-965. [PMID: 35687714 DOI: 10.1002/jeq2.20379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Rising trends in freshwater salinity, collectively termed the Freshwater Salinization Syndrome (FSS), constitute a global environmental concern. Given that the FSS has been observed in diverse settings, key questions regarding the causes, trend magnitudes, and consequences remain. Prior work hypothesized that FSS is driven by state factors, such as human-centered land use change, geology, and climate. Here, we identify the fundamental overriding factors driving FSS within the northeastern United States and quantify the diversity of FSS severity within the region. Specifically, we analyzed decadal-scale trends in specific conductance (a salinity proxy) for 333 lotic sites over four decades. Next, we quantified potential variables driving the rising or falling trends, including impervious surface cover (ISC), winter temperature and precipitation, watershed size, and ambient conductance. Temperature and ISC were considered the most likely candidates for predicting FSS severity because road salts have previously emerged as the fundamental regional driver. Most (62.5%) sites exhibited patterns of significantly increasing conductance; thus, the overall regional state reflects advancing FSS. However, others exhibited an absence of change (28.8%) or decreasing values (8.7%), and slope magnitude did change with latitude. Linear modeling demonstrated that two variables-ISC and watershed size-constitute the best predictors of long-term conductance trends and that an intercept not significantly different than zero suggests that the FSS does not reign in the absence of urbanization. We also detected areas with consistently decreasing trends despite moderate ISC. Therefore, within the region, advancing urbanization causes the typical condition of advancing FSS, but heterogeneity also exists.
Collapse
Affiliation(s)
- Ryan Utz
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Samantha Bidlack
- Falk School of Sustainability, Chatham Univ., 6035 Ridge Road, Gibsonia, PA, 15044, USA
| | - Burch Fisher
- Earth Research Institute, Univ. of California, Santa Barbara, CA, 93106, USA
| | - Sujay Kaushal
- Dep. of Geology & Earth System Science Interdisciplinary Center, Univ, of Maryland, College Park, 20740, USA
| |
Collapse
|
12
|
Ombadi M, Varadharajan C. Urbanization and aridity mediate distinct salinity response to floods in rivers and streams across the contiguous United States. WATER RESEARCH 2022; 220:118664. [PMID: 35671686 DOI: 10.1016/j.watres.2022.118664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Salinity is an important water quality parameter that affects ecosystem health and the use of freshwaters for industrial, agricultural, and other beneficial purposes. Although a number of studies have investigated the variability and trends of salinity in rivers and streams, the effects of floods on salinity across a wide range of watersheds have not been determined. Here, we examine this question by utilizing long-term observational records of daily streamflow and specific conductance (SC; a proxy for salinity) in addition to catchment characteristics for 259 United States Geological Survey (USGS) monitoring sites in the contiguous United States spanning a wide range of climatic, geologic and hydrologic conditions. We used a combination of statistical methods, random forest machine learning models, and information-theoretic causal inference algorithms to determine the response of SC to floods and the factors that impact salinity changes within sites (intra-site variability) and across sites (inter-site variability). Our results show that changes to SC during flood events exhibited substantial variability ranging from a 100% decrease to 34% increase relative to the long-term mean. We found that dilution is the prevailing mechanism that decreases SC levels during floods for most sites, but other mechanisms caused an increase of SC for 6.1% (n = 5521) of flood events. Our analysis revealed that antecedent conditions of SC in the few days preceding the flood are the most important factor in explaining intra-site variability. The response of salinity to floods also varied considerably across sites with different characteristics, with a notable effect of urbanization in temperate climates resulting in increased dilution of SC, and mining in arid climates, which adversely increases SC levels. Overall, we find that the combined effect of aridity and anthropogenic factors is of primary importance in determining how salinity responds to floods, and it bears strongly on water quality conditions in a future world - one in which floods are expected to increase in frequency and intensity, concurrent with shifting aridity patterns and increasing urbanization.
