1
|
Gribbins KM, Rajaguru S, Rheubert JL, Trauth SE. The Ultrastructure of Spermiogenesis Within the Seminiferous Epithelium of the Texas Horned Lizard, Phrynosoma cornutum (Phrynosomatidae). J Morphol 2024; 285:e70008. [PMID: 39543840 DOI: 10.1002/jmor.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Currently, there is limited histological data for spermatid morphologies within the testes of squamates. There are only 10 species of lizard that have complete ultrastructural data across the entire process of spermiogenesis, including several species of Sceloporus. These studies have shown that differences can be seen between spermatids of saurians within the same family or genus. Thus, the present study continues to test the hypothesis that differences exist in spermatid morphology between species within the same family. We collected five Phrynosoma cornutum males from Arizona. Their testes were extracted and processed with standard TEM techniques. Many of the characteristics of spermiogenesis within P. cornutum are conserved and similar in morphology to other phrynosomatid lizards. These similarities include the development of the acrosome, perforatorium, subacrosomal cone, nuclear rostrum, and epinuclear lucent zone. However, there were also differences observed in P. cornutum spermatids that are distinct compared to other phyrnosomatids. For example, P. cornutum spermatids include a wider and more robust perforatorium and less spiraling of the chromatin during condensation than that of other phrynosomatid lizards. The present results corroborate previous studies and indicate that even with morphological conservation within saurian spermatids, character differences between species can be recognized. Further studies on spermiogenesis are required to judge the relevance of these ontogenetic changes in terms of using them in amniotic or squamate spermatid/spermatozoa phylogenic analysis.
Collapse
Affiliation(s)
- Kevin M Gribbins
- Department of Biology, University of Indianapolis, Indianapolis, Indiana, USA
| | | | | | - Stanley E Trauth
- Department of Biological Sciences, Arkansas State University (Emeritus), State University, Arkansas, USA
| |
Collapse
|
2
|
Kramer EM, Enelamah J, Fang H, Tayjasanant PA. Karyotype depends on sperm head morphology in some amniote groups. Front Genet 2024; 15:1396530. [PMID: 38903758 PMCID: PMC11186999 DOI: 10.3389/fgene.2024.1396530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
The karyotype of an organism is the set of gross features that characterize the way the genome is packaged into separate chromosomes. It has been known for decades that different taxonomic groups often have distinct karyotypic features, but whether selective forces act to maintain these differences over evolutionary timescales is an open question. In this paper we analyze a database of karyotype features and sperm head morphology in 103 mammal species with spatulate sperm heads and 90 sauropsid species (birds and non-avian reptiles) with vermiform heads. We find that mammal species with a larger head area have more chromosomes, while sauropsid species with longer heads have a wider range of chromosome lengths. These results remain significant after controlling for genome size, so sperm head morphology is the relevant variable. This suggest that post-copulatory sexual selection, by acting on sperm head shape, can influence genome architecture.
Collapse
Affiliation(s)
- Eric M. Kramer
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
- Department of Biology, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - Joshua Enelamah
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - Hao Fang
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| | - P. A. Tayjasanant
- Department of Physics, Bard College at Simon’s Rock, Great Barrington, MA, United States
| |
Collapse
|
3
|
Sánchez-Rivera UÁ, Cruz-Cano NB, Medrano A, Álvarez-Rodríguez C, Martínez-Torres M. Sperm Incubation in Biggers-Whitten-Whittingham Medium Induces Capacitation-Related Changes in the Lizard Sceloporus torquatus. Animals (Basel) 2024; 14:1388. [PMID: 38731392 PMCID: PMC11083041 DOI: 10.3390/ani14091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Sperm capacitation involves biochemical and physiological changes that enable sperm to fertilize the oocyte. It can be induced in vitro under controlled conditions that simulate the environment of the oviduct. While extensively studied in mammals, its approach in lizards remains absent. Understanding the mechanisms that ensure reproduction is essential for advancing the implementation of assisted reproductive technologies in this group. We aimed to perform a sperm analysis to determine if capacitation-related changes were induced after incubation with capacitating media. Fifteen males of Sceloporus torquatus were collected during the early stage of the reproductive season. The sperm were isolated from the seminal plasma and then diluted up to a volume of 150 μL using BWW medium to incubate with 5% CO2 at 30 °C for a maximum duration of 3 h. A fraction was retrieved hourly for ongoing sperm assessment. The sperm analysis included assessments of its motility, viability, the capacitation status using the chlortetracycline (CTC) assay, and the acrosome integrity with the lectin binding assay to detect changes during incubation. We found that total motility was maintained up to 2 h post incubation, after which it decreased. However, sperm viability remained constant. From that moment on, we observed a transition to a deeper and less symmetrical flagellar bending in many spermatozoa. The CTC assay indicated a reduction in the percentage of sperm showing the full (F) pattern and an increase in those exhibiting the capacitated (B) and reactive (RA) patterns, accompanied by an elevation in the percentage of damaged acrosomes as revealed by the lectin binding assay. In mammals, these changes are often associated with sperm capacitation. Our observations support the notion that this process may also occur in saurian. While sperm analysis is a valuable method for assessing certain functional changes, additional approaches are required to validate this process.
