1
|
Hilliam K, Floerl O, Treml EA. Priorities for improving predictions of vessel-mediated marine invasions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171162. [PMID: 38401736 DOI: 10.1016/j.scitotenv.2024.171162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Nonindigenous marine species are impacting the integrity of marine ecosystems worldwide. The invasion rate is increasing, and vessel traffic, the most significant human-assisted transport pathway for marine organisms, is predicted to double by 2050. The ability to predict the transfer of marine species by international and domestic maritime traffic is needed to develop cost-effective proactive and reactive interventions that minimise introduction, establishment and spread of invasive species. However, despite several decades of research into vessel-mediated species transfers, some important knowledge gaps remain, leading to significant uncertainty in model predictions, often limiting their use in decision making and management planning. In this review, we discuss the sequential ecological process underlying human-assisted biological invasions and adapt it in a marine context. This process includes five successive stages: entrainment, transport, introduction, establishment, and the subsequent spread. We describe the factors that influence an organism's progression through these stages in the context of maritime vessel movements and identify key knowledge gaps that limit our ability to quantify the rate at which organisms successfully pass through these stages. We then highlight research priorities that will address these knowledge gaps and improve our capability to manage biosecurity risks at local, national and international scales. We identified four major data and knowledge gaps: (1) quantitative rates of entrainment of organisms by vessels; (2) the movement patterns of vessel types lacking maritime location devices; (3) quantifying the release (introduction) of organisms as a function of vessel behaviour (e.g. time spent at port); and (4) the influence of a species' life history on establishment success, for a given magnitude of propagule pressure. We discuss these four research priorities and how they can be addressed in collaboration with industry partners and stakeholders to improve our ability to predict and manage vessel-mediated biosecurity risks over the coming decades.
Collapse
Affiliation(s)
- Kyle Hilliam
- School of Life and Environmental Sciences, Centre for Marine Science, Deakin University, Geelong, Victoria 3220, Australia; Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand.
| | - O Floerl
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; LWP Ltd, 212 Antigua Street, Christchurch 8011, New Zealand
| | - E A Treml
- School of Life and Environmental Sciences, Centre for Marine Science, Deakin University, Geelong, Victoria 3220, Australia; Australian Institute of Marine Science (AIMS) and UWA Oceans Institute, The University of Western Australia, MO96, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Schoolmaster DR, Coulter AA, Kallis JL, Glover DC, Dettmers JM, Erickson RA. Analysis of per capita contributions from a spatial model provides strategies for controlling spread of invasive carp. Ecosphere 2022. [DOI: 10.1002/ecs2.4331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Alison A. Coulter
- Department of Natural Resource Management South Dakota State University Brookings South Dakota USA
| | - Jahn L. Kallis
- U.S. Fish and Wildlife Service, Columbia Fish and Wildlife Conservation Office Columbia Missouri USA
| | - David C. Glover
- Illinois Department of Natural Resources Havana Illinois USA
| | | | - Richard A. Erickson
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center La Crosse Wisconsin USA
| |
Collapse
|
3
|
del Río L, Navarro-Martínez ZM, Ruiz-Abierno A, Chevalier-Monteagudo PP, Angulo-Valdes JA, Rodriguez-Viera L. Feeding ecology of invasive lionfish in the Punta Frances MPA, Cuba: insight into morphological features, diet and management. PeerJ 2022; 10:e14250. [PMID: 36389413 PMCID: PMC9653055 DOI: 10.7717/peerj.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Cuba's shelf has been invaded by lionfish (Pterois volitans/Pterois miles), which have become established over the archipelago, including areas of natural importance. The present study aims to evaluate morphometric features of lionfish and to explore the relationship between lionfish size and diet composition in different habitats in the Punta Frances National Park, Cuba. In total 620 lionfish were captured at 29 sites between 2013 and 2016. Lionfish stomachs were removed and their contents were analyzed using frequency and numerical methods. The length-weight allomentric relationship was obtained, and a decrease in lionfish sizes was shown over time, likely due to the extractions carried out. The diet was composed by fishes, crustaceans, mollusks and phytobenthos, with a predominance of fishes. Lionfish caught in seagrass beds tended to be smaller in size and consumed fewer fishes and more crustaceans than those captured in coral reefs. A positive correlation was observed between lionfish body size and gape size; however, no significant correlation was detected between lionfish body size and prey size. Larger lionfish tended to consume more fishes, while crustaceans were more significant in the diet of juvenile lionfish. This is the first study that examines the feeding habits of lionfish in the Punta Frances MPA, and provides valuable information on lionfish inhabiting this MPA across four years of sampling. Furthermore, this research may serve as a baseline for subsequent evaluations of lionfish impact and management actions in the area.