Collapse
Affiliation(s)
- Mohammed Ombadi
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA.
| | - Charuleka Varadharajan
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
13
|
Roibás-Rozas A, Núñez M, Mosquera-Corral A, Hospido A. Modeling the Impact of Salinity Variations on Aquatic Environments: Including Negative and Positive Effects in Life Cycle Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:874-884. [PMID: 34985874 DOI: 10.1021/acs.est.1c04656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Salinity is changing in aquatic systems due to anthropogenic activities (like irrigation or dam management) and climate change. Although there are studies on the effects of salinity variations on individual species, little is known about the effects on overall ecosystems, these impacts being more uncertain in transitional waters such as estuaries or fiords. The few works that do address this topic have considered these impacts using ecotoxicity models. However, these models state that an increase in the concentration of a pollutant generates an increase in the impacts, disregarding the effects of water freshening. The present research work introduces a general framework to address the impacts of salinity variations, including emission-related positive effects. We validated this framework by applying it to an estuarine area in Galicia (northwestern Spain), where sharp drops in the salt concentration have caused mass mortalities of shellfish in recent decades. This research work addresses for the first time the potential effects on the environment derived from a decrease in the concentration of essential substances, where the effects of an emission can also generate positive impacts. Moreover, it is expected that the framework can also be applied to model the environmental impacts of other essential substances in life cycle assessment (LCA), such as metals and macronutrients.
Collapse
Affiliation(s)
- Alba Roibás-Rozas
- Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Montserrat Núñez
- Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbuí, Barcelona, Spain
| | - Anuska Mosquera-Corral
- Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Almudena Hospido
- Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
14
|
Freshwater salinisation: a research agenda for a saltier world. Trends Ecol Evol 2022; 37:440-453. [DOI: 10.1016/j.tree.2021.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
|
15
|
Scholes RC, Stiegler AN, Anderson CM, Sedlak DL. Enabling Water Reuse by Treatment of Reverse Osmosis Concentrate: The Promise of Constructed Wetlands. ACS ENVIRONMENTAL AU 2021; 1:7-17. [PMID: 37101934 PMCID: PMC10114854 DOI: 10.1021/acsenvironau.1c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As more cities experience water stress, the use of reverse osmosis (RO) membranes for wastewater treatment and reuse will expand. The concentrated waste stream resulting from RO treatment can pose chronic ecotoxicity risks if discharged to surface waters or shallow coastal ecosystems. Most existing RO concentrate treatment technologies are cost prohibitive, but constructed wetlands hold promise as a viable multibenefit solution because they have the potential to provide simultaneous treatment of nutrients, metals, and trace organic contaminants at a relatively low cost. They also are popular with the public. A handful of water-stressed cities have already begun experimenting with constructed wetlands for RO concentrate treatment. However, further research is needed to reduce the land area needed for treatment and increase the reliability of constructed wetland systems.
Collapse
Affiliation(s)
- Rachel C. Scholes
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Angela N. Stiegler
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Cayla M. Anderson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- NSF Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| |
Collapse
|
16
|
Abstract
The control of water quality is crucial to ensure the survival of fish in aquaculture production facilities. Today, the combination of sensors with communication technologies permits to monitor these crucial parameters in real-time, allowing to take fast management decisions. However, out-of-the-box solutions are expensive, due to the small market and the industrial nature of sensors, besides being little customizable. To solve this, the present work describes a low-cost hardware and software architecture developed to achieve the autonomous water quality assessment and management on a remote facility for fish conservation aquaculture within the framework of the Smart Comunidad Rural Digital (smartCRD) project. The developed sensor network has been working uninterruptedly since its installation (20 April 2021). It is based on open source technology and includes a central gateway for on-site data monitoring of water quality nodes as well as an online management platform for data visualization and sensor network configuration. Likewise, the system can detect autonomously water quality parameters outside configurable thresholds and deliver management alarms. The described architecture, besides low-cost, is highly customizable, compatible with other sensor network projects, machine-learning applications, and is capable of edge computing. Thus, it contributes to making open sensorization more accessible to real-world applications.
Collapse
|
17
|
Thorslund J, Bierkens MFP, Oude Essink GHP, Sutanudjaja EH, van Vliet MTH. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat Commun 2021; 12:4232. [PMID: 34244500 PMCID: PMC8270903 DOI: 10.1038/s41467-021-24281-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Freshwater salinisation is a growing problem, yet cross-regional assessments of freshwater salinity status and the impact of agricultural and other sectoral uses are lacking. Here, we assess inland freshwater salinity patterns and evaluate its interactions with irrigation water use, across seven regional river basins (401 river sub-basins) around the world, using long-term (1980-2010) salinity observations. While a limited number of sub-basins show persistent salinity problems, many sub-basins temporarily exceeded safe irrigation water-use thresholds and 57% experience increasing salinisation trends. We further investigate the role of agricultural activities as drivers of salinisation and find common contributions of irrigation-specific activities (irrigation water withdrawals, return flows and irrigated area) in sub-basins of high salinity levels and increasing salinisation trends, compared to regions without salinity issues. Our results stress the need for considering these irrigation-specific drivers when developing management strategies and as a key human component in water quality modelling and assessment.