Collapse
Affiliation(s)
- Uriel Ángel Sánchez-Rivera
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
- Laboratorio de Reproducción, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City 54714, Mexico;
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Norma Berenice Cruz-Cano
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
| | - Alfredo Medrano
- Laboratorio de Reproducción, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City 54714, Mexico;
| | - Carmen Álvarez-Rodríguez
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (N.B.C.-C.)
| |
Collapse
|
4
|
Lamar SK, Nelson NJ, Ormsby DK. Characterization of sperm and implications for male fertility in the last of the Rhynchocephalians. CONSERVATION PHYSIOLOGY 2023; 11:coad071. [PMID: 37663926 PMCID: PMC10470484 DOI: 10.1093/conphys/coad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Managing a species of conservation concern can be best achieved when there is information on the reproductive physiology of both sexes available; however, many species lack this critical, baseline information. One such species, the tuatara (Sphenodon punctatus), is the last surviving member of one of the four reptile orders (Rhynchocephalia) and is the only reptile known to lack a male intromittent organ. Culturally and evolutionarily significant, the conservation of this species is a global priority for the maintenance of biodiversity. In light of this, we characterized the morphology, viability and swim speed of mature tuatara sperm for the first time. We found that tuatara sperm are filiform and bear the remarkably conserved three-part sperm structure seen across the animal kingdom. Tuatara sperm are long (mean total length 166 μm), with an approximate head:midpiece:tail ratio of 15:1:17. While tuatara sperm are capable of high levels of within-mating viability (94.53%), the mean viability across all samples was 58.80%. Finally, tuatara sperm had a mean curvilinear velocity swim speed (μ × s - 1) of 82.28. At the population level, there were no differences in viability or mean swim speed between sperm collected from a male's first mating of a season and repeat matings; however, the maximum sperm swim speed increased in observed repeated matings relative to first matings. Interestingly, faster sperm samples had shorter midpieces, but had greater viability and longer head and tail sections. This work expands our understanding of male reproductive characteristics and their variation to a new order, provides wild references for the assessment of captive individuals, lays the groundwork for potential assisted reproductive techniques and highlights variation in male reproductive potential as an important factor for consideration in future conservation programs for this unique species.
Collapse
Affiliation(s)
- Sarah K Lamar
- School of Biological Sciences, Victoria University of Wellington, Level 2 Te Toki a Rata Building, Wellington 6012, New Zealand
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Level 2 Te Toki a Rata Building, Wellington 6012, New Zealand
| | - Nicola J Nelson
- School of Biological Sciences, Victoria University of Wellington, Level 2 Te Toki a Rata Building, Wellington 6012, New Zealand
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Level 2 Te Toki a Rata Building, New Zealand
| | - Diane K Ormsby
- School of Biological Sciences, Victoria University of Wellington, Level 2 Te Toki a Rata Building, Wellington 6012, New Zealand
| |
Collapse
|
5
|
Male color polymorphism in populations of reef geckos (Sphaerodactylus notatus) reduces the utility of visual signals in sex recognition. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Sperm morphology and forward motility are indicators of reproductive success and are not age- or condition-dependent in a captive breeding population of endangered snake. PLoS One 2023; 18:e0282845. [PMID: 36897888 PMCID: PMC10004498 DOI: 10.1371/journal.pone.0282845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The relationship between male ejaculate traits and reproductive success is an important consideration for captive breeding programs. A recovery plan for the endangered Louisiana pinesnake includes captive breeding for the release of young to the wild. Semen was collected from twenty captive breeding male snakes and ejaculate traits of motility, morphology, and membrane viability were measured for each male. Semen traits were analyzed in relation to the fertilization rate of eggs produced from pairings of each male with a single female (% fertility) to determine the ejaculate factors contributing to reproductive success. In addition, we investigated the age- and condition-dependence of each ejaculate trait. We found significant variation in the ejaculate traits of males and normal sperm morphology ([Formula: see text] = 44.4 ± 13.6%, n = 19) and forward motility ([Formula: see text] = 61.0 ± 13.4%, n = 18) were found to be the best predictors of fertility. No ejaculate traits were found to be condition-dependent (P > 0.05). Forward progressive movement (FPM) ([Formula: see text] = 4 ± 0.5, n = 18) was determined to be age-dependent (r2 = 0.27, P = 0.028), but FPM was not included in the best model for rate of fertilization. Male Louisiana pinesnakes do not appear to experience a significant decline in reproductive potential with age (P > 0.05). The observed average rate of fertilization in the captive breeding colony was below 50% and only those pairings with a male having >51% normal sperm morphology avoided a 0% rate of fertilization. Identification of the factors contributing to the reproductive success of captive breeding Louisiana pinesnakes is of considerable conservation value in the recovery of the species, and captive breeding programs should use assessments of ejaculate traits to plan breeding pairs for maximum reproductive output.