Collapse
Affiliation(s)
- Laura del Río
- Center for Marine Research, University of Havana, La Habana, Cuba
| | | | | | | | | | | |
Collapse
|
4
|
Pittman SE, Bartoszek IA. Initial dispersal behavior and survival of non-native juvenile Burmese pythons (Python bivittatus) in South Florida. BMC ZOOL 2021; 6:33. [PMID: 37170339 PMCID: PMC10124209 DOI: 10.1186/s40850-021-00098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dispersal behavior is a critical component of invasive species dynamics, impacting both spatial spread and population density. In South Florida, Burmese pythons (Python bivittatus) are an invasive species that disrupt ecosystems and have the potential to expand their range northward. Control of python populations is limited by a lack of information on movement behavior and vital rates, especially within the younger age classes. We radio-tracked 28 Burmese pythons from hatching until natural mortality for approximately 3 years. Pythons were chosen from 4 clutches deposited by adult females in 4 different habitats: forested wetland, urban interface, upland pine, and agricultural interface.
Results
Known-fate survival estimate was 35.7% (95% CI = 18% - 53%) in the first 6 months, and only 2 snakes survived 3 years post hatching. Snakes moving through ‘natural’ habitats had higher survival than snakes dispersing through ‘modified’ habitats in the first 6- months post-hatching. Predation was the most common source of mortality. Snakes from the agricultural interface utilized canals and displayed the largest net movements.
Conclusions
Our results suggest that pythons may have lower survival if clutches are deposited in or near urbanized areas. Alternatively, juvenile pythons could quickly disperse to new locations by utilizing canals that facilitate linear movement. This study provides critical information about behavioral and life history characteristics of juvenile Burmese pythons that will inform management practices.
Collapse
|
5
|
Catalano KA, Dedrick AG, Stuart MR, Puritz JB, Montes HR, Pinsky ML. Quantifying dispersal variability among nearshore marine populations. Mol Ecol 2020; 30:2366-2377. [PMID: 33197290 DOI: 10.1111/mec.15732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023]
Abstract
Dispersal drives diverse processes from population persistence to community dynamics. However, the amount of temporal variation in dispersal and its consequences for metapopulation dynamics is largely unknown for organisms with environmentally driven dispersal (e.g., many marine larvae, arthropods and plant seeds). Here, we used genetic parentage analysis to detect larval dispersal events in a common coral reef fish, Amphiprion clarkii, along 30 km of coastline consisting of 19 reef patches in Ormoc Bay, Leyte, Philippines. We quantified variation in the dispersal kernel across seven years (2012-2018) and monsoon seasons with 71 parentage assignments from 791 recruits and 1,729 adults. Connectivity patterns differed significantly among years and seasons in the scale and shape but not in the direction of dispersal. This interannual variation in dispersal kernels introduced positive temporal covariance among dispersal routes that theory predicts is likely to reduce stochastic metapopulation growth rates below the growth rates expected from only a single or a time-averaged connectivity estimate. The extent of variation in mean dispersal distance observed here among years is comparable in magnitude to the differences across reef fish species. Considering dispersal variation will be an important avenue for further metapopulation and metacommunity research across diverse taxa.