Collapse
Affiliation(s)
- Josefin Thorslund
- grid.10548.380000 0004 1936 9377Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden ,grid.5477.10000000120346234Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | - Marc F. P. Bierkens
- grid.5477.10000000120346234Department of Physical Geography, Utrecht University, Utrecht, The Netherlands ,grid.6385.80000 0000 9294 0542Unit Subsurface and Groundwater Systems, Deltares, The Netherlands
| | - Gualbert H. P. Oude Essink
- grid.5477.10000000120346234Department of Physical Geography, Utrecht University, Utrecht, The Netherlands ,grid.6385.80000 0000 9294 0542Unit Subsurface and Groundwater Systems, Deltares, The Netherlands
| | - Edwin H. Sutanudjaja
- grid.5477.10000000120346234Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | - Michelle T. H. van Vliet
- grid.5477.10000000120346234Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Gabriel A, Costa S, Henriques I, Lopes I. Effects of Long-Term Exposure to Increased Salinity on the Amphibian Skin Bacterium Erwinia toletana. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:779-788. [PMID: 33877369 DOI: 10.1007/s00244-021-00845-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Amphibian's skin bacterial community may help them to cope with several types of environmental perturbations, including osmotic stress caused by increased salinity. This work assessed whether an amphibian skin bacterium could increase its tolerance to NaCl after a long-term exposure to this salt. A strain of Erwinia toletana, isolated from the skin of Pelophylax perezi, was exposed to two salinity scenarios (with 18 g/L of NaCl): (1) long-term exposure (for 46 days; Et-NaCl), and (2) long-term exposure followed by a recovery period (exposure for 30 days to NaCl and then to LB medium for 16 days; Et-R). After exposure, the sensitivity of E. toletana clonal populations to NaCl was assessed by exposing them to 6 NaCl concentrations (LB medium spiked with NaCl) plus a control (LB medium). Genotypic alterations were assessed by PCR-based molecular typing method (BOX-PCR). The results showed that tolerance of E. toletana to NaCl slightly increased after the long-term exposure, EC50 for growth were: 22.5 g/L (8.64-36.4) for Et-LB; 30.3 g/L (23.2-37.4) for Et-NaCl; and 26.1 g/L (19.332.9) for Et-R. Differences in metabolic activity were observed between Et-LB and Et-R and between Et-NaCl and Et-R, suggesting the use of different substrates by this bacterium when exposed to salinized environments. NaCl-induced genotypic alterations were not detected. This work suggests that E. toletana exposed to low levels of salinity, activate different metabolic pathways to cope with osmotic stress. These findings may be further explored to be used in bioaugmentation procedures through the supplementation with this bacterium of the skin microbiome of natural populations of amphibians exposed to salinization.
Collapse
Affiliation(s)
- Antonieta Gabriel
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal.
| | - Sara Costa
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| | - Isabel Henriques
- Department of Life Sciences, CESAM, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Isabel Lopes
- Department of Biology, CESAM, University of Aveiro, Campus Universitario de Santiago, Aveiro, Portugal
| |
Collapse
|
19
|
Niedrist GH, Cañedo-Argüelles M, Cauvy-Fraunié S. Salinization of Alpine rivers during winter months. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7295-7306. [PMID: 33029775 PMCID: PMC7840655 DOI: 10.1007/s11356-020-11077-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/30/2020] [Indexed: 05/27/2023]
Abstract
Human-induced (i.e., secondary) salinization affects aquatic biodiversity and ecosystem functioning worldwide. While agriculture or resource extraction are the main drivers of secondary salinization in arid and semi-arid regions of the world, the application of deicing road salt in winter can be an important source of salts entering freshwaters in cold regions. Alpine rivers are probably affected by salinization, especially in highly populated mountain regions, although this remains to be explored. In this study, we analyzed multi-year conductance time series from four rivers in the European Alps and demonstrated that the application of deicing road salt is linked to peaking rivers' salinity levels during late winter/early spring. Especially in small catchments with more urban surfaces close to the rivers, conductance increased during constant low-flow periods in late winter and was less correlated with discharge than in summer. Thus, our results suggest that small rivers highly connected to urban infrastructures are prone to considerable salinity peaks during late winter/early spring. Given the low natural level of salinities in Alpine rivers, the aquatic biodiversity might be significantly affected by the recorded changes in conductance, with potential consequences on ecosystem functioning. Thereby, we urge the research community to assess the impact of secondary salinization in Alpine rivers and call for an implementation of management practices to prevent the degradation of these pristine and valuable ecosystems.