Collapse
|
7
|
Kahrl AF, Snook RR, Fitzpatrick JL. Fertilization mode differentially impacts the evolution of vertebrate sperm components. Nat Commun 2022; 13:6809. [PMID: 36357384 PMCID: PMC9649735 DOI: 10.1038/s41467-022-34609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Environmental change frequently drives morphological diversification, including at the cellular level. Transitions in the environment where fertilization occurs (i.e., fertilization mode) are hypothesized to be a driver of the extreme diversity in sperm morphology observed in animals. Yet how fertilization mode impacts the evolution of sperm components-head, midpiece, and flagellum-each with different functional roles that must act as an integrated unit remains unclear. Here, we test this hypothesis by examining the evolution of sperm component lengths across 1103 species of vertebrates varying in fertilization mode (external vs. internal fertilization). Sperm component length is explained in part by fertilization mode across vertebrates, but how fertilization mode influences sperm evolution varies among sperm components and vertebrate clades. We also identify evolutionary responses not influenced by fertilization mode: midpieces evolve rapidly in both external and internal fertilizers. Fertilization mode thus influences vertebrate sperm evolution through complex component- and clade-specific evolutionary responses.
Collapse
Affiliation(s)
- Ariel F Kahrl
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden.
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY, USA.
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| | - John L Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| |
Collapse
|
8
|
Nanni Geser S, Ursenbacher S. Multiple paternity in the Asp viper. J Zool (1987) 2022. [DOI: 10.1111/jzo.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S. Nanni Geser
- Section of Conservation Biology Department of Environmental Sciences University of Basel Basel Switzerland
| | - S. Ursenbacher
- Section of Conservation Biology Department of Environmental Sciences University of Basel Basel Switzerland
- Info fauna ‐ CSCF & Karch Neuchâtel Switzerland
| |
Collapse
|
9
|
Do female amphibians and reptiles have greater reproductive output if they have more mates? Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
In general, males mate with multiple females to increase individual reproductive success. Whether or not, and under what circumstances, females benefit from multiple mating has been less clear. Our review of 154 studies covering 184 populations of amphibians and reptiles showed that polyandry was widespread and variable among and within taxonomic groups. We investigated whether amphibian and reptile females had greater reproductive output as the number of sires for offspring increased. Meta-analysis revealed significant heterogeneity in the dataset of all taxa. Expected heterozygosity was a significant moderator (covariate) of positive relationships between female reproductive output and the number of sires, but a sensitivity test showed the result was tenuous. Significant heterogeneity remained despite controlling for expected heterozygosity and other variables but was resolved for most taxonomic groups with subgroup meta-analyses. Subgroup meta-analyses showed that only female salamanders (Caudata) had significantly greater reproductive output with an increased number of sires. For many species of Caudata, males cannot coerce females into accepting spermatophores. We therefore suggest that if females control the number of matings, they can use polyandry to increase their fitness. Caudata offers ideal models with which to test this hypothesis and to explore factors enabling and maintaining the evolution of female choice. Outstanding problems may be addressed by expanding taxonomic coverage and data collection and improving data reporting.
Significance Statement
Many factors and combinations of factors drive polyandry. Whether or not females benefit from mating with more than one male remains equivocal. Focusing on amphibians and reptiles, our analyses demonstrate that female salamanders produced more offspring when mated with multiple males, whereas this was not the case for reptiles. Unlike many other species in our dataset, the polyandrous female salamanders fully control sperm intake and have chosen to mate multiple times. We further highlight problems and key directions for future research in the field.
