1
|
Mishra S, Morshed N, Sidhu SB, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's Disease Gene SORL1 Regulates Lysosome Function in Human Microglia. Glia 2025; 73:1329-1348. [PMID: 40183375 PMCID: PMC12121473 DOI: 10.1002/glia.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/31/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The SORL1 gene encodes the sortilin-related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue-resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia-like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA-deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1-deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in the proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to the development of AD. Additionally, our findings may inform the development of novel lysosome and microglia-associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Nader Morshed
- Boston Children's Hospital, F.M. Kirby Neurobiology CenterBostonMassachusettsUSA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Sonia Beant Sidhu
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology CenterBostonMassachusettsUSA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Howard Hughes Medical InstituteBostonMassachusettsUSA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute of Stem Cell and Regenerative Medicine, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Li A, Zhang J, Ma C, Qi L, Hu Q, Li Q, Fang Y, Song J, Liu Y, Zhang Y. Endosomal protein DENND10 promotes developmental competence of neurite extension. iScience 2025; 28:112385. [PMID: 40330880 PMCID: PMC12051703 DOI: 10.1016/j.isci.2025.112385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/24/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
A distinguishing feature of neurons is the presence of long neurites that enable far-reaching communication. Establishing this complex morphology requires precise regulation of intracellular transport and signaling. Our study identifies DENND10, an ancient endosomal protein, as a crucial factor in shaping neuron morphology. DENND10 is a potential regulator of Rab GTPase signaling and interacts with the CCC/Retriever endosomal complex. Loss of DENND10 in a neuronal cell culture model resulted in shortened neurites. Quantitative proteomics revealed two distinct processes of neurite outgrowth: differentiation-induced biochemical changes and a pre-existing vesicular transport system modulated by DENND10. Mechanistically, both Rab27 and CCC complex subunit CCDC22 act downstream of DENND10 to support neurite extension. In primary cortical neurons, loss of DENND10 or CCDC22 led to shortened dendrites and impaired axon development. These findings provide a conceptual framework for neuronal morphogenesis during differentiation and highlight the critical role of DENND10/CCC in neurite extension.
Collapse
Affiliation(s)
- Aiqing Li
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Jie Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Chao Ma
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Lijuan Qi
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Qiuming Hu
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Qian Li
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
| | - Yufei Fang
- Wisdom Lake Academy of Pharmacy, Jiangsu Provincial Higher Education Key
Laboratory of Cell Therapy Nanoformulation (Construction), Suzhou Municipal Key
Lab of Metabolic Syndrome and Drug Research, School of Science, Xi’an
Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jianrui Song
- Wisdom Lake Academy of Pharmacy, Jiangsu Provincial Higher Education Key
Laboratory of Cell Therapy Nanoformulation (Construction), Suzhou Municipal Key
Lab of Metabolic Syndrome and Drug Research, School of Science, Xi’an
Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of
Neuroscience, Clinical Research Center of Neurological Disease, The Second
Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu
215123, China
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of
Soochow University, Suzhou 215123, China
| | - Yanling Zhang
- School of Life Sciences, Suzhou Medical College of Soochow University,
Suzhou 215123, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical
College of Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Kim Y, Ha TY, Lee MS, Chang KA. Regulatory Mechanisms and Therapeutic Implications of Lysosomal Dysfunction in Alzheimer's Disease. Int J Biol Sci 2025; 21:1014-1031. [PMID: 39897039 PMCID: PMC11781173 DOI: 10.7150/ijbs.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs) formed from hyperphosphorylated Tau, and widespread neuronal loss. The autophagy-lysosomal pathway plays a crucial role in maintaining cellular homeostasis by degrading and recycling of damaged organelles and aggregate amyloid proteins implicated in AD. Lysosomes are key effectors of autophagic process, responsible for the breakdown of a variety of damaged organelles and aggregate or dysfunctional proteins. This review examines the role of lysosomal dysfunction in AD pathophysiology, focusing on genetic factors, acidification abnormalities, and other contributing factors. We also explore the involvement of lysosomal dysfunction of microglia in AD pathology, and cover the role of lysosomal stress response (LSR) in cellular response to neuronal injury associated with AD. Furthermore, we discuss potential therapeutic strategies targeting lysosomal proteolysis pathway and addressing lysosomal dysfunction for AD treatment, including the pharmacologically activating lysosomal activity, regulating TFEB, and considering other emerging approaches.