Collapse
Affiliation(s)
- Georg H Niedrist
- Department of Ecology, River and Conservation Research, University of Innsbruck, Innsbruck, Austria.
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology, Hydrology and Management group (FEHM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
20
|
Zhao Q, Zhang Y, Guo F, Leigh C, Jia X. Increasing anthropogenic salinisation leads to declines in community diversity, functional diversity and trophic links in mountain streams. CHEMOSPHERE 2021; 263:127994. [PMID: 32828062 DOI: 10.1016/j.chemosphere.2020.127994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic salinisation is becoming an increasing global issue for freshwater ecosystems, leading to serious biodiversity loss and ecosystem degradation. While the effect of anthropogenic salinisation on freshwater ecosystems has been intensively studied in recent years, most studies focus on salinisation effects on the individual or single groups of organisms without considering the effect on the ecosystem levels, such as diversity and trophic links. Therefore, we conducted a long-term field survey from May 2009 to August 2016 at 405 sites in northeast China to investigate the effect of a gradient of salinisation on community diversity, functional diversity and trophic links in mountain streams. Samples of water chemistry, periphyton, macroinvertebrates and fish were collected. Our results showed that as anthropogenic salinisation increased, Ca2+, Mg2+, HCO3- and SO42- exhibited significant increases (p < 0.05). These increased ions caused decreases in taxonomic evenness and biotic integrity, but an increase in the beta diversity for periphyton and macroinvertebrates, and a slight increase in the evenness of fish. The increased salinisation resulted in the extirpation of salt-sensitive taxa and declines in macroinvertebrate functional richness and functional redundancy, which consequently led to simplified trophic links. Our results implied that if salt-tolerant taxa in high salinisation sites were not functionally redundant with less tolerant taxa, alterations of their functional composition probably decrease the stability of ecosystem functions. Overall, our study suggests that the ongoing anthropogenic salinisation is posing serious threats to biodiversity and trophic links in river ecosystems, and should be considered in future river restoration and biodiversity conservation.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fen Guo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Catherine Leigh
- Biosciences and Food Technology Discipline, RMIT University, Melbourne, Victoria, Australia
| | - Xiaobo Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
21
|
Wood CM, McDonald MD, Grosell M, Mount DR, Adams WJ, Po BHK, Brix KV. The potential for salt toxicity: Can the trans-epithelial potential (TEP) across the gills serve as a metric for major ion toxicity in fish? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105568. [PMID: 32791376 PMCID: PMC11131365 DOI: 10.1016/j.aquatox.2020.105568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
An emerging Multi-Ion Toxicity (MIT) model for assessment of environmental salt pollution is based on the premise that major ion toxicity to aquatic organisms is related to a critical disturbance of the trans-epithelial potential across the gills (ΔTEP), which can be predicted by electrochemical theory. However, the model has never been evaluated physiologically. We directly tested key assumptions by examining the individual effects of eight different salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl, K2SO4, CaCl2, and CaSO4) on measured TEP in three different fish species (fathead minnow, Pimephales promelas = FHM; channel catfish, Ictalurus punctatus = CC; bluegill, Lepomis macrochirus = BG). A geometric concentration series based on previously reported 96-h LC50 values for FHM was used. All salts caused concentration-dependent increases in TEP to less negative/more positive values in a pattern well-described by the Michaelis-Menten equation. The ΔTEP responses for different salts were similar to one another within each species when concentrations were expressed as a percentage of the FHM LC50. A plateau was reached at or before 100 % of the LC50 where the ΔTEP values were remarkably consistent, with only 1.4 to 2.2-fold variation. This relative uniformity in the ΔTEP responses contrasts with 28-fold variation in salt concentration (in mmol L-1), 9.6-fold in total dissolved solids, and 7.9-fold in conductivity at the LC50. The Michaelis-Menten Km values (salt concentrations causing 50 % of the ΔTEPmax) were positively related to the 96-h LC50 values. ΔTEP responses were not a direct effect of osmolarity in all species and were related to specific cation rather than specific anion concentrations in FHM. These responses were stable for up to 24 h in CC. The results provide strong physiological support for the assumptions of the MIT model, are coherent with electrochemical theory, and point to areas for future research.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | - David R Mount
- Office of Research and Development, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN 55804, USA.
