1
|
Goller F. Respiratory contributions to birdsong-evolutionary considerations and open questions. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230431. [PMID: 40010385 PMCID: PMC11864833 DOI: 10.1098/rstb.2023.0431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/04/2024] [Accepted: 09/12/2024] [Indexed: 02/28/2025] Open
Abstract
Respiration plays a central role in avian vocal behaviour by providing the airstream that induces vibration of vocal folds. In this role, respiratory movements dictate the coarse temporal pattern of song, while simultaneously fulfilling its vital functions. Whereas these aspects have been investigated in oscines, little information exists in other taxa. Broad taxonomic information is, however, necessary for addressing questions regarding evolutionary specializations of the respiratory system. Acoustic recordings of unstudied taxa suggest that rapid action by respiratory muscles is a basal trait within birds. In addition to controlling the timing of vocalization, respiratory activity also influences acoustic features such as sound amplitude and frequency. The latter is more strongly influenced by respiratory driving pressure in non-vocal learners. Singing, as a highly dynamic respiratory activity presents an opportunity for studying detailed ventilation patterns and thus could give insight into the basic control of airflow in the avian lung-air sac system. Although we have learned many details of how respiratory control is tied into cortical song control, many open questions remain. Control of respiratory pacemaker circuitry by upstream vocal control centres, respiratory input in initiation of vocalization and the use of online feedback from the respiratory system are all incompletely understood.This article is part of the theme issue 'The biology of the avian respiratory system'.
Collapse
Affiliation(s)
- Franz Goller
- Institute for Integrative Cell Biology and Physiology, University of Münster, Münster48149, Germany
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112, USA
| |
Collapse
|
2
|
Moran IG, Loo YY, Louca S, Young NBA, Whibley A, Withers SJ, Salloum PM, Hall ML, Stanley MC, Cain KE. Vocal convergence and social proximity shape the calls of the most basal Passeriformes, New Zealand Wrens. Commun Biol 2024; 7:575. [PMID: 38750083 PMCID: PMC11096322 DOI: 10.1038/s42003-024-06253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Despite extensive research on avian vocal learning, we still lack a general understanding of how and when this ability evolved in birds. As the closest living relatives of the earliest Passeriformes, the New Zealand wrens (Acanthisitti) hold a key phylogenetic position for furthering our understanding of the evolution of vocal learning because they share a common ancestor with two vocal learners: oscines and parrots. However, the vocal learning abilities of New Zealand wrens remain unexplored. Here, we test for the presence of prerequisite behaviors for vocal learning in one of the two extant species of New Zealand wrens, the rifleman (Acanthisitta chloris). We detect the presence of unique individual vocal signatures and show how these signatures are shaped by social proximity, as demonstrated by group vocal signatures and strong acoustic similarities among distantly related individuals in close social proximity. Further, we reveal that rifleman calls share similar phenotypic variance ratios to those previously reported in the learned vocalizations of the zebra finch, Taeniopygia guttata. Together these findings provide strong evidence that riflemen vocally converge, and though the mechanism still remains to be determined, they may also suggest that this vocal convergence is the result of rudimentary vocal learning abilities.
Collapse
Affiliation(s)
- Ines G Moran
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand.
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand.
| | - Yen Yi Loo
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, 97403-1210, OR, USA
| | - Nick B A Young
- Centre for eResearch, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Sarah J Withers
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Priscila M Salloum
- Department of Zoology, University of Otago, Dunedin, 9016, Aotearoa New Zealand
| | - Michelle L Hall
- School of BioSciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Bush Heritage Australia, Melbourne, VIC, 3000, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Margaret C Stanley
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| | - Kristal E Cain
- School of Biological Sciences, University of Auckland, Auckland, 1142, Aotearoa New Zealand
- Centre for Biodiversity and Biosecurity, University of Auckland, Auckland, 1142, Aotearoa New Zealand
| |
Collapse
|
3
|
Zhang Y, Zhou L, Zuo J, Wang S, Meng W. Analogies of human speech and bird song: From vocal learning behavior to its neural basis. Front Psychol 2023; 14:1100969. [PMID: 36910811 PMCID: PMC9992734 DOI: 10.3389/fpsyg.2023.1100969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Vocal learning is a complex acquired social behavior that has been found only in very few animals. The process of animal vocal learning requires the participation of sensorimotor function. By accepting external auditory input and cooperating with repeated vocal imitation practice, a stable pattern of vocal information output is eventually formed. In parallel evolutionary branches, humans and songbirds share striking similarities in vocal learning behavior. For example, their vocal learning processes involve auditory feedback, complex syntactic structures, and sensitive periods. At the same time, they have evolved the hierarchical structure of special forebrain regions related to vocal motor control and vocal learning, which are organized and closely associated to the auditory cortex. By comparing the location, function, genome, and transcriptome of vocal learning-related brain regions, it was confirmed that songbird singing and human language-related neural control pathways have certain analogy. These common characteristics make songbirds an ideal animal model for studying the neural mechanisms of vocal learning behavior. The neural process of human language learning may be explained through similar neural mechanisms, and it can provide important insights for the treatment of language disorders.