Collapse
|
10
|
Hudel L, Kappeler PM. Sex-specific movement ecology of the shortest-lived tetrapod during the mating season. Sci Rep 2022; 12:10053. [PMID: 35710848 PMCID: PMC9203456 DOI: 10.1038/s41598-022-14156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Sex-specific reproductive strategies are shaped by the distribution of potential mates in space and time. Labord’s chameleon (Furcifer labordi) from southwestern Madagascar is the shortest-lived tetrapod whose life-time mating opportunities are restricted to a few weeks. Given that these chameleons grow to sexual maturity within about three months and that all individuals die soon after breeding, their mating strategies should be adapted to these temporal constraints. The reproductive tactics of this or any other Malagasy chameleon species have not been studied, however. Radio-tracking and observations of 21 females and 18 males revealed that females exhibit high site fidelity, move small cumulative and linear distances, have low corresponding dispersal ratios and small occurrence distributions. In contrast, males moved larger distances in less predictable fashion, resulting in dispersal ratios and occurrence distributions 7–14 times larger than those of females, and males also had greater ranges of their vertical distribution. Despite synchronous hatching, males exhibited substantial inter-individual variation in body mass and snout-vent length that was significantly greater than in females, but apparently unrelated to their spatial tactics. Females mated with up to 6 individually-known mates, but frequent encounters with unmarked individuals indicate that much higher number of matings may be common, as are damaging fights among males. Thus, unlike perennial chameleons, F. labordi males do not seem to maintain and defend territories. Instead, they invest vastly more time and energy into locomotion for their body size than other species. Pronounced variation in key somatic traits may hint at the existence of alternative reproductive tactics, but its causes and consequences require further study. This first preliminary study of the mating system of a Malagasy chameleon indicates that, as in other semelparous tetrapods, accelerated life histories are tied to a mating system with intense contest and scramble competition among males.
Collapse
Affiliation(s)
- Lennart Hudel
- Department of Sociobiology/Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Department of Sociobiology/Anthropology, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany. .,Behavioral Ecology Unit, German Primate Center, Leibniz Institute of Primate Biology, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
11
|
Friesen CR, Uhrig EJ, Mason RT. Dehydrated males are less likely to dive into the mating pool. Behav Ecol 2021. [DOI: 10.1093/beheco/arab151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Abstract
The hydration state of animals vying for reproductive success may have implications for the tempo and mode of sexual selection, which may be salient in populations that experience increasing environmental fluctuations in water availability. Using red-sided garter snakes as a model system, we tested the effect of water supplementation on courtship, mating behavior, and copulatory plug (CP) production during a drought year. Over 3 days of mating trials, water-supplemented males (WET males, n = 45) outperformed a control group that was not supplemented with water (DRY males, n = 45). Over 70% of WET males mated but just 33% of DRY males did so. As a group, WET males mated 79 times versus 28 times by DRY males. On the last day of mating trials, over 70% of WET males were still courting, with 19 of them mating, whereas less than 25% of DRY males were courting and only one mated. CP deposition accounted for 4–6% of the mass lost by mating males, but hydration did not affect CP mass or water content. These findings suggest that, in years of low water availability, the number of courting males and the intensity of their courtship declines, thereby affecting sexual selection and conflict, at least within that year.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Building 35, Northfields Avenue, Wollongong, NSW 2522, Australia
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
- School of Life and Environmental Sciences, Bldg F22, Life Earth and Environmental Sciences (LEES) Building, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Emily J Uhrig
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
- Center for Research on Sustainable Forests, University of Maine, 5755 Nutting Hall, Room 263, Orono, ME 04469, USA
| | - Robert T Mason
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Riley JL, Stow A, Bolton PE, Dennison S, Byrne RW, Whiting MJ. Sperm Storage in a Family-Living Lizard, the Tree Skink (Egernia striolata). J Hered 2021; 112:526-534. [PMID: 34409996 DOI: 10.1093/jhered/esab048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/16/2021] [Indexed: 11/14/2022] Open
Abstract
The ability to produce viable offspring without recently mating, either through sperm storage or parthenogenesis, can provide fitness advantages under a suite of challenging ecological scenarios. Using genetic analysis, we demonstrate that 3 wild-caught female Tree Skinks (Egernia striolata) reproduced in captivity with no access to males for over a year, and that this is best explained by sperm storage. To the best of our knowledge, this is the first time female sperm storage has been documented in any monogamous family-living reptile, including social Australian egerniine skinks (from the subfamily Egerniinae). Furthermore, by using paternal reconstruction of genotypes we show that captive-born offspring produced by the same females in the preceding year, presumably without sperm storage, were sired by different males. We qualitatively compared aspects of these females' mates and offspring between years. The parents of each litter were unrelated, but paternal and offspring genotypes from litters resulting from stored sperm were more heterozygous than those inferred to be from recent matings. Family-living egerniine skinks generally have low rates of multiple paternity, yet our study suggests that female sperm storage, potentially from outside social partners, offers the real possibility of benefits. Possible benefits include increasing genetic compatibility of mates and avoiding inbreeding depression via cryptic female choice. Sperm storage in Tree Skinks, a family-living lizard with a monogamous mating system, suggests that females may bet-hedge through extra-pair copulation with more heterozygous males, reinforcing the idea that females could have more control on reproductive outcomes than previously thought.
