1
|
Huang CJ, Wu TL, Wu YL, Wang RS, Lin YC. Comparative genomic analysis uncovered phylogenetic diversity, evolution of virulence factors, and horizontal gene transfer events in tomato bacterial spot Xanthomonas euvesicatoria. Front Microbiol 2024; 15:1487917. [PMID: 39564482 PMCID: PMC11573517 DOI: 10.3389/fmicb.2024.1487917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Bacterial spot, caused by diverse xanthomonads classified into four lineages within three species, poses a significant threat to global pepper and tomato production. In Taiwan, tomato bacterial spot xanthomonads phylogenetically related to an atypical Xanthomonas euvesicatoria pv. perforans (Xep) strain NI1 from Nigeria were found. Methods To investigate the genetic structure of Taiwanese Xep strains and determine the phylogenetic position of the atypical strains, we completed high-quality, gap-free, circularized genomes of seven Taiwanese Xep strains and performed comparative genomic analyses with genomes of X. euvesicatoria pathovars. Average nucleotide identity, core genome analysis, and phylogenomic analysis were conducted. Results Three sequenced strains were identified as typical Xep, while four clustered with the atypical strain NI1, forming a distinct genomovar within X. euvesicatoria, proposed as X. euvesicatoria genomovar taiwanensis (Xet). This new lineage likely originated in Taiwan and spread to Nigeria through global seed trade. At the genomovar level, chromosomes remained conserved among Taiwanese strains, while plasmids likely contributed to bacterial virulence, avirulence, and field fitness. Gap-free genomes revealed associations between the evolution of type III effectors, horizontal gene transfer events, plasmid diversity, and recombination. Discussion This study highlights the critical roles of horizontal gene transfer and plasmids in shaping the genetic makeup, evolution, and environmental adaptation of plant pathogenic xanthomonads. The identification of a new genomovar, X. euvesicatoria genomovar taiwanensis, provides insights into the diversity and global spread of bacterial spot pathogens through seed trade.
Collapse
Affiliation(s)
- Chien-Jui Huang
- Department of Plant Medicine, National Chiayi University, Chiayi, Taiwan
| | - Ting-Li Wu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Lin Wu
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ruei-Shiuan Wang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agriltural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Cobe BL, Dey S, Minasov G, Inniss N, Satchell KJF, Cianciotto NP. Bactericidal effectors of the Stenotrophomonas maltophilia type IV secretion system: functional definition of the nuclease TfdA and structural determination of TfcB. mBio 2024; 15:e0119824. [PMID: 38832773 PMCID: PMC11253643 DOI: 10.1128/mbio.01198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).
Collapse
Affiliation(s)
- Brandi L. Cobe
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supratim Dey
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Drehkopf S, Scheibner F, Büttner D. Functional characterization of VirB/VirD4 and Icm/Dot type IV secretion systems from the plant-pathogenic bacterium Xanthomonas euvesicatoria. Front Cell Infect Microbiol 2023; 13:1203159. [PMID: 37593760 PMCID: PMC10432156 DOI: 10.3389/fcimb.2023.1203159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Many Gram-negative plant- and animal-pathogenic bacteria employ type IV secretion (T4S) systems to transport proteins or DNA/protein complexes into eukaryotic or bacterial target cells. T4S systems have been divided into minimized and expanded T4S systems and resemble the VirB/VirD4 T4S system from the plant pathogen Agrobacterium tumefaciens and the Icm/Dot T4S system from the human pathogen Legionella pneumophila, respectively. The only known plant pathogen with both types of T4S systems is Xanthomonas euvesicatoria which is the causal agent of bacterial spot disease on pepper and tomato plants. Results and discussion In the present study, we show that virB/virD4 and icm/dot T4S genes are expressed and encode components of oligomeric complexes corresponding to known assemblies of VirB/VirD4 and Icm/Dot proteins. Both T4S systems are dispensable for the interaction of X. euvesicatoria with its host plants and do not seem to confer contact-dependent lysis of other bacteria, which was previously shown for the chromosomally encoded VirB/VirD4 T4S system from Xanthomonas axonopodis pv. citri. The corresponding chromosomal T4S gene cluster from X. euvesicatoria is incomplete, however, the second plasmid-localized vir gene cluster encodes a functional VirB/VirD4 T4S system which contributes to plasmid transfer. In agreement with this finding, we identified the predicted relaxase TraI as substrate of the T4S systems from X. euvesicatoria. TraI and additional candidate T4S substrates with homology to T4S effectors from X. axonopodis pv. citri interact with the T4S coupling protein VirD4. Interestingly, however, the predicted C-terminal VirD4-binding sites are not sufficient for T4S, suggesting the contribution of additional yet unknown mechanisms to the targeting of T4S substrates from X. euvesicatoria to both VirB/VirD4 and Icm/Dot T4S systems.