Collapse
Affiliation(s)
- Yutao Zhang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lifang Zhou
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiachun Zuo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
4
|
Watson SK, Filippi P, Gasparri L, Falk N, Tamer N, Widmer P, Manser M, Glock H. Optionality in animal communication: a novel framework for examining the evolution of arbitrariness. Biol Rev Camb Philos Soc 2022; 97:2057-2075. [PMID: 35818133 PMCID: PMC9795909 DOI: 10.1111/brv.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022]
Abstract
A critical feature of language is that the form of words need not bear any perceptual similarity to their function - these relationships can be 'arbitrary'. The capacity to process these arbitrary form-function associations facilitates the enormous expressive power of language. However, the evolutionary roots of our capacity for arbitrariness, i.e. the extent to which related abilities may be shared with animals, is largely unexamined. We argue this is due to the challenges of applying such an intrinsically linguistic concept to animal communication, and address this by proposing a novel conceptual framework highlighting a key underpinning of linguistic arbitrariness, which is nevertheless applicable to non-human species. Specifically, we focus on the capacity to associate alternative functions with a signal, or alternative signals with a function, a feature we refer to as optionality. We apply this framework to a broad survey of findings from animal communication studies and identify five key dimensions of communicative optionality: signal production, signal adjustment, signal usage, signal combinatoriality and signal perception. We find that optionality is widespread in non-human animals across each of these dimensions, although only humans demonstrate it in all five. Finally, we discuss the relevance of optionality to behavioural and cognitive domains outside of communication. This investigation provides a powerful new conceptual framework for the cross-species investigation of the origins of arbitrariness, and promises to generate original insights into animal communication and language evolution more generally.
Collapse
Affiliation(s)
- Stuart K. Watson
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Piera Filippi
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| | - Luca Gasparri
- Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland,Univ. Lille, CNRS, UMR 8163 – STL – Savoirs Textes LangageF‐59000LilleFrance
| | - Nikola Falk
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Nicole Tamer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Paul Widmer
- Department of Comparative Language ScienceUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland
| | - Marta Manser
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Hans‐Johann Glock
- Center for the Interdisciplinary Study of Language EvolutionUniversity of ZurichAffolternstrasse 568050ZürichSwitzerland,Department of PhilosophyUniversity of ZurichZurichbergstrasse 438044ZürichSwitzerland
| |
Collapse
|
5
|
Vocal Learning and Behaviors in Birds and Human Bilinguals: Parallels, Divergences and Directions for Research. LANGUAGES 2021. [DOI: 10.3390/languages7010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Comparisons between the communication systems of humans and animals are instrumental in contextualizing speech and language into an evolutionary and biological framework and for illuminating mechanisms of human communication. As a complement to previous work that compares developmental vocal learning and use among humans and songbirds, in this article we highlight phenomena associated with vocal learning subsequent to the development of primary vocalizations (i.e., the primary language (L1) in humans and the primary song (S1) in songbirds). By framing avian “second-song” (S2) learning and use within the human second-language (L2) context, we lay the groundwork for a scientifically-rich dialogue between disciplines. We begin by summarizing basic birdsong research, focusing on how songs are learned and on constraints on learning. We then consider commonalities in vocal learning across humans and birds, in particular the timing and neural mechanisms of learning, variability of input, and variability of outcomes. For S2 and L2 learning outcomes, we address the respective roles of age, entrenchment, and social interactions. We proceed to orient current and future birdsong inquiry around foundational features of human bilingualism: L1 effects on the L2, L1 attrition, and L1<–>L2 switching. Throughout, we highlight characteristics that are shared across species as well as the need for caution in interpreting birdsong research. Thus, from multiple instructive perspectives, our interdisciplinary dialogue sheds light on biological and experiential principles of L2 acquisition that are informed by birdsong research, and leverages well-studied characteristics of bilingualism in order to clarify, contextualize, and further explore S2 learning and use in songbirds.