Collapse
Affiliation(s)
- Julia L Riley
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Adam Stow
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peri E Bolton
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Department of Biology, East Carolina University, Greenville, NC
| | - Siobhan Dennison
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Richard W Byrne
- School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, Fife, UK
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Bulté G, Huneault B, Blouin‐Demers G. Free‐ranging male northern map turtles use public information when interacting with potential mates. Ethology 2021. [DOI: 10.1111/eth.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Grégory Bulté
- Department of Biology Carleton University Ottawa Canada
| | | | | |
Collapse
|
14
|
Gangloff EJ, Manes MB, Schwartz TS, Robert KA, Huebschman N, Bronikowski AM. Multiple Paternity in Garter Snakes With Evolutionarily Divergent Life Histories. J Hered 2021; 112:508-518. [PMID: 34351393 PMCID: PMC8558580 DOI: 10.1093/jhered/esab043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Many animal species exhibit multiple paternity, defined as multiple males genetically contributing to a single female reproductive event, such as a clutch or litter. Although this phenomenon is well documented across a broad range of taxa, the underlying causes and consequences remain poorly understood. For example, it is unclear how multiple paternity correlates with life-history strategies. Furthermore, males and females may differ in mating strategies and these patterns may shift with ecological context and life-history variation. Here, we take advantage of natural life-history variation in garter snakes (Thamnophis elegans) to address these questions in a robust field setting where populations have diverged along a slow-to-fast life-history continuum. We determine both female (observed) and male (using molecular markers) reproductive success in replicate populations of 2 life-history strategies. We find that despite dramatic differences in annual female reproductive output: 1) females of both life-history ecotypes average 1.5 sires per litter and equivalent proportions of multiply-sired litters, whereas 2) males from the slow-living ecotype experience greater reproductive skew and greater variance in reproductive success relative to males from the fast-living ecotype males despite having equivalent average reproductive success. Together, these results indicate strong intrasexual competition among males, particularly in the fast-paced life-history ecotype. We discuss these results in the context of competing hypotheses for multiple paternity related to population density, resource variability, and life-history strategy.
Collapse
Affiliation(s)
- Eric J Gangloff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Zoology, Ohio Wesleyan University, Delaware, OH, USA
| | - Megan B Manes
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Tonia S Schwartz
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Kylie A Robert
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC, Australia
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Selection on Sperm Count, but Not on Sperm Morphology or Velocity, in a Wild Population of Anolis Lizards. Cells 2021; 10:cells10092369. [PMID: 34572018 PMCID: PMC8464841 DOI: 10.3390/cells10092369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Sperm competition is a widespread phenomenon that shapes male reproductive success. Ejaculates present many potential targets for postcopulatory selection (e.g., sperm morphology, count, and velocity), which are often highly correlated and potentially subject to complex multivariate selection. Although multivariate selection on ejaculate traits has been observed in laboratory experiments, it is unclear whether selection is similarly complex in wild populations, where individuals mate frequently over longer periods of time. We measured univariate and multivariate selection on sperm morphology, sperm count, and sperm velocity in a wild population of brown anole lizards (Anolis sagrei). We conducted a mark-recapture study with genetic parentage assignment to estimate individual reproductive success. We found significant negative directional selection and negative quadratic selection on sperm count, but we did not detect directional or quadratic selection on any other sperm traits, nor did we detect correlational selection on any trait combinations. Our results may reflect pressure on males to produce many small ejaculates and mate frequently over a six-month reproductive season. This study is the first to measure multivariate selection on sperm traits in a wild population and provides an interesting contrast to experimental studies of external fertilizers, which have found complex multivariate selection on sperm phenotypes.