Collapse
Affiliation(s)
- Yeji Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
| | - Tae-Young Ha
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science & Division of Endocrinology, Department of Internal Medicine & Immunology, Soonchunhyang University College of Medicine, Cheonan 31151, Korea
- Chief Scientific Officer, LysoTech, Inc., Seoul 03766, Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| |
Collapse
|
4
|
Mishra S, Morshed N, Sindhu S, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's disease gene SORL1 regulates lysosome function in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.25.600648. [PMID: 38979155 PMCID: PMC11230436 DOI: 10.1101/2024.06.25.600648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The SORL1 gene encodes the sortilin related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed in the central nervous system, including in microglia, the tissue resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia like cells (hMGLs). However, how SORLA deficiency contributes to lysosomal dysfunction in microglia and how this contributes to AD pathogenesis is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. An alternative mechanism of lysosome clearance, lysosomal exocytosis, is also impaired in SORL1 deficient microglia, which may contribute to an altered immune response. Overall, these data suggest that SORLA has an important role in proper trafficking of lysosomal hydrolases in hMGLs, which is critical for microglial function. This further substantiates the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to development of AD. Additionally, our findings may inform development of novel lysosome and microglia associated drug targets for AD.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Nader Morshed
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonia Sindhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Beth Stevens
- Boston Children’s Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Suman Jayadev
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Neurology, University of Washington, Seattle, WA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
5
|
Dai L, Wang X, Li M, Li J, Liu Y, Wu N, Meng X, Lu J, Zhang J, Chen B. Ameliorative effect and underlying mechanism of the Xiaxue Kaiqiao formula on age-related dementia in Samp8 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155801. [PMID: 39536424 DOI: 10.1016/j.phymed.2024.155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Dementia, a major symptom of several neurodegenerative diseases, can be improved by acetylcholinesterase inhibitors (AChE); however, due to the complex etiology and long course of dementia, the efficacy of these drugs remains limited. Significant empirical evidence shows that traditional Chinese medicine (TCM) markedly ameliorates intractable disease; nevertheless, a suitable regimen has yet to be widely accepted, which is likely the result of gaps in the understanding of its causality. We propose that taking advantage of the TCM theory of collateral activation and prevention of accumulation by purgation may improve dementia treatment; thus, we designed the Xiaxue Kaiqiao formula (XKF) accordingly. PURPOSE To explore the ameliorative effect and underlying mechanism of XKF on dementia in a Samp8 mouse model. METHODS Samp8 mice were treated with XKF for eight weeks, and the amelioration of dementia was subsequently assessed using the novel object recognition, Barnes maze, and open-field behavioral tests. Neuropathological alterations were observed by immunofluorescence (IF) and Golgi staining of brain tissue. Drug safety was evaluated by blood biochemical tests, organ coefficients, and hematoxylin-eosin (H&E) staining. Proteomics analysis was performed on frozen brain tissue using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Behavioral testing revealed that the administration of XKF had significant ameliorative effects on memory discrimination, spatial learning memory, and anxiety in Samp8 mice. IF staining showed that XKF reduced the loss of postsynaptic density protein 95 (PSD95), myelin, neurons, and axons, as well as decreased the proliferation of astrocytes and microglia in the hippocampal and temporal lobe regions. Evaluation of drug safety demonstrated no abnormal organ morphology following XKF treatment. CONCLUSION XKF treatment improved the symptoms of dementia in Samp8 mice, indicating the potential for clinical application. The mechanism underlying the ameliorative effect of XKF on dementia is likely increased synaptic transmission between neurons. Our data provide reliable evidence for the TCM theory of collateral activation and prevention of accumulation by purgation.