Collapse
Affiliation(s)
| | | | - Daniela Büttner
- Institute for Biology, Department of Genetics, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Kaur A, Rana R, Bansal K, Patel HK, Sonti RV, Patil PB. Insights into the Diversity of Transcription Activator-Like Effectors in Indian Pathotype Strains of Xanthomonas oryzae pv. oryzae. PHYTOPATHOLOGY 2023; 113:953-959. [PMID: 36441870 DOI: 10.1094/phyto-08-22-0304-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a major rice pathogen, and its genome harbors extensive inter-strain and inter-lineage variations. The emergence of highly virulent pathotypes of Xoo that can overcome major resistance (R) genes deployed in rice breeding programs is a grave threat to rice cultivation. The present study reports on a long-read Oxford nanopore-based complete genomic investigation of Xoo isolates from 11 pathotypes that are reported based on their reaction toward 10 R genes. The investigation revealed remarkable variation in the genome structure in the strains belonging to different pathotypes. Furthermore, transcription activator-like effector (TALE) proteins secreted by the type III secretion system display marked variation in content, genomic location, classes, and DNA-binding domain. We also found the association of tal genes in the vicinity of regions with genome structural variations. Furthermore, in silico analysis of the genome-wide rice targets of TALEs allowed us to understand the emergence of pathotypes compatible with major R genes. Long-read, cost-effective sequencing technologies such as nanopore can be a game changer in the surveillance of major and emerging pathotypes. The resource and findings will be invaluable in the management of Xoo and in appropriate deployment of R genes in rice breeding programs.
Collapse
Affiliation(s)
- Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rekha Rana
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
- The Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Ramesh V Sonti
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
5
|
Sciallano C, Auguy F, Boulard G, Szurek B, Cunnac S. The Complete Genome Resource of Xanthomonas oryzae pv. oryzae CIX2779 Includes the First Sequence of a Plasmid for an African Representative of This Rice Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:73-77. [PMID: 36537805 DOI: 10.1094/mpmi-09-22-0191-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The bacterial plant pathogen Xanthomonas oryzae pv. oryzae is responsible for the foliar rice bacterial blight disease. Genetically contrasted, continent-specific, sublineages of this species can cause important damages to rice production both in Asia and Africa. We report on the genome of the CIX2779 strain of this pathogen, previously named NAI1 and originating from Niger. Oxford Nanopore long reads assembly and Illumina short reads polishing produced a genome sequence composed of a 4,725,792-bp circular chromosome and a 39,798-bp-long circular plasmid designated pCIX2779_1. The chromosome structure and base-level sequence are highly related to reference strains of African X. oryzae pv. oryzae and encode identical transcription activator-like effectors for virulence. Importantly, our in silico analysis strongly indicates that pCIX2779_1 is a genuine conjugative plasmid, the first indigenous one sequenced from an African strain of the X. oryzae species. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Coline Sciallano
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Florence Auguy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gabriel Boulard
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sébastien Cunnac
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
6
|
Rana R, Madhavan VN, Saroha T, Bansal K, Kaur A, Sonti RV, Patel HK, Patil PB. Xanthomonas indica sp. nov., a Novel Member of Non-Pathogenic Xanthomonas Community from Healthy Rice Seeds. Curr Microbiol 2022; 79:304. [PMID: 36064810 DOI: 10.1007/s00284-022-03001-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
Xanthomonas is a major group of pathogenic bacteria infecting staple food crops like rice. Increasingly it is being recognized that non-pathogenic Xanthomonas (NPX) are also important members of a healthy plant microbiome. However, the vast majority of the species described in this genus are of pathogenic nature, and only a few NPX species have been reported till now. Genomic and taxonogenomic analysis of NPX is needed for the management of this important group of bacteria. In this study, two yellow-pigmented bacterial isolates were obtained from healthy rice seeds in Punjab, India. The isolates designated PPL560T and PPL568 were identified as members of the genus Xanthomonas based on biochemical tests and 16S rRNA gene sequence analysis retrieved from the whole-genome sequences. Isolates formed a distinct monophyletic lineage with Xanthomonas sontii and Xanthomonas sacchari as the closest relatives in the phylogenetic tree based on core gene content shared by the representative species of the genus Xanthomonas. Pairwise ortho Average Nucleotide Identity and digital DNA-DNA hybridization values calculated against other species of Xanthomonas were below their respective cut-offs. In planta studies revealed that PPL560T and PPL568 are non-pathogenic to rice plants upon leaf clip inoculation. The absence of type III secretion system-related genes and effectors further supported their non-pathogenic status. Herein, we propose Xanthomonas indica sp. nov. as novel species of the genus Xanthomonas with PPL560T = MTCC 13185 = CFBP 9039 = ICMP 24394 as its type strain and PPL568 as another constituent member.