Collapse
Affiliation(s)
- Katrina A Catalano
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Allison G Dedrick
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Michelle R Stuart
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Malin L Pinsky
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Hulme PE, Baker R, Freckleton R, Hails RS, Hartley M, Harwood J, Marion G, Smith GC, Williamson M. The Epidemiological Framework for Biological Invasions (EFBI): an interdisciplinary foundation for the assessment of biosecurity threats. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.52463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Emerging microparasite (e.g. viruses, bacteria, protozoa and fungi) epidemics and the introduction of non-native pests and weeds are major biosecurity threats worldwide. The likelihood of these threats is often estimated from probabilities of their entry, establishment, spread and ease of prevention. If ecosystems are considered equivalent to hosts, then compartment disease models should provide a useful framework for understanding the processes that underpin non-native species invasions. To enable greater cross-fertilisation between these two disciplines, the Epidemiological Framework for Biological Invasions (EFBI) is developed that classifies ecosystems in relation to their invasion status: Susceptible, Exposed, Infectious and Resistant. These states are linked by transitions relating to transmission, latency and recovery. This viewpoint differs markedly from the species-centric approaches often applied to non-native species. It allows generalisations from epidemiology, such as the force of infection, the basic reproductive ratio R0, super-spreaders, herd immunity, cordon sanitaire and ring vaccination, to be discussed in the novel context of non-native species and helps identify important gaps in the study of biological invasions. The EFBI approach highlights several limitations inherent in current approaches to the study of biological invasions including: (i) the variance in non-native abundance across ecosystems is rarely reported; (ii) field data rarely (if ever) distinguish source from sink ecosystems; (iii) estimates of the susceptibility of ecosystems to invasion seldom account for differences in exposure to non-native species; and (iv) assessments of ecosystem susceptibility often confuse the processes that underpin patterns of spread within -and between- ecosystems. Using the invasion of lakes as a model, the EFBI approach is shown to present a new biosecurity perspective that takes account of ecosystem status and complements demographic models to deliver clearer insights into the dynamics of biological invasions at the landscape scale. It will help to identify whether management of the susceptibility of ecosystems, of the number of vectors, or of the diversity of pathways (for movement between ecosystems) is the best way of limiting or reversing the population growth of a non-native species. The framework can be adapted to incorporate increasing levels of complexity and realism and to provide insights into how to monitor, map and manage biological invasions more effectively.
Collapse
|
7
|
Pepin KM, Smyser TJ, Davis AJ, Miller RS, McKee S, VerCauteren KC, Kendall W, Slootmaker C. Optimal spatial prioritization of control resources for elimination of invasive species under demographic uncertainty. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02126. [PMID: 32167631 DOI: 10.1002/eap.2126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Populations of invasive species often spread heterogeneously across a landscape, consisting of local populations that cluster in space but are connected by dispersal. A fundamental dilemma for invasive species control is how to optimally allocate limited fiscal resources across local populations. Theoretical work based on perfect knowledge of demographic connectivity suggests that targeting local populations from which migrants originate (sources) can be optimal. However, demographic processes such as abundance and dispersal can be highly uncertain, and the relationship between local population density and damage costs (damage function) is rarely known. We used a metapopulation model to understand how budget and uncertainty in abundance, connectivity, and the damage function, together impact return on investment (ROI) for optimal control strategies. Budget, observational uncertainty, and the damage function had strong effects on the optimal resource allocation strategy. Uncertainty in dispersal probability was the least important determinant of ROI. The damage function determined which resource prioritization strategy was optimal when connectivity was symmetric but not when it was asymmetric. When connectivity was asymmetric, prioritizing source populations had a higher ROI than allocating effort equally across local populations, regardless of the damage function, but uncertainty in connectivity structure and abundance reduced ROI of the optimal prioritization strategy by 57% on average depending on the control budget. With low budgets (monthly removal rate of 6.7% of population), there was little advantage to prioritizing resources, especially when connectivity was high or symmetric, and observational uncertainty had only minor effects on ROI. Allotting funding for improved monitoring appeared to be most important when budgets were moderate (monthly removal of 13-20% of the population). Our result showed that multiple sources of observational uncertainty should be considered concurrently for optimizing ROI. Accurate estimates of connectivity direction and abundance were more important than accurate estimates of dispersal rates. Developing cost-effective surveillance methods to reduce observational uncertainties, and quantitative frameworks for determining how resources should be spatially apportioned to multiple monitoring and control activities are important and challenging future directions for optimizing ROI for invasive species control programs.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, Colorado, 80521, USA
