1
|
Lehnert MS, Myers KO, Reiter KE. The Right Tool for the Job: A Review of Insect Mouthparts as a Tool Kit for Biomimetic Studies. Biomimetics (Basel) 2025; 10:196. [PMID: 40277595 PMCID: PMC12024784 DOI: 10.3390/biomimetics10040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Few traits exhibit a more diverse collection of exemplary structure-function relationships than the mouthparts of insects. The global dominance of insects is attributed to their diverse food sources, which are matched by an array of morphological and chemical adaptations: a 'tool kit' for biomimicry. This review provides an overview of insect mouthparts that have contributed to biomimetics, including information about morphology and functionality in relation to particular feeding mechanisms. Themes in the groups of insects employed for particular biomimetic studies, including their lineages and feeding strategies, are identified along with suggestions for future studies, which together underscore the importance and promise of the development of novel engineered devices inspired by the unique 'tools' of insect mouthparts.
Collapse
Affiliation(s)
- Matthew S. Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA;
| | - Kendall O. Myers
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA;
| | - Kristen E. Reiter
- Biology Department, Cuyahoga Community College, Highland Hills, OH 44122, USA;
| |
Collapse
|
2
|
Wei LF, Liu XY, Feng HS, Zhang JT, Liu XP. Impact of Polystyrene Micro- and Nanoplastics on the Biological Traits of the Japanese Carpenter Ant, Camponotus japonicus Mayr (Hymenoptera: Formicidae). INSECTS 2025; 16:292. [PMID: 40266802 PMCID: PMC11943275 DOI: 10.3390/insects16030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025]
Abstract
Insects, being among the most diverse and abundant organisms in terrestrial ecosystems, are inevitably exposed to ubiquitous micro- and nanoplastic contaminants. Although studies on the impact of these contaminants on terrestrial insects are gradually emerging, they remain limited in scope. In this study, we investigated the biological traits (including foraging behavior, food assumption, digging ability, body weight and survival) of the Japanese carpenter ant, Camponotus japonicus, in response to exposure to polystyrene micro- and nanoplastic (PS-M/NP) solutions containing three particle sizes (0.05, 1 and 50 μm) and four concentrations (0.1, 1, 10 and 50 mg/mL). The results showed that worker ants exhibited significant foraging preference and food consumption for non-contaminated solutions in multiple-choice experiments, indicating that worker ants C. japonicus can differentiate and avoid feeding on PS-M/NP-contaminated solutions. Meanwhile, PS-M/NPs significantly reduced the foraging ability of worker ants in multiple-choice and no-choice experiments, with the smallest particle size (0.05 μm) and highest concentration (50 mg/mL) of PS-M/NPs resulting in the longest pre-foraging period, the lowest percentage of licking and the amount of food consumption. In addition, the weight of sand removed by worker ants, the body weight and survival of worker ants showed a dramatic decline with a decrease in particle size, increase in concentration and prolonged in exposure time of PS-M/NP-contaminated solutions. The results of this study confirm that PS-M/NPs have an adverse effect on these worker ants in a particle size, concentration and exposure time-dependent manner, with small particle size, high concentration and longer exposure time being the key factors in decreasing the foraging behavior and biological traits of this insect.
Collapse
Affiliation(s)
| | | | | | | | - Xing-Ping Liu
- Provincial Key Laboratory of Conservation Biology, School of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (L.-F.W.); (X.-Y.L.); (H.-S.F.); (J.-T.Z.)
| |
Collapse
|
3
|
Le Hen G, Masoni A, Manuelli M, Falsini S, Corti E, Balzani P, Renault D, Papini A, Santini G. Ants avoid food contaminated with micro- and nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124625. [PMID: 39069242 DOI: 10.1016/j.envpol.2024.124625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Micro- and nanoplastics (MNP) have recently received particular attention in freshwater and marine ecosystems, but less is known about their impact on terrestrial species. Ants can be used as biological indicators for many types of pollutants and are therefore a good candidate to explore the effects of MNP pollution. In the present study, we investigated the ability of workers from seven colonies of the acrobat ant Crematogaster scutellaris to detect MNP in their food. After two days of starvation, groups of ten ants were tested for their preference toward control and polyethylene-treated solutions. Every 5 min over a total 20 min period, the number of workers feeding on either solution was counted. The results showed that C. scutellaris workers could detect and avoid contaminated food, feeding more often on the uncontaminated solution in the first 10 min. However, after 10 min the food preference was no longer significant between the groups, likely owing to feeding satiation. We then assessed whether this feeding behaviour is sufficient to cause the accumulation of MNP in the ant. We thereby provided a solution containing fluorescent MNP (fMNP) at the same concentration as in the previous experiments. Observation of the ants' mouthparts using fluorescent light microscopy showed that after 10 min dense aggregations of fMNP were visible. Further investigations are needed to understand the mechanisms of detection of MNP by ants, and the accumulation dynamics in ants' bodies. Moreover, the effects of MNP on the integrity and fitness of ant colonies, as well as the potential transfer across terrestrial trophic chains should be explored.