Collapse
|
6
|
Vernes SC, Janik VM, Fitch WT, Slater PJB. Vocal learning in animals and humans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200234. [PMID: 34482718 PMCID: PMC8422595 DOI: 10.1098/rstb.2020.0234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Sonja C Vernes
- School of Biology, The University of St Andrews, St Andrews, UK.,Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Vincent M Janik
- School of Biology, The University of St Andrews, St Andrews, UK
| | | | | |
Collapse
|
7
|
Abstract
The study of vocal production learning in birds is heavily biased towards oscine songbirds, making the songbird model the reference for comparative studies. However, as vocal learning was probably ancestral in songbirds, interspecific variations might all be variations on a single theme and need not be representative of the nature and characteristics of vocal learning in other bird groups. To assess the possible mechanisms of vocal learning and its evolution therefore requires knowledge about independently evolved incidences of vocal learning. This review examines the presence and nature of vocal production learning in non-songbirds. Using a broad definition of vocal learning and a comparative phylogenetic framework, I evaluate the evidence for vocal learning and its characteristics in non-oscine birds, including well-known vocal learners such as parrots and hummingbirds but also (putative) cases from other taxa. Despite the sometimes limited evidence, it is clear that vocal learning occurs in a range of different, non-related, taxa and can be caused by a variety of mechanisms. It is more widespread than often realized, calling for more systematic studies. Examining this variation may provide a window onto the evolution of vocal learning and increase the value of comparative research for understanding vocal learning in humans. This article is part of the theme issue ‘Vocal learning in animals and humans’.
Collapse
Affiliation(s)
- Carel Ten Cate
- Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Ten Cate C, Fullagar PJ. Vocal imitations and production learning by Australian musk ducks ( Biziura lobata). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200243. [PMID: 34482734 PMCID: PMC8419576 DOI: 10.1098/rstb.2020.0243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acquiring vocalizations by learning them from other individuals is only known from a limited number of animal groups. For birds, oscine and some suboscine songbirds, parrots and hummingbirds demonstrate this ability. Here, we provide evidence for vocal learning in a member of a basal clade of the avian phylogeny: the Australian musk duck (Biziura lobata). A hand-reared individual imitated a slamming door and a human voice, and a female-reared individual imitated Pacific black duck quacks. These sounds have been described before, but were never analysed in any detail and went so far unnoticed by researchers of vocal learning. The imitations were produced during the males' advertising display. The hand-reared male used at least three different vocalizations in the display context, with each one produced in the same stereotyped and repetitive structure as the normal display sounds. Sounds of different origins could be combined in one vocalization and at least some of the imitations were memorized at an early age, well before they were produced later in life. Together with earlier observations of vocal differences between populations and deviant vocalizations in captive-reared individuals, these observations demonstrate the presence of advanced vocal learning at a level comparable to that of songbirds and parrots. We discuss the rearing conditions that may have given rise to the imitations and suggest that the structure of the duck vocalizations indicates a quite sophisticated and flexible control over the vocal production mechanism. The observations support the hypothesis that vocal learning in birds evolved in several groups independently rather than evolving once with several losses. This article is part of the theme issue ‘Vocal learning in animals and humans’.
Collapse
Affiliation(s)
- Carel Ten Cate
- Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
9
|
Vernes SC, Kriengwatana BP, Beeck VC, Fischer J, Tyack PL, ten Cate C, Janik VM. The multi-dimensional nature of vocal learning. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200236. [PMID: 34482723 PMCID: PMC8419582 DOI: 10.1098/rstb.2020.0236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
How learning affects vocalizations is a key question in the study of animal communication and human language. Parallel efforts in birds and humans have taught us much about how vocal learning works on a behavioural and neurobiological level. Subsequent efforts have revealed a variety of cases among mammals in which experience also has a major influence on vocal repertoires. Janik and Slater (Anim. Behav.60, 1-11. (doi:10.1006/anbe.2000.1410)) introduced the distinction between vocal usage and production learning, providing a general framework to categorize how different types of learning influence vocalizations. This idea was built on by Petkov and Jarvis (Front. Evol. Neurosci.4, 12. (doi:10.3389/fnevo.2012.00012)) to emphasize a more continuous distribution between limited and more complex vocal production learners. Yet, with more studies providing empirical data, the limits of the initial frameworks become apparent. We build on these frameworks to refine the categorization of vocal learning in light of advances made since their publication and widespread agreement that vocal learning is not a binary trait. We propose a novel classification system, based on the definitions by Janik and Slater, that deconstructs vocal learning into key dimensions to aid in understanding the mechanisms involved in this complex behaviour. We consider how vocalizations can change without learning, and a usage learning framework that considers context specificity and timing. We identify dimensions of vocal production learning, including the copying of auditory models (convergence/divergence on model sounds, accuracy of copying), the degree of change (type and breadth of learning) and timing (when learning takes place, the length of time it takes and how long it is retained). We consider grey areas of classification and current mechanistic understanding of these behaviours. Our framework identifies research needs and will help to inform neurobiological and evolutionary studies endeavouring to uncover the multi-dimensional nature of vocal learning. This article is part of the theme issue 'Vocal learning in animals and humans'.
Collapse
Affiliation(s)
- Sonja C. Vernes
- School of Biology, University of St Andrews, St Andrews, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Veronika C. Beeck
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Centre, Göttingen, Germany
- Department of Primate Cognition, Georg-August-University Göttingen, Göttingen, Germany
| | - Peter L. Tyack
- School of Biology, University of St Andrews, St Andrews, UK
| | - Carel ten Cate
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|