| | | | - Beverly H K Po
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Kevin V Brix
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; EcoTox LLC, Miami, FL 33145, USA.
| |
Collapse
|
22
|
Abstract
Soil-salinization affects, to a different extent, more than one-third of terrestrial river basins (estimate based on the Food and Agriculture Organization Harmonized World Soil Database, 2012). Among these, many are endorheic and ephemeral systems already encompassing different degrees of aridity, land degradation, and vulnerability to climate change. The primary effect of salinization is to limit plant water uptake and evapotranspiration, thereby reducing available soil moisture and impairing soil fertility. In this, salinization resembles aridity and-similarly to aridity-may impose significant controls on hydrological partitioning and the strength of land-vegetation-atmosphere interactions at the catchment scale. However, the long-term impacts of salinization on the terrestrial water balance are still largely unquantified. Here, we introduce a modified Budyko's framework explicitly accounting for catchment-scale salinization and species-specific plant salt tolerance. The proposed framework is used to interpret the water-budget data of 237 Australian catchments-29% of which are already severely salt-affected-from the Australian Water Availability Project (AWAP). Our results provide theoretical and experimental evidence that salinization does influence the hydrological partitioning of salt-affected watersheds, imposing significant constraints on water availability and enhancing aridity. The same approach can be applied to estimate salinization level and vegetation salt tolerance at the basin scale, which would be difficult to assess through classical observational techniques. We also demonstrate that plant salt tolerance has a preeminent role in regulating the feedback of vegetation on the soil water budget of salt-affected basins.
Collapse
|
23
|
Dugan HA, Skaff NK, Doubek JP, Bartlett SL, Burke SM, Krivak-Tetley FE, Summers JC, Hanson PC, Weathers KC. Lakes at Risk of Chloride Contamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6639-6650. [PMID: 32353225 DOI: 10.1021/acs.est.9b07718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lakes in the Midwest and Northeast United States are at risk of anthropogenic chloride contamination, but there is little knowledge of the prevalence and spatial distribution of freshwater salinization. Here, we use a quantile regression forest (QRF) to leverage information from 2773 lakes to predict the chloride concentration of all 49 432 lakes greater than 4 ha in a 17-state area. The QRF incorporated 22 predictor variables, which included lake morphometry characteristics, watershed land use, and distance to the nearest road and interstate. Model predictions had an r2 of 0.94 for all chloride observations, and an r2 of 0.86 for predictions of the median chloride concentration observed at each lake. The four predictors with the largest influence on lake chloride concentrations were low and medium intensity development in the watershed, crop density in the watershed, and distance to the nearest interstate. Almost 2000 lakes are predicted to have chloride concentrations above 50 mg L-1 and should be monitored. We encourage management and governing agencies to use lake-specific model predictions to assess salt contamination risk as well as to augment their monitoring strategies to more comprehensively protect freshwater ecosystems from salinization.