Collapse
|
16
|
Hobbs RJ, Upton R, Keogh L, James K, Baxter-Gilbert J, Whiting MJ. Sperm cryopreservation in an Australian skink (Eulamprus quoyii). Reprod Fertil Dev 2021; 34:428-437. [PMID: 34420549 DOI: 10.1071/rd21031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Assisted reproductive technologies for population and genetic management for threatened herpetofauna have grown substantially in the past decade. Here we describe experiments to optimise sperm cryopreservation in a model squamate, the eastern water skink Eulamprus quoyii. Small, concentrated volumes of highly motile spermatozoa were reliably collected from adult male E. quoyii by non-lethal ventral massage. Samples were used to: (1) test whether protein-rich diluents, namely Beltsville poultry semen extender (BPSE) and TES and Tris (TEST) yolk buffer (TYB), improve post-thaw quality metrics compared with Dulbecco's phosphate-buffered saline (DPBS); and (2) compare the efficacy of these diluents in combination with either 1.35M glycerol or 1.35M dimethyl sulfoxide (DMSO) at two freezing rates, fast (approximately -20°C min-1) versus slow (-6°C min-1). Glycerol and DMSO performed equally well in preserving spermatozoa under slow freezing rates. Under these conditions, the use of the complex diluents BPSE and TYB significantly improved post-thaw total motility compared with DPBS. Complex interactions occurred between cryodiluent type, cryoprotectant and freezing rate when testing fast versus slow freezing rates among treatment groups. Under slow freezing rates, DMSO was better at preserving membrane integrity and motility, regardless of diluent type, but successful fast freezing required complex diluents to support motility and membrane integrity, which has implications for implementation in a field setting.
Collapse
Affiliation(s)
- Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia; and Corresponding author
| | - Rose Upton
- Conservation Biology Research Group, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Leesa Keogh
- Office of the NSW Chief Scientist and Engineer, MLC Centre, Sydney, NSW 2000, Australia
| | - Karen James
- Taronga Conservation Society Australia, Taronga Western Plains Zoo, Dubbo, NSW 2830, Australia
| | - James Baxter-Gilbert
- Centre for Invasion Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
17
|
Locatello L, Borgheresi O, Poli F, Pilastro A, Rasotto MB. Black goby territorial males adjust their ejaculate's characteristics in response to the presence of sneakers. Biol Lett 2021; 17:20210201. [PMID: 34343439 DOI: 10.1098/rsbl.2021.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In many species, males can rapidly adjust their ejaculate performance in response to changing levels of sperm competition, an ability that is probably mediated by seminal fluid adaptive plasticity. In the black goby, Gobius niger, territorial males attach viscous ejaculate trails to the nest roof, from which sperm are slowly released into the water during the long-lasting spawning events. Sneaker males release their sperm in the vicinity of the nest, and territorial males try to keep them at a distance by patrolling their territory. We show here that territorial males' ejaculate trails released a higher proportion of their sperm in the presence of a single sneaker, but this proportion decreased when there were three sneakers, an effect that is most likely mediated by a change in the seminal fluid composition. Field observations showed that when multiple sneaking attempts occurred, territorial males spent more time outside the nest, suggesting that ejaculation rate and territory defence are traded-off. Altogether, these results suggest that the adjustment of sperm release from the ejaculate may be strategic, guaranteeing a more continuous concentration of the territorial male's sperm in the nest, although at a lower level, when he is engaged in prolonged territory defence outside the nest.
Collapse
Affiliation(s)
- Lisa Locatello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35121 Padova, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1/N, 61032 Fano, Italy
| | - Oliviero Borgheresi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35121 Padova, Italy
| | - Federica Poli
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35121 Padova, Italy
| | - Andrea Pilastro
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35121 Padova, Italy
| | - Maria B Rasotto
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35121 Padova, Italy
| |
Collapse
|
18
|
Gacem S, Valverde A, Catalán J, Yánez Ortiz I, Soler C, Miró J. A New Approach of Sperm Motility Subpopulation Structure in Donkey and Horse. Front Vet Sci 2021; 8:651477. [PMID: 34113670 PMCID: PMC8186528 DOI: 10.3389/fvets.2021.651477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to characterize the sperm kinematic values with high frames per second, to define the subpopulation structure of a horse and a donkey and compare them. A total of 57 fresh semen ejaculates (26 Spanish and 16 Arabian horse breeds and 10 donkeys) were collected and subsequently analyzed for kinematic parameters using the Computer-aided sperm motility analysis ISAS®v1.2 system and using a Spermtrack® 10-μm depth counting chamber. Sequences were recorded at 250 frames per second, and eight kinematic parameters were automatically evaluated. All kinematic parameters showed significant differences between a donkey and a horse and between horse breeds. All ejaculates evaluated showed excellent semen motility characteristics, with significantly higher values for all kinematic parameters for donkeys compared with horses except for beat-cross frequency. Donkey sperm was faster and linear than the horse. Regarding horse breeds differences, the Spanish horse had higher average path velocity, curvilinear velocity, and beat-cross frequency compared with the Arabian horse. Spanish horse sperm was rapid, but Arab horse was more linear. The principal component analysis showed three sperm subpopulations in the ejaculate of donkeys and horses with a significantly different motility characteristic between them. The dominant subpopulation for both donkey and horse was for rapid, straight, and linear with a high beat sperm (38.2 and 41.7%, respectively), whereas the lowest subpopulation was for the slowest and non-linear sperms. This, plus slight differences in the distribution of these subpopulations between Arabian and Spanish horses, were found. In conclusion, higher frames permitted to have a new interpretation of motile subpopulations with species and breed differences. More so, future works on donkey and horse breed spermatozoa should take into account differences between breeds that may interfere and alter the real analysis performed.