Collapse
Affiliation(s)
- Rekha Rana
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,The Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | - Tanu Saroha
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.,The Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ramesh V Sonti
- Indian Institute of Science Education and Research, Tirupati, India
| | - Hitendra K Patel
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India.
| |
Collapse
|
7
|
Nathawat R, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Role of the FnIII domain associated with a cell wall-degrading enzyme cellobiosidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:1011-1021. [PMID: 35278018 PMCID: PMC9190976 DOI: 10.1111/mpp.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cellobiosidase (CbsA) is an important secreted virulence factor of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight of rice. CbsA is one of several cell wall-degrading enzymes secreted by Xoo via the type II secretion system (T2SS). CbsA is considered a fundamental virulence factor for vascular pathogenesis. CbsA has an N-terminal glycosyl hydrolase domain and a C-terminal fibronectin type III (FnIII) domain. Interestingly, the secreted form of CbsA lacks the FnIII domain during in planta growth. Here we show that the presence of the FnIII domain inhibits the enzyme activity of CbsA on polysaccharide substrates like carboxymethylcellulose. The FnIII domain is required for the interaction of CbsA with SecB chaperone, and this interaction is crucial for the stability and efficient transport of CbsA across the inner membrane. Deletion of the FnIII domain reduced virulence similar to ΔcbsA Xoo, which corroborates the importance of the FnIII domain in CbsA. Our work elucidates a hitherto unknown function of the FnIII domain in enabling the virulence-promoting activity of CbsA.
Collapse
Affiliation(s)
| | - Roshan V. Maku
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
DBT – National Institute of Animal BiotechnologyHyderabadIndia
| | | | | | - Ramesh V. Sonti
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
Indian Institute of Science Education and Research TirupatiTirupatiIndia
| |
Collapse
|
8
|
Kumar S, Sethi SK. Genome-based reclassification of Streptococcus ursoris as a later heterotypic synonym of Streptococcus ratti. Arch Microbiol 2022; 204:405. [PMID: 35723755 DOI: 10.1007/s00203-022-03012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Among the species of genus Streptococcus two members namely Streptococcus ratti and Streptococcus ursoris were isolated from oral cavity of rat and bear, respectively. Type strain of these members shows a 16S rRNA gene sequence similarity of 98.9%. Based on systematic phylo-taxonogenomics investigations, we could deduce the taxonomic assignment of the members of these species. Genome similarity assessment among the type strain of these members using average nucleotide identity (orthoANI and fastANI), digital DNA-DNA hybridization and average amino acid identity (AAI) were 98.5, 98.3, 88, and 98.3% respectively. All these values exceed the species delineation cutoffs suggesting a unified species. Phylogenetic tree obtained using 16S rRNA gene sequence also indicates the monophyletic nature of the member strains. Such monophyletic taxonomic positioning of the strains was further complemented with the whole genome-based phylogenomic tree. Based on these evidences, we propose S. ursoris should be reclassified as a later heterotypic synonym of S. ratti.