Collapse
Affiliation(s)
- Gwendaline Le Hen
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Università degli Studi di Firenze, Dipartimento di Biologia, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy.
| | - Alberto Masoni
- Università degli Studi di Firenze, Dipartimento di Biologia, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - Marta Manuelli
- Università degli Studi di Firenze, Dipartimento di Biologia, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| | - Sara Falsini
- Università degli Studi di Firenze, Dipartimento di Biologia, Via Pier Antonio Micheli, 3, 50121, Firenze, Italy
| | - Emilio Corti
- Università degli Studi di Firenze, Dipartimento di Biologia, Via Pier Antonio Micheli, 3, 50121, Firenze, Italy
| | - Paride Balzani
- University of South Bohemia in České Budějovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, 35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France
| | - Alessio Papini
- Università degli Studi di Firenze, Dipartimento di Biologia, Via Pier Antonio Micheli, 3, 50121, Firenze, Italy
| | - Giacomo Santini
- Università degli Studi di Firenze, Dipartimento di Biologia, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Dal Pos D, Sharanowski BJ. A host driven parasitoid syndrome: Convergent evolution of multiple traits associated with woodboring hosts in Ichneumonidae (Hymenoptera, Ichneumonoidea). PLoS One 2024; 19:e0311365. [PMID: 39348351 PMCID: PMC11441683 DOI: 10.1371/journal.pone.0311365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024] Open
Abstract
The evolution of convergent phenotypes is of major interest in biology because of their omnipresence and ability to inform the study of evolutionary novelty and constraint. Convergent phenotypes can be combinations of traits that evolve concertedly, called syndromes, and these can be shaped by a common environmental pressure. Parasitoid wasps which use a wide variety of arthropod hosts have also repeatedly and convergently switched host use across their evolutionary history. They thus represent a natural laboratory for the evolution of trait syndromes that are associated with parasitism of specific hosts and host substrates. In this study, we tested the evolution of co-evolving characters in the highly diverse family Ichneumonidae associated with ovipositing in a specific and well-defined substrate: wood. Using a newly constructed phylogeny and an existing morphological dataset, we identified six traits correlated with the wood-boring lifestyle that demonstrate convergent evolution. At least one trait, the presence of teeth on the ovipositor, typically preceded the evolution of other traits and possibly the switch to parasitism of wood-boring hosts. For each trait, we provide a historical review of their associations with wood-boring parasitoids, reevaluate the function of some characters, and suggest future coding improvements. Overall, we demonstrate the convergent evolution of multiple traits associated with parasitism of woodboring hosts and propose a syndrome in a hyper diverse lineage of parasitoid wasps.
Collapse
Affiliation(s)
- Davide Dal Pos
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Barbara J. Sharanowski
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
5
|
Klunk CL, Heethoff M, Hammel JU, Gorb SN, Krings W. Mechanical and elemental characterization of ant mandibles: consequences for bite mechanics. Interface Focus 2024; 14:20230056. [PMID: 38618235 PMCID: PMC11008963 DOI: 10.1098/rsfs.2023.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/16/2024] [Indexed: 04/16/2024] Open
Abstract
Mandible morphology has an essential role in biting performance, but the mandible cuticle can have regional differences in its mechanical properties. The effects of such a heterogeneous distribution of cuticle material properties in the mandible responses to biting loading are still poorly explored in chewing insects. Here, we tested the mechanical properties of mandibles of the ant species Formica cunicularia by nanoindentation and investigated the effects of the cuticular variation in Young's modulus (E) under bite loading with finite-element analysis (FEA). The masticatory margin of the mandible, which interacts with the food, was the hardest and stiffest region. To unravel the origins of the mechanical property gradients, we characterized the elemental composition by energy-dispersive X-ray spectroscopy. The masticatory margin possessed high proportions of Cu and Zn. When incorporated into the FEA, variation in E effectively changed mandible stress patterns, leading to a relatively higher concentration of stresses in the stiffer mandibular regions and leaving the softer mandible blade with relatively lower stress. Our results demonstrated the relevance of cuticle E heterogeneity in mandibles under bite loading, suggesting that the accumulation of transition metals such as Cu and Zn has a relevant correlation with the mechanical characteristics in F. cunicularia mandibles.
Collapse
Affiliation(s)
- Cristian L. Klunk
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Michael Heethoff
- Animal Evolutionary Ecology, Technische Universität Darmstadt, Schnittspahnstr. 3, Darmstadt 64287, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, Kiel 24118, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, Leipzig, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| |
Collapse
|
6
|
Laird MF, Ross CF, Kang V, Konow N. Introduction: food processing and nutritional assimilation in animals. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220559. [PMID: 37839455 PMCID: PMC10577032 DOI: 10.1098/rstb.2022.0559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
How animals process and absorb nutrients from their food is a fundamental question in biology. Despite the continuity and interaction between intraoral food processing and post-oesophageal nutritional extraction, these topics have largely been studied separately. At present, we lack a synthesis of how pre- and post-oesophageal mechanisms of food processing shape the ability of various taxa to effectively assimilate nutrients from their diet. The aim of this special issue is to catalyse a unification of these distinct approaches as a functional continuum. We highlight questions that derive from this synthesis, as well as technical advances to address these questions. At present, there is also a skew toward vertebrates in studies of feeding form-function mechanics; by including perspectives from researchers working on both vertebrates and invertebrates, we hope to stimulate integrative and comparative research on food processing and nutritional assimilation. Below, we discuss how the papers in this issue contribute to these goals in three areas: championing a functional-comparative approach, quantifying performance and emphasizing the effects of life history, and food substrate and extrinsic factors in current and future studies of oral food processing and nutritional assimilation. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Myra F. Laird
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA 19104-6243, USA
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts, Lowell, MA 01854, USA
- UMass Movement Center, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|