Collapse
Affiliation(s)
- Sabrina Gacem
- Equine Reproduction Service, Autonomous University of Barcelona, Department of Animal Medicine and Surgery Veterinary Faculty, Catalonia, Spain
| | - Anthony Valverde
- Costa Rica Institute of Technology, School of Agronomy, Alajuela, Costa Rica
| | - Jaime Catalán
- Equine Reproduction Service, Autonomous University of Barcelona, Department of Animal Medicine and Surgery Veterinary Faculty, Catalonia, Spain
| | - Iván Yánez Ortiz
- Equine Reproduction Service, Autonomous University of Barcelona, Department of Animal Medicine and Surgery Veterinary Faculty, Catalonia, Spain
| | - Carles Soler
- Universitat de València, Departamento de Biología Celular, Biología Funcional y Antropología Física, Burjassot, Valencia, Spain
| | - Jordi Miró
- Equine Reproduction Service, Autonomous University of Barcelona, Department of Animal Medicine and Surgery Veterinary Faculty, Catalonia, Spain
| |
Collapse
|
19
|
Can Sexual Selection Drive the Evolution of Sperm Cell Structure? Cells 2021; 10:cells10051227. [PMID: 34067752 PMCID: PMC8156441 DOI: 10.3390/cells10051227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Sperm cells have undergone an extraordinarily divergent evolution among metazoan animals. Parker recognized that because female animals frequently mate with more than one male, sexual selection would continue after mating and impose strong selection on sperm cells to maximize fertilization success. Comparative analyses among species have revealed a general relationship between the strength of selection from sperm competition and the length of sperm cells and their constituent parts. However, comparative analyses cannot address causation. Here, we use experimental evolution to ask whether sexual selection can drive the divergence of sperm cell phenotype, using the dung beetle Onthophagus taurus as a model. We either relaxed sexual selection by enforcing monogamy or allowed sexual selection to continue for 20 generations before sampling males and measuring the total length of sperm cells and their constituent parts, the acrosome, nucleus, and flagella. We found differences in the length of the sperm cell nucleus but no differences in the length of the acrosome, flagella, or total sperm length. Our data suggest that different sperm cell components may respond independently to sexual selection and contribute to the divergent evolution of these extraordinary cells.
Collapse
|
20
|
Reuland C, Simmons LW, Lüpold S, Fitzpatrick JL. Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells 2021; 10:cells10051062. [PMID: 33947050 PMCID: PMC8145498 DOI: 10.3390/cells10051062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
In polyandrous species, males face reproductive competition both before and after mating. Sexual selection thus shapes the evolution of both pre- and postcopulatory traits, creating competing demands on resource allocation to different reproductive episodes. Traits subject to strong selection exhibit accelerated rates of phenotypic divergence, and examining evolutionary rates may inform us about the relative importance and potential fitness consequences of investing in traits under either pre- or postcopulatory sexual selection. Here, we used a comparative approach to assess evolutionary rates of key competitive traits in two artiodactyl families, bovids (family Bovidae) and cervids (family Cervidae), where male–male competition can occur before and after mating. We quantified and compared evolutionary rates of male weaponry (horns and antlers), body size/mass, testes mass, and sperm morphometrics. We found that weapons evolve faster than sperm dimensions. In contrast, testes and body mass evolve at similar rates. These results suggest strong, but differential, selection on both pre- and postcopulatory traits in bovids and cervids. Furthermore, we documented distinct evolutionary rates among different sperm components, with sperm head and midpiece evolving faster than the flagellum. Finally, we demonstrate that, despite considerable differences in weapon development between bovids and cervids, the overall evolutionary patterns between these families were broadly consistent.