Collapse
Affiliation(s)
- Hilary A Dugan
- Center for Limnology, University of Wisconsin-Madison. 680 North Park Street Madison, Wisconsin 53706, United States
| | - Nicholas K Skaff
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, East Lansing, Michigan 48824, United States
| | - Jonathan P Doubek
- School of Natural Resources & Environment and Center for Freshwater Research and Education, Lake Superior State University, Sault Sainte Marie, Michigan 49783, United States
| | - Sarah L Bartlett
- NEW Water, 2231 North Quincy Street Green Bay, Wisconsin 54302, United States
| | - Samantha M Burke
- University of Guelph, School of Environmental Sciences, Guelph, Ontario N1G 2W1, Canada
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Flora E Krivak-Tetley
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, New Hampshire 03768, United States
| | - Jamie C Summers
- WSP Canada Incorporated, 2300 Yonge Street, Toronto, Ontario M4P 1E4, Canada
| | - Paul C Hanson
- Center for Limnology, University of Wisconsin-Madison. 680 North Park Street Madison, Wisconsin 53706, United States
| | - Kathleen C Weathers
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States
| |
Collapse
|
24
|
Zhao Q, Zhang Y, Guo F, Jia X, Ding S. Decadal patterns of anthropogenic salinisation in typical mountain streams in northeastern China: Increased rates and sources. CHEMOSPHERE 2020; 246:125789. [PMID: 31918099 DOI: 10.1016/j.chemosphere.2019.125789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/17/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Salt pollution and anthropogenic-accelerated weathering is globally shifting the ionic composition and increasing salinisation of fresh water. We analyzed a 40-year data set (1970s-2010s) to characterize the drastic change of dissolved ionic composition, conductivity and pH levels. We also identified causative factors in these highly polluted mountain streams in northeastern China. Dissolved salt ions (Ca2+, Mg2+ and SO42-) increased by 3.02-5.21 fold and conductivity (a proxy for salinisation) increased by 3.09 fold. The average pH values increased from 7.08 to 8.49. The dominant ions, Ca2+, Mg2+, SO42- and HCO3- + CO32-, accounted for ∼90% of ionic composition based on mass concentration. Between the 1970s and 2010s, the dominant anion shifted from HCO3- + CO32- to a mixture of SO42- and HCO3- + CO32-. Increasing mining and land development appear to be the primary driving factors for the change of Ca2+, Mg2+, SO42- and HCO3- + CO32- concentrations; whereas, agricultural land was the main driving factor for the variation in K+, Na+ and Cl- concentrations. The source of ions has shifted from a more natural weathering of carbonate rocks to one of mineral dissolution that is affected by anthropogenic activities. Our study shows that freshwater mountain streams are at risk of long lasting anthropogenic salinisation and should be considered in future management and conservation plans.
Collapse
Affiliation(s)
- Qian Zhao
- Institute of Soil, Jinan Environmental Research Academy, Jinan, 250102, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Fen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaobo Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Sen Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
25
|
Ladrera R, Belmar O, Tomás R, Prat N, Cañedo-Argüelles M. Agricultural impacts on streams near Nitrate Vulnerable Zones: A case study in the Ebro basin, Northern Spain. PLoS One 2019; 14:e0218582. [PMID: 31703059 PMCID: PMC6839874 DOI: 10.1371/journal.pone.0218582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Agricultural intensification during the last century has caused river degradation across Europe. From the wide range of stressors derived from agricultural activities that impact rivers, diffuse agricultural pollution has received most of the attention from managers and scientists. The aim of this study was to determine the main stressors exerted by intensive agriculture on streams around Nitrate Vulnerable Zones (NVZs), which are areas of land that drain into waters polluted by nitrates according to the European Nitrate Directive (91/676/EEC). The study area was located in the NW of La Rioja (Northern Spain), which has some of the highest nitrate concentrations within the Ebro basin. The relationships between 40 environmental variables and the taxonomic and functional characteristics of the macroinvertebrate assemblages (which are useful indicators of water quality) were analyzed in 11 stream reaches differentially affected by upstream agricultural activity. The streams affected by a greater percentage of agricultural land cover in the surrounding catchment had significantly higher nitrate concentrations than the remaining sites. However, hydromorphological alteration (i.e. channel simplification, riparian forest and habitat degradation), which is closely linked to agricultural practices, was the main factor affecting macroinvertebrate assemblages. We suggest that “good agricultural practices” should be implemented in streams affected by NVZs to reverse stream degradation, in concordance with the European Water Framework Directive (WFD).