Collapse
Affiliation(s)
- Sanjeet Kumar
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768004, India
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, Odisha, 768004, India.
| |
Collapse
|
9
|
Using Genomics to Design a Pathovar-Specific Loop-Mediated Isothermal Amplification (LAMP) Assay, for the Improved Detection of Xanthomonas citri pv. citri. Microorganisms 2022; 10:microorganisms10061153. [PMID: 35744672 PMCID: PMC9229019 DOI: 10.3390/microorganisms10061153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The ability to swiftly respond to pathogen incursions relies heavily on fast and accurate diagnostics. Current published assays for citrus bacterial canker do not target Xanthomonas citri pv. citri, the causative agent, with high specificity when testing Australian samples. While the current diagnostics are useful in countries where canker is endemic, the detection of canker in Australia requires an emergency response. Close relatives to X. citri pv. citri found in Australia may generate false positives with the current recommended diagnostic assays. Therefore, we developed a more specific detection tool for citrus bacterial canker to provide greater diagnostic confidence for surveillance and eradication efforts. We used genomic comparisons of 161 Xanthomonad genomes and identified and confirmed genomic regions specific for X. citri pv. citri by performing local alignments of unique regions to reference genomes. We then developed loop-mediated isothermal amplification primers and validated them against a panel of 190 isolates to confirm specificity. Our diagnostic assay showed 100% corroboration with the concurrently developed multiplex primers and represents an improved diagnostic method capable of effective citrus bacterial canker identification.
Collapse
|
10
|
Deb S, Gokulan CG, Nathawat R, Patel HK, Sonti RV. Suppression of XopQ-XopX-induced immune responses of rice by the type III effector XopG. MOLECULAR PLANT PATHOLOGY 2022; 23:634-648. [PMID: 35150038 PMCID: PMC8995061 DOI: 10.1111/mpp.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Effectors that suppress effector-triggered immunity (ETI) are an essential part of the arms race in the co-evolution of bacterial pathogens and their host plants. Xanthomonas oryzae pv. oryzae uses multiple type III secretion system (T3SS) secreted effectors such as XopU, XopV, XopP, XopG, and AvrBs2 to suppress rice immune responses that are induced by the interaction of two other effectors, XopQ and XopX. Here we show that each of these five suppressors can interact individually with both XopQ and XopX. One of the suppressors, XopG, is a predicted metallopeptidase that appears to have been introduced into X. oryzae pv. oryzae by horizontal gene transfer. XopQ and XopX interact with each other in the nucleus while interaction with XopG sequesters them in the cytoplasm. The XopG E76A and XopG E85A mutants are defective in interaction with XopQ and XopX, and are also defective in suppression of XopQ-XopX-mediated immune responses. Both mutations individually affect the virulence-promoting ability of XopG. These results indicate that XopG is important for X. oryzae pv. oryzae virulence and provide insights into the mechanisms by which this protein suppresses ETI in rice.
Collapse
Affiliation(s)
- Sohini Deb
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - C. G. Gokulan
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Rajkanwar Nathawat
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Hitendra K. Patel
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
| | - Ramesh V. Sonti
- CSIR ‐ Centre for Cellular and Molecular Biology (CSIR‐CCMB)HyderabadIndia
- Indian Institute of Science Education and Research (IISER) TirupatiTirupatiIndia
| |
Collapse
|
11
|
Kaur A, Rana R, Saroha T, Patil PB. Discerning the role of a functional arsenic-resistance cassette in the evolution and adaptation of a rice pathogen. Microb Genom 2021; 7. [PMID: 34254933 PMCID: PMC8477397 DOI: 10.1099/mgen.0.000608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arsenic is highly toxic element to all forms of life and is a major environmental contaminant. Understanding acquisition, detoxification and adaptation mechanisms in bacteria that are associated with the host in arsenic-rich conditions can provide novel insights into the evolutionary dynamics of host–microbe–environment interactions. In the present study, we have investigated an arsenic-resistance mechanism acquired during the evolution of a particular lineage in the population of Xanthomonas oryzae pv. oryzae, which is a serious plant pathogen infecting rice. Our study revealed the horizontal acquisition of a novel chromosomal 12 kb ars cassette in X. oryzae pv. oryzae IXO1088 that confers high resistance to arsenate/arsenite. The ars cassette comprises several genes that constitute an operon induced in the presence of arsenate/arsenite. Transfer of the cloned ars cassette to X. oryzae pv. oryzae BXO512, which lacks the cassette, confers an arsenic-resistance phenotype. Furthermore, the transcriptional response of X. oryzae pv. oryzae IXO1088 under arsenate/arsenite exposure was analysed using RNA sequencing. Arsenic detoxification and efflux, oxidative stress, iron acquisition/storage, and damage repair are the main cellular responses to arsenic exposure. Our investigation has provided insights into the existence of a novel detoxification and adaptation mechanism within the X. oryzae pv. oryzae population to deal with high-arsenic conditions outside the rice plant.