| | - Timothy J Smyser
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, Colorado, 80521, USA
| | - Amy J Davis
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, Colorado, 80521, USA
| | - Ryan S Miller
- Centers for Epidemiology and Animal Health, USDA-APHIS, Veterinary Services, 2150 Centre Avenue, Fort Collins, Colorado, 80526, USA
| | - Sophie McKee
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, Colorado, 80521, USA
- Department of Economics, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Kurt C VerCauteren
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, Colorado, 80521, USA
| | - William Kendall
- Colorado Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Colorado State University, 1484 Campus Delivery, Fort Collins, Colorado, 80523, USA
| | - Chris Slootmaker
- National Wildlife Research Center, USDA-APHIS, Wildlife Services, 4101 Laporte Avenue, Fort Collins, Colorado, 80521, USA
- Mountain Data Group, 115 N. College Avenue, Suite 220, Fort Collins, Colorado, 80524, USA
| |
Collapse
|
8
|
Wittemyer G, Northrup JM, Bastille-Rousseau G. Behavioural valuation of landscapes using movement data. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180046. [PMID: 31352884 PMCID: PMC6710572 DOI: 10.1098/rstb.2018.0046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 11/12/2022] Open
Abstract
Wildlife tracking is one of the most frequently employed approaches to monitor and study wildlife populations. To date, the application of tracking data to applied objectives has focused largely on the intensity of use by an animal in a location or the type of habitat. While this has provided valuable insights and advanced spatial wildlife management, such interpretation of tracking data does not capture the complexity of spatio-temporal processes inherent to animal behaviour and represented in the movement path. Here, we discuss current and emerging approaches to estimate the behavioural value of spatial locations using movement data, focusing on the nexus of conservation behaviour and movement ecology that can amplify the application of animal tracking research to contemporary conservation challenges. We highlight the importance of applying behavioural ecological approaches to the analysis of tracking data and discuss the utility of comparative approaches, optimization theory and economic valuation to gain understanding of movement strategies and gauge population-level processes. First, we discuss innovations in the most fundamental movement-based valuation of landscapes, the intensity of use of a location, namely dissecting temporal dynamics in and means by which to weight the intensity of use. We then expand our discussion to three less common currencies for behavioural valuation of landscapes, namely the assessment of the functional (i.e. what an individual is doing at a location), structural (i.e. how a location relates to use of the broader landscape) and fitness (i.e. the return from using a location) value of a location. Strengthening the behavioural theoretical underpinnings of movement ecology research promises to provide a deeper, mechanistic understanding of animal movement that can lead to unprecedented insights into the interaction between landscapes and animal behaviour and advance the application of movement research to conservation challenges. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph M. Northrup
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada K9J 8M5
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Guillaume Bastille-Rousseau
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Bro-Jørgensen J, Franks DW, Meise K. Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190008. [PMID: 31352890 PMCID: PMC6710565 DOI: 10.1098/rstb.2019.0008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/03/2023] Open
Abstract
The impact of environmental change on the reproduction and survival of wildlife is often behaviourally mediated, placing behavioural ecology in a central position to quantify population- and community-level consequences of anthropogenic threats to biodiversity. This theme issue demonstrates how recent conceptual and methodological advances in the discipline are applied to inform conservation. The issue highlights how the focus in behavioural ecology on understanding variation in behaviour between individuals, rather than just measuring the population mean, is critical to explaining demographic stochasticity and thereby reducing fuzziness of population models. The contributions also show the importance of knowing the mechanisms by which behaviour is achieved, i.e. the role of learning, reasoning and instincts, in order to understand how behaviours change in human-modified environments, where their function is less likely to be adaptive. More recent work has thus abandoned the 'adaptationist' paradigm of early behavioural ecology and increasingly measures evolutionary processes directly by quantifying selection gradients and phenotypic plasticity. To support quantitative predictions at the population and community levels, a rich arsenal of modelling techniques has developed, and interdisciplinary approaches show promising prospects for predicting the effectiveness of alternative management options, with the social sciences, movement ecology and epidemiology particularly pertinent. The theme issue furthermore explores the relevance of behaviour for global threat assessment, and practical advice is given as to how behavioural ecologists can augment their conservation impact by carefully selecting and promoting their study systems, and increasing their engagement with local communities, natural resource managers and policy-makers. Its aim to uncover the nuts and bolts of how natural systems work positions behavioural ecology squarely in the heart of conservation biology, where its perspective offers an all-important complement to more descriptive 'big-picture' approaches to priority setting. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Jakob Bro-Jørgensen