Collapse
Affiliation(s)
- Rubén Ladrera
- Food and Agriculture Department, Science and Technology Complex, University of La Rioja, Logroño, La Rioja, Spain
| | - Oscar Belmar
- Marine and Continental Waters Program, IRTA, Sant Carles de la Ràpita, Catalonia, Spain
| | - Rafael Tomás
- Food and Agriculture Department, Science and Technology Complex, University of La Rioja, Logroño, La Rioja, Spain
| | - Narcís Prat
- Freshwater Ecology, Hydrology and Management Group (FEHM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), University of Barcelona, Catalonia, Spain
| | - Miguel Cañedo-Argüelles
- Freshwater Ecology, Hydrology and Management Group (FEHM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), University of Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
26
|
Benson JA, Close PG, Stewart BA, Lymbery AJ. Freshwater tributaries provide refuge and recolonization opportunities for mussels following salinity reversal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:231-239. [PMID: 31132702 DOI: 10.1016/j.scitotenv.2019.05.286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Accepted: 05/19/2019] [Indexed: 05/25/2023]
Abstract
Reversing the effects of secondary salinization, and its impacts on aquatic biodiversity, is a growing global challenge, and particularly prevalent in Mediterranean-climate regions. Remnant freshwater tributaries in salinized landscapes provide significant biodiversity values, including discrete areas of refuge, dilution of salinized reaches, and potential source populations for recolonisation. The importance of these areas for aquatic fauna is widely accepted but rarely evaluated in the field. This study explored how spatial distribution of southwestern Australia's only freshwater mussel species, Westralunio carteri, has responded to the ongoing salinity trend in the Kent River catchment. Our results showed that salinity in the river has begun to reverse following improved catchment management, and also detected the first evidence of an associated recovery of the freshwater mussel population. Mussels in the mainstem were limited to sites around and downstream of a permanently flowing freshwater tributary, suggesting that dilution from this source provides a refuge in the lower reach. At two of those sites, all individuals were <15 years of age, indicative of recolonisation coinciding with salinity reversal around the turn of the century. Interestingly, mussels clearly persisted in other parts of the lower reach throughout the peak salinity period, when salinities regularly exceeded laboratory derived toxicity thresholds for the species. Mussels were not found in the majority of the mainstem or in highly acidic parts of the freshwater tributaries. The presence of old shells at those sites shows that the species was once widespread, and that the current distribution probably reflects a contraction due to historical salinization as well as acidification. Overall, our results show that the W. carteri population in the catchment has taken a first step towards recovery, and highlights the importance of freshwater tributaries in providing both refuge from disturbance and a source of new recruits.
Collapse
Affiliation(s)
- Justin Aaron Benson
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Albany, WA, Australia.
| | - Paul Graeme Close
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Albany, WA, Australia
| | - Barbara Ann Stewart
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Albany, WA, Australia
| | - Alan John Lymbery
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
27
|
Jackson JK, Funk DH. Temperature affects acute mayfly responses to elevated salinity: implications for toxicity of road de-icing salts. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0081. [PMID: 30509923 DOI: 10.1098/rstb.2018.0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
Salinity in freshwater ecosystems has increased significantly at numerous locations throughout the world, and this increase often reflects the use or production of salts from road de-icing, mining/oil and gas drilling activities, or agricultural production. When related to de-icing salts, highest salinity often occurs in winter when water temperature is often low relative to mean annual temperature at a site. Our study examined acute (96 h) responses to elevated salinity (NaCl) concentrations at five to seven temperature treatments (5-25°C) for four mayfly species (Baetidae: Neocloeon triangulifer, Procloeon fragile; Heptageniidae: Maccaffertium modestum; Leptophlebiidae: Leptophlebia cupida) that are widely distributed across eastern North America. Based on acute LC50s at 20°C, P. fragile was most sensitive (LC50 = 767 mg l-1, 1447 µS cm-1), followed by N. triangulifer (2755 mg l-1, 5104 µS cm-1), M. modestum (2760 mg l-1, 5118 µS cm-1) and L. cupida (4588 mg l-1, 8485 µS cm-1). Acute LC50s decreased as temperature increased for all four species (n = 5-7, R 2 = 0.65-0.88, p = 0.052-0.002). Thus, acute salt toxicity is strongly temperature dependent for the mayfly species we tested, which suggests that brief periods of elevated salinity during cold seasons or in colder locations may be ecologically less toxic than predicted by standard 20 or 25°C laboratory bioassays.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- John K Jackson
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| | - David H Funk
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA 19311, USA
| |
Collapse
|
28
|
