1
|
Škorpíková L, Vadlejch J, Ilgová J, Plhal R, Drimaj J, Mikulka O, Magdálek J, Kašný M, Reslová N. Molecular uncovering of important helminth species in wild ruminants in the Czech Republic. Front Vet Sci 2025; 12:1544270. [PMID: 39968104 PMCID: PMC11832707 DOI: 10.3389/fvets.2025.1544270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Monitoring gastrointestinal helminth infections in wild ruminants poses significant challenges for managing wildlife health, particularly regarding invasive species. Traditional coprological methods are often limited by their labor-intensive nature and potential for erroneous identification due to morphological similarities among parasite species. This study employed advanced molecular techniques to assess the prevalence and distribution of several helminth taxa, including the invasive nematode Ashworthius sidemi and the trematode Fascioloides magna, in wild ruminant populations in the Czech Republic (CR). A comprehensive and extensive survey on parasite occurrence, unique in its nationwide scope, was conducted on 983 fecal samples collected from red deer (Cervus elaphus), roe deer (Capreolus capreolus), fallow deer (Dama dama), and mouflon (Ovis musimon) across various regions of the CR. The samples were analyzed using multiplex real-time PCR assays specifically designed to detect the DNA of six helminth representatives: the nematodes A. sidemi and Haemonchus spp., as well as the trematodes F. magna, Dicrocoelium dendriticum, Fasciola hepatica, and Calicophoron daubneyi (and representatives of the family Paramphistomidae, respectively). These assays targeted regions of ribosomal DNA (rDNA) and were designed to exhibit high sensitivity and specificity, enabling accurate detection of helminth parasites directly in fecal samples. The molecular assays revealed that invasive nematode A. sidemi was the most prevalent helminth species, detected in 15.8% of all samples (155/983), with the highest infection rate observed in red deer at 30.7% (124/404). Haemonchus spp. were also frequently detected, identified in 14.9% of samples (146/983), particularly in roe deer, with a prevalence of 23.2% (86/371). Spatial analysis of these nematodes across various regions of the CR revealed the extensive distribution of both A. sidemi and Haemonchus spp. in nearly all regions. In contrast, trematode infections were less common, with F. magna and D. dendriticum each found in only 1.5% of samples (15/983). Members of the family Paramphistomidae were detected in 0.2% of the samples (2/983) and were confirmed through sequencing as C. daubneyi. The geographical distribution patterns identified in this study indicate potential hotspots for specific helminth species. These findings are critical for planning health management and conservation strategies to mitigate the impacts of helminth infections, especially in areas affected by invasive species.
Collapse
Affiliation(s)
- Lucie Škorpíková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jaroslav Vadlejch
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Radim Plhal
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Jakub Drimaj
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Ondřej Mikulka
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czechia
| | - Jan Magdálek
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Nikol Reslová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Moiron M, Bouwhuis S. Age-dependent shaping of the social environment in a long-lived seabird: a quantitative genetic approach. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220465. [PMID: 39463241 PMCID: PMC11513638 DOI: 10.1098/rstb.2022.0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/29/2024] Open
Abstract
Individual differences in social behaviour can result in fine-scale variation in spatial distribution and, hence, in the social environment experienced. Given the expected fitness consequences associated with differences in social environments, it is imperative to understand the factors that shape them. One potential such factor is age. Age-specific social behaviour-often referred to as 'social ageing'-has only recently attracted attention, requiring more empirical work across taxa. Here, we use 29 years of longitudinal data collected in a pedigreed population of long-lived, colonially breeding common terns (Sterna hirundo) to investigate sources of variation in, and quantitative genetic underpinnings of, an aspect of social ageing: the shaping of the social environment experienced, using the number of neighbours during breeding as a proxy. Our analyses reveal age-specific declines in the number of neighbours during breeding, as well as selective disappearance of individuals with a high number of neighbours. Moreover, we find this social trait, as well as individual variation in the slope of its age-specific decline, to be heritable. These results suggest that social ageing might underpin part of the variation in the overall multicausal ageing phenotype, as well as undergo microevolution, highlighting the potential role of social ageing as a facilitator for, or constraint of, the evolutionary potential of natural populations.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Maria Moiron
- Institute of Avian Research, Wilhelmshaven26386, Germany
- Department of Evolutionary Biology, Bielefeld University, Bielefeld33501, Germany
| | | |
Collapse
|
3
|
Harrison LM, Churchill ER, Fairweather M, Smithson CH, Chapman T, Bretman A. Ageing effects of social environments in 'non-social' insects. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220463. [PMID: 39463243 PMCID: PMC11513649 DOI: 10.1098/rstb.2022.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 10/29/2024] Open
Abstract
It is increasingly clear that social environments have profound impacts on the life histories of 'non-social' animals. However, it is not yet well known how species with varying degrees of sociality respond to different social contexts and whether such effects are sex-specific. To survey the extent to which social environments specifically affect lifespan and ageing in non-social species, we performed a systematic literature review, focusing on invertebrates but excluding eusocial insects. We found 80 studies in which lifespan or ageing parameters were measured in relation to changes in same-sex or opposite-sex exposure, group size or cues thereof. Most of the studies focused on manipulations of adults, often reporting sex differences in lifespan following exposure to the opposite sex. Some studies highlighted the impacts of developmental environments or social partner age on lifespan. Several studies explored potential underlying mechanisms, emphasizing that studies on insects could provide excellent opportunities to interrogate the basis of social effects on ageing. We discuss what these studies can tell us about the social environment as a stressor, or trade-offs in resources prompted by different social contexts. We suggest fruitful avenues for further research of social effects across a wider and more diverse range of taxa.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Lauren M. Harrison
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Emily R. Churchill
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Megan Fairweather
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claire H. Smithson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Firth JA, Albery GF, Bouwhuis S, Brent LJN, Salguero-Gómez R. Understanding age and society using natural populations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220469. [PMID: 39463246 PMCID: PMC11513640 DOI: 10.1098/rstb.2022.0469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024] Open
Abstract
Ageing affects almost all aspects of life and therefore is an important process across societies, human and non-human animal alike. This article introduces new research exploring the complex interplay between individual-level ageing and demography, and the consequences this interplay holds for the structure and functioning of societies across various natural populations. We discuss how this Special Issue provides a foundation for integrating perspectives from evolutionary biology, behavioural ecology and demography to provide new insights into how ageing shapes individuals' social behaviour and social associations, and how this in turn impacts social networks, social processes (such as disease or information transfer) and fitness. Through examining these topics across taxa, from invertebrates to birds and mammals, we outline how contemporary studies are using natural populations to advance our understanding of the relationship between age and society in innovative ways. We highlight key emerging research themes from this Special Issue, such as how sociality affects lifespan and health, the genetic and ecological underpinnings of social ageing and the adaptive strategies employed by different species. We conclude that this Special Issue underscores the importance of studying social ageing using diverse systems and interdisciplinary approaches for advancing evolutionary and ecological insights into both ageing and sociality more generally.This article is part of the discussion meeting issue 'Understanding age and society using natural populations '.