Collapse
Affiliation(s)
- Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Rekha Rana
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Tanu Saroha
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
12
|
Effectors of the Stenotrophomonas maltophilia Type IV Secretion System Mediate Killing of Clinical Isolates of Pseudomonas aeruginosa. mBio 2021; 12:e0150221. [PMID: 34182776 PMCID: PMC8262851 DOI: 10.1128/mbio.01502-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previously, we documented that Stenotrophomonas maltophilia encodes a type IV secretion system (T4SS) that allows the organism to kill, in contact-dependent fashion, heterologous bacteria, including wild-type Pseudomonas aeruginosa. Bioinformatic screens based largely on the presence of both a C-terminal consensus sequence and an adjacent gene encoding a cognate immunity protein identified 13 potential antibacterial effectors, most of which were highly conserved among sequenced strains of S. maltophilia. The immunity proteins of two of these proved especially capable of protecting P. aeruginosa and Escherichia coli against attack from the Stenotrophomonas T4SS. In turn, S. maltophilia mutants lacking the putative effectors RS14245 and RS14255 were impaired for killing not only laboratory E. coli but clinical isolates of P. aeruginosa, including ones isolated from the lungs of cystic fibrosis patients. That complemented mutants behaved as wild type did confirmed that RS14245 and RS14255 are required for the bactericidal activity of the S. maltophilia T4SS. Moreover, a mutant lacking both of these proteins was as impaired as a mutant lacking the T4SS apparatus, indicating that RS14245 and RS14255 account for (nearly) all of the bactericidal effects seen. Utilizing an interbacterial protein translocation assay, we determined that RS14245 and RS14255 are bona fide substrates of the T4SS, a result confirmed by examination of mutants lacking both the T4SS and the individual effectors. Delivery of the cloned 14245 protein (alone) into the periplasm resulted in the killing of target bacteria, indicating that this effector, a putative lipase, is both necessary and sufficient for bactericidal activity.
Collapse
|
13
|
Kaur A, Bansal K, Patil PB. Extensive Genomic Rearrangements along with Distinct Mobilome and TALome are Associated with Extreme Pathotypes of a Rice Pathogen. Genome Biol Evol 2020; 12:3951-3956. [PMID: 32031614 PMCID: PMC7058153 DOI: 10.1093/gbe/evaa025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 11/14/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a serious pathogen of rice which displays tremendous interstrain variation. The emergence of highly-virulent strains of Xoo is a major threat to rice cultivation. Evolutionary insights into genome dynamics of highly virulent strains as compared with the less-virulent ones are crucial for understanding the molecular basis of exceptional success of Xoo as a highly evolved plant pathogen. In the present study, we report complete genome sequence of Xoo strains with extreme-virulent pathotypes (XVPs) characterized based on their reaction toward ten resistance (Xa) genes. One strain, IXO1088, can overcome resistance mediated by all the ten resistance genes while the other strain IXO704 cannot overcome any of them. Interestingly, our investigation revealed that XVPs display dramatic variation in the genome structure with numerous rearrangements/inversions. Moreover, XVPs also possess distinct transposon content and prophage elements that may provide genomic flux required for the acquisition of novel gene cassettes and structural changes in the genome. Interestingly, analysis of transcription activator-like effector proteins, which are major virulence determinants of Xanthomonas pathogen show marked variation in the transcription activator-like effector content and DNA binding domain of tal genes. Overall, the present study indicates the possible role of mobilomes and repetitive elements in major structural and sequence alterations, which may be leading to the emergence of novel and extreme pathotypes. The knowledge and resource of XVPs will be invaluable in the further systematic understanding of evolution and management of variant pathotypes of Xoo.
Collapse
Affiliation(s)
- Amandeep Kaur
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B Patil
- Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|