Cañedo-Argüelles M, Kefford B, Schäfer R. Salt in freshwaters: causes, effects and prospects - introduction to the theme issue. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0002. [PMID: 30509904 DOI: 10.1098/rstb.2018.0002] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Humans are globally increasing the salt concentration of freshwaters (i.e. freshwater salinization), leading to significant effects at the population, community and ecosystem level. The present theme issue focuses on priority research questions and delivers results that contribute to shaping the future research agenda on freshwater salinization as well as fostering our capacity to manage salinization. The issue is structured along five topics: (i) the estimation of future salinity and evaluation of the relative contribution of the different drivers; (ii) the physiological responses of organisms to alterations in ion concentrations with a specific focus on the osmophysiology of freshwater insects and the responses of different organisims to seawater intrusion; (iii) the impact of salinization on ecosystem functioning, also considering the connections between riparian and stream ecosystems; (iv) the role of context in moderating the response to salinization. The contributions scrutinise the role of additional stressors, biotic interactions, the identify of the ions and their ratios, as well as of the biogeographic and evolutionary context; and (v) the public discourse on salinization and recommendations for management and regulation. In this paper we introduce the general background of salinization, outline research gaps and report key findings from the contributions to this theme issue.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Miguel Cañedo-Argüelles
- Grup de recerca FEHM (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciència Ambientals, Universitat de Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Ben Kefford
- Institute for Applied Ecology, University of Canberra, Australian Capital Territory 2601, Australia
| | - Ralf Schäfer
- Department of Quantitative Landscape Ecology, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany
| |
Collapse
|
29
|
Estévez E, Rodríguez-Castillo T, González-Ferreras AM, Cañedo-Argüelles M, Barquín J. Drivers of spatio-temporal patterns of salinity in Spanish rivers: a nationwide assessment. Philos Trans R Soc Lond B Biol Sci 2018; 374:20180022. [PMID: 30509921 PMCID: PMC6283964 DOI: 10.1098/rstb.2018.0022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2018] [Indexed: 11/12/2022] Open
Abstract
The salinization of freshwaters is a global water quality problem that leads to the biological degradation of aquatic ecosystems. However, little is known about the spatial extent of freshwater salinization and the relative contribution of each human activity (e.g. agriculture, urbanization, mining or shale-gas extraction). Here, we investigated environmental factors that explain spatio-temporal patterns of water salinity and examined the causes, the extent and the degree of salinization of Spanish rivers. Results showed a strong variation in water salinity among river typologies and between river reaches in good and poor ecological status according to the Water Framework Directive. The variation in water salinity was largely explained by a combination of natural (i.e. climate and geology) and anthropogenic (i.e. land use) factors. By contrast, land use factors as urbanization and agriculture were the main drivers of salinization, which affected more than one quarter of the rivers and streams in Spain, especially those in the most arid regions (central and southern regions) and in the main courses of the largest rivers such as the Ebro, Douro and Tajo rivers. The information provided here can be relevant to set priority regions and actions to ameliorate freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Edurne Estévez
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| | - Tamara Rodríguez-Castillo
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| | - Alexia María González-Ferreras
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| | - Miguel Cañedo-Argüelles
- Grup de recerca FEHM (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - José Barquín
- Environmental Hydraulics Institute 'IH Cantabria', University of Cantabria, PCTCAN. C/ Isabel Torres 15, 39011 Santander, Spain
| |
Collapse
|
30
|
Gorostiza S, Saurí D. Naturalizing pollution: a critical social science view on the link between potash mining and salinization in the Llobregat river basin, northeast Spain. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0006. [PMID: 30509908 PMCID: PMC6283971 DOI: 10.1098/rstb.2018.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2018] [Indexed: 01/10/2023] Open
Abstract
The scientific literature distinguishes between primary or natural and secondary or human-induced salinization. Assessing this distinction is of vital importance to assign liabilities and responsibilities in pollution cases and for designing the best policy and management actions. In this context, actors interested in downplaying the role of certain drivers of human-induced salinization can attempt to neglect its importance by referring to natural salinization, in a similar fashion to other pollution and health-related cases, from tobacco smoke to climate change. Potash mining, which has experienced continued growth during the last decades and is a significant contributor to salinization, is prone to originate such controversies because natural salinization from the saline geological catch can be mixed with salinization produced by mining waste such as brines and mine tailings, thus obscuring the distinction between causes. By reviewing the long-standing social and environmental conflict caused by potash mining in a region of Mediterranean climate—the Llobregat river basin—in this article, we highlight the importance of the impacts of salinization on human health and provide a critical social science perspective on salinization processes. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.
Collapse
Affiliation(s)
- Santiago Gorostiza
- Institut de Ciències i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Saurí
- Departament de Geografia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
| |
Collapse
|
31
|
Schuler MS, Cañedo-Argüelles M, Hintz WD, Dyack B, Birk S, Relyea RA. Regulations are needed to protect freshwater ecosystems from salinization. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0019. [PMID: 30509918 DOI: 10.1098/rstb.2018.0019] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Matthew S Schuler
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Miguel Cañedo-Argüelles
- Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciencies Ambientals, Facultat de Biologia, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - William D Hintz
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brenda Dyack
- Institute for Applied Ecology, University of Canberra, Canberra 2601, Australia
| | - Sebastian Birk
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|