Collapse
Affiliation(s)
- Charel Reuland
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - John L. Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, 106 91 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
21
|
Friesen CR, Mason RT, Uhrig EJ. Postcopulatory sexual selection as a driver of sex- and population-specific kidney mass in garter snakes? Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
In lizards and snakes, the kidneys produce seminal fluid in addition to having osmoregulatory functions. Therefore, in response to polyandry, kidney mass should be under selection regimes such as those influencing testes. Male red-sided garter snakes deposit a kidney-derived copulatory plug that functions in sperm competition. We first tested for intersexual differences in kidney mass and allometry in one population and found that males had kidneys twice as heavy as those of females, consistent with stronger selection on male kidney mass. Previous studies have shown that male size enhances mating success in one-on-one competition prevalent in small mating aggregations. We then examined the relationship between body size, kidney mass and testes mass in two populations with low (LD) and high (HD) mating aggregation densities. Males from the HD population had heavier testes and heavier kidneys compared with males from the LD population; HD males were also smaller in body size. Our results suggest that the strength of sexual selection, and possibly the balance between pre- and postcopulatory selection, varies in response to population size or density. However, more replication is needed to confirm the generality of these results within red-sided garter snakes and other squamate reptiles.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Robert T Mason
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Emily J Uhrig
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
22
|
Friesen CR, Noble DWA, Olsson M. The role of oxidative stress in postcopulatory selection. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200065. [PMID: 33070735 DOI: 10.1098/rstb.2020.0065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Two decades ago, von Schantz et al. (von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H. 1999 Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. B 266, 1-12. (doi:10.1098/rspb.1999.0597)) united oxidative stress (OS) biology with sexual selection and life-history theory. This set the scene for analysis of how evolutionary trade-offs may be mediated by the increase in reactive molecules resulting from metabolic processes at reproduction. Despite 30 years of research on OS effects on infertility in humans, one research area that has been left behind in this integration of evolution and OS biology is postcopulatory sexual selection-this integration is long overdue. We review the basic mechanisms in OS biology, why mitochondria are the primary source of ROS and ATP production during oxidative metabolism, and why sperm, and its performance, is uniquely susceptible to OS. We also review how postcopulatory processes select for antioxidation in seminal fluids to counter OS and the implications of the net outcome of these processes on sperm damage, sperm storage, and female and oocyte manipulation of sperm metabolism and repair of DNA to enhance offspring fitness. This article is part of the theme issue 'Fifty years of sperm competition'.
Collapse
Affiliation(s)
- Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, New South Wales, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory, ACT 2600, Australia
| | - Mats Olsson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, New South Wales, Australia.,Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30, Gothenburg, Sweden
| |
Collapse
|
23
|
Simmons LW, Wedell N. Fifty years of sperm competition: the structure of a scientific revolution. Philos Trans R Soc Lond B Biol Sci 2020; 375:20200060. [PMID: 33070719 DOI: 10.1098/rstb.2020.0060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, The University of Western Australia, Crawley 6009, Australia
| | - Nina Wedell
- Centre for Ecology and Conservation, University of Exeter, Cornwall, Penryn TR10 9FE, UK
| |
Collapse
|
24
|
Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, Dissanayake DSB, Dong CM, Doody JS, Edwards DL, Ezaz T, Friesen CR, Gardner MG, Georges A, Higgie M, Hill PL, Holleley CE, Hoops D, Hoskin CJ, Merry DL, Riley JL, Wapstra E, While GM, Whiteley SL, Whiting MJ, Zozaya SM, Whittington CM. Australian lizards are outstanding models for reproductive biology research. AUST J ZOOL 2020. [DOI: 10.1071/zo21017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Australian lizards are a diverse group distributed across the continent and inhabiting a wide range of environments. Together, they exhibit a remarkable diversity of reproductive morphologies, physiologies, and behaviours that is broadly representative of vertebrates in general. Many reproductive traits exhibited by Australian lizards have evolved independently in multiple lizard lineages, including sociality, complex signalling and mating systems, viviparity, and temperature-dependent sex determination. Australian lizards are thus outstanding model organisms for testing hypotheses about how reproductive traits function and evolve, and they provide an important basis of comparison with other animals that exhibit similar traits. We review how research on Australian lizard reproduction has contributed to answering broader evolutionary and ecological questions that apply to animals in general. We focus on reproductive traits, processes, and strategies that are important areas of current research, including behaviours and signalling involved in courtship; mechanisms involved in mating, egg production, and sperm competition; nesting and gestation; sex determination; and finally, birth in viviparous species. We use our review to identify important questions that emerge from an understanding of this body of research when considered holistically. Finally, we identify additional research questions within each topic that Australian lizards are well suited for reproductive biologists to address.
Collapse
|