- Mammalian Behaviour and Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Neston CH64 7TE, UK
| | - Daniel W. Franks
- Department of Biology, University of York, York YO10 5DD, UK
- Department of Computer Science, University of York, York YO10 5GH, UK
| | - Kristine Meise
- Mammalian Behaviour and Evolution Group, Department of Evolution, Ecology and Behaviour, University of Liverpool, Neston CH64 7TE, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
10
|
Berger-Tal O, Saltz D. Invisible barriers: anthropogenic impacts on inter- and intra-specific interactions as drivers of landscape-independent fragmentation. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180049. [PMID: 31352896 PMCID: PMC6710564 DOI: 10.1098/rstb.2018.0049] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anthropogenically induced fragmentation constitutes a major threat to biodiversity. Presently, conservation research and actions focus predominantly on fragmentation caused directly by physical transformation of the landscape (e.g. deforestation, agriculture, urbanization, roads, etc.). While there is no doubt that landscape features play a key role in fragmenting populations or enhancing connectivity, fragmentation may also come about by processes other than the transformation of the landscape and which may not be readily visible. Such landscape-independent fragmentation (LIF) usually comes about when anthropogenic disturbance alters the inter- and intra-specific interactions among and within species. LIF and its drivers have received little attention in the scientific literature and in the management of wildlife populations. We discuss three major classes of LIF processes and their relevance for the conservation and management of species and habitats: (i) interspecific dispersal dependency, in which populations of species that rely on other species for transport and propagation become fragmented as the transporting species declines; (ii) interspecific avoidance induction, where species are excluded from habitats and corridors owing to interspecific interactions resulting from anthropogenically induced changes in community structure (e.g. exclusions by increased predation pressure); and (iii) intraspecific behavioural divergence, where populations become segregated owing to anthropogenically induced behavioural differentiation among them. This article is part of the theme issue ‘Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Oded Berger-Tal
- Mitrani Department of Desert Ecology, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - David Saltz
- Mitrani Department of Desert Ecology, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| |
Collapse
|
11
|
Dobson ADM, de Lange E, Keane A, Ibbett H, Milner-Gulland EJ. Integrating models of human behaviour between the individual and population levels to inform conservation interventions. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180053. [PMID: 31352880 PMCID: PMC6710576 DOI: 10.1098/rstb.2018.0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Conservation takes place within social-ecological systems, and many conservation interventions aim to influence human behaviour in order to push these systems towards sustainability. Predictive models of human behaviour are potentially powerful tools to support these interventions. This is particularly true if the models can link the attributes and behaviour of individuals with the dynamics of the social and environmental systems within which they operate. Here we explore this potential by showing how combining two modelling approaches (social network analysis, SNA, and agent-based modelling, ABM) could lead to more robust insights into a particular type of conservation intervention. We use our simple model, which simulates knowledge of ranger patrols through a hunting community and is based on empirical data from a Cambodian protected area, to highlight the complex, context-dependent nature of outcomes of information-sharing interventions, depending both on the configuration of the network and the attributes of the agents. We conclude by reflecting that both SNA and ABM, and many other modelling tools, are still too compartmentalized in application, either in ecology or social science, despite the strong methodological and conceptual parallels between their uses in different disciplines. Even a greater sharing of methods between disciplines is insufficient, however; given the impact of conservation on both the social and ecological aspects of systems (and vice versa), a fully integrated approach is needed, combining both the modelling approaches and the disciplinary insights of ecology and social science. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.
Collapse
Affiliation(s)
- Andrew D M Dobson
- School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Emiel de Lange
- School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Aidan Keane
- School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Harriet Ibbett
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | | |
Collapse
|