Collapse
Affiliation(s)
- Lu Dai
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiaoxu Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Meng Li
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Jiaying Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yifei Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Na Wu
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Xia Meng
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Jing Lu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China; Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Jing Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China; Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China.
| | - Baian Chen
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China; Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
6
|
Fitzsimons LA, Atif-Sheikh M, Lovely J, Mueth M, Rice M, Kotredes K, Howell G, Harrison BJ. CD2AP is Co-Expressed with Tropomyosin-Related Kinase A and Ras-Related Protein Rab-5A in Cholinergic Neurons of the Murine Basal Forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604961. [PMID: 39211110 PMCID: PMC11361140 DOI: 10.1101/2024.07.24.604961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Basal forebrain cholinergic neurons project to the hippocampus and cortex, are critical for learning and memory, and are central to the pathogenesis of Alzheimer's disease (AD). GWAS have consistently shown that genomic variants at the CD2AP gene locus are associated with significant increased risk of AD. GWAS studies have also shown that genetic variants in endocytosis genes, including RAB5A , significantly increase susceptibility to AD. Previous work in our lab has shown that CD2AP functions as a docking-scaffold/adaptor protein as a coordinator of nerve growth factor (NGF) and trophic signaling in neurons. We have also demonstrated that CD2AP positively regulates Rab5-mediated mechanisms of endocytosis in primary sensory neurons. The purpose of this study was to perform an in vivo characterization of CD2AP expression in cholinergic neurons of the brain regions most relevant to AD pathogenesis and to investigate the colocalization of CD2AP and Rab5 in cholinergic neurons of the murine basal forebrain. Brain tissue was perfused, harvested from ChAT BAC -eGFP transgenic mice (N=4 male, N=4 female; aged 10 mo), where cholinergic neurons (co-) express green fluorescence protein (GFP) in central and peripheral neurons that express choline acetyltransferase (ChAT). Frozen tissue sections were used to assess the specificity of the reporter in mouse brain along with localization of both CD2AP and Rab5 (co-) expression using immunofluorescence (IF) analysis of ChAT-GFP+ neurons and primary antibodies against ChAT, CD2AP and Rab5. Image J software was used to develop and optimize a colocalization assay for CD2AP and Rab5 puncta. Experiments were repeated in a follow-up cohort of aged-adult mice (N=2 male, N=2 female; aged 18 mo). IF expression of CD2AP was quantified in the basal forebrain, diagonal band of Broca (vDB), and striatal regions and compared to results from the cortical regions of the adult mouse brain. Colocalization of CD2AP was observed in the cell bodies of ChAT-GFP+ neurons of the striatum, vDB and basal forebrain regions, where CD2AP expression intensity as well as the number of cell bodies with positive signal increased incrementally. Colocalization analyses revealed near-complete overlap of CD2AP and Rab5 expression in ChAT-GFP+ cholinergic neurons of the basal forebrain region. We conclude that cholinergic neurons express CD2AP in healthy adult and aged-adult mouse brains. These data provide the first evidence of quantifiable CD2AP protein expression of cholinergic neurons specific to the diagonal band of Broca (vDB) and basal forebrain. Together with previous research from our lab, these data support a role for CD2AP in the pathogenesis of AD through orchestration of endocytosis and retrograde signaling. Ongoing studies are underway to verify these findings in a novel AD mouse model that incorporates the humanized variant of CD2AP , created by MODEL-AD, where we aim to further investigate how CD2AP variants may affect mechanistic components of Rab5 endocytosis as well as subsequent survival of cholinergic neurons in the context of known amyloid beta and Tau pathologies.
Collapse
|
7
|
Jaye S, Sandau US, Saugstad JA. Clathrin mediated endocytosis in Alzheimer's disease: cell type specific involvement in amyloid beta pathology. Front Aging Neurosci 2024; 16:1378576. [PMID: 38694257 PMCID: PMC11061891 DOI: 10.3389/fnagi.2024.1378576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
This review provides a comprehensive examination of the role of clathrin-mediated endocytosis (CME) in Alzheimer's disease (AD) pathogenesis, emphasizing its impact across various cellular contexts beyond neuronal dysfunction. In neurons, dysregulated CME contributes to synaptic dysfunction, amyloid beta (Aβ) processing, and Tau pathology, highlighting its involvement in early AD pathogenesis. Furthermore, CME alterations extend to non-neuronal cell types, including astrocytes and microglia, which play crucial roles in Aβ clearance and neuroinflammation. Dysregulated CME in these cells underscores its broader implications in AD pathophysiology. Despite significant progress, further research is needed to elucidate the precise mechanisms underlying CME dysregulation in AD and its therapeutic implications. Overall, understanding the complex interplay between CME and AD across diverse cell types holds promise for identifying novel therapeutic targets and interventions.
Collapse
Affiliation(s)
| | | | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|