Collapse
Affiliation(s)
- Josh A. Firth
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Department of Biology, Oxford University, Oxford, UK
| | - Gregory F. Albery
- School of Natural Sciences, Trinity College Dublin, Dublin, Republic of Ireland
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | |
Collapse
|
5
|
Siracusa ER, Pavez-Fox MA, Negron-Del Valle JE, Phillips D, Platt ML, Snyder-Mackler N, Higham JP, Brent LJN, Silk MJ. Social ageing can protect against infectious disease in a group-living primate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220462. [PMID: 39463240 PMCID: PMC11528358 DOI: 10.1098/rstb.2022.0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 10/29/2024] Open
Abstract
The benefits of social living are well established, but sociality also comes with costs, including infectious disease risk. This cost-benefit ratio of sociality is expected to change across individuals' lifespans, which may drive changes in social behaviour with age. To explore this idea, we combine data from a group-living primate for which social ageing has been described with epidemiological models to show that having lower social connectedness when older can protect against the costs of a hypothetical, directly transmitted endemic pathogen. Assuming no age differences in epidemiological characteristics (susceptibility to, severity and duration of infection), older individuals suffered lower infection costs, which was explained largely because they were less connected in their social networks than younger individuals. This benefit of 'social ageing' depended on epidemiological characteristics and was greatest when infection severity increased with age. When infection duration increased with age, social ageing was beneficial only when pathogen transmissibility was low. Older individuals benefited most from having a lower frequency of interactions (strength) and network embeddedness (closeness) and benefited less from having fewer social partners (degree). Our study provides a first examination of the epidemiology of social ageing, demonstrating the potential for pathogens to influence the evolutionary dynamics of social ageing in natural populations.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Erin R. Siracusa
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Melissa A. Pavez-Fox
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Michael L. Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Marketing, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, USA
| | - Lauren J. N. Brent
- School of Psychology, Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Matthew J. Silk
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Patterson SK, Andonov E, Arre AM, Martínez MI, Negron-Del Valle JE, Petersen RM, Phillips D, Rahman A, Ruiz-Lambides A, Villanueva I, Lea AJ, Snyder-Mackler N, Brent LJ, Higham JP. Early life adversity has sex-dependent effects on survival across the lifespan in rhesus macaques. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220456. [PMID: 39463249 PMCID: PMC11513645 DOI: 10.1098/rstb.2022.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Accepted: 03/18/2024] [Indexed: 10/29/2024] Open
Abstract
Exposure to early life adversity is linked to detrimental fitness outcomes across taxa. Owing to the challenges of collecting longitudinal data, direct evidence for long-term fitness effects of early life adversity from long-lived species remains relatively scarce. Here, we test the effects of early life adversity on male and female longevity in a free-ranging population of rhesus macaques (Macaca mulatta) on Cayo Santiago, Puerto Rico. We leveraged six decades of data to quantify the relative importance of 10 forms of early life adversity for 6599 macaques. Individuals that experienced more early life adversity died earlier than those that experienced less adversity. Mortality risk was highest during early life, defined as birth to 4 years old, but heightened mortality risk was also present in macaques that survived to adulthood. Females and males were affected differently by some forms of adversity, and these differences might be driven by varying energetic demands and dispersal patterns. Our results show that the fitness consequences of early life adversity are not uniform across individuals but vary as a function of the type of adversity, timing and social context, and thus contribute to our limited but growing understanding of the evolution of early life sensitivities.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Sam K. Patterson
- Department of Anthropology, New York University, New York10003, USA
| | - Ella Andonov
- High School of American Studies at Lehman College, Bronx, New York10468, USA
| | - Alyssa M. Arre
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | - Melween I. Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
| | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
| | - Ahaylee Rahman
- Brooklyn Technical High School, Brooklyn, New York11217, USA
| | - Angelina Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan00925, Puerto Rico
| | | | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville37235, USA
- Child and Brain Development Program, Canadian Institute for Advanced Study, TorontoM5G 1M1, Canada
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe85281, USA
- School of Life Sciences and School of Human Evolution and Social Change, Arizona State University, Tempe85281, USA
| | - Lauren J.N. Brent
- Department of Psychology, Centre for Research in Animal Behaviour, University of Exeter, ExeterEX4 4QJ, USA
| | - James P. Higham
- Department of Anthropology, New York University, New York10003, USA
| |
Collapse
|