1
|
Park M, Kim J. Arthrobacter horti sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2024; 74. [PMID: 39008344 DOI: 10.1099/ijsem.0.006459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Gram-stain-positive, aerobic, rod-shaped strains, YJM1T and YJM12S, were isolated from Maebong Mountain, Dogok-dong, Gangnam-gu, Seoul, Republic of Korea. Strains YJM1T and YJM12S exhibited growth at 5-35 °C (optimum, 20-30 °C) and pH 6-9 (optimum, pH 7) and in 0-4 % (w/v) NaCl. Strains YJM1T and YJM12S showed highest 16S rRNA gene sequence similarity to the following members of the genus Arthrobacter: A. nanjingensis A33T (98.3 %/98.2 % similarity), A. woluwensis NBRC 107840T (98.2 %/98.1 %), A. humicola KV-653T (97.3 %), A. oryzae KV-651T (97.3 %), and A. globiformis NBRC 12137T (97.2 %). The strains grew well on Reasoner's 2A, nutrient, Mueller-Hinton, yeast-dextrose, and glucose-peptone-meat extract agars. The major polar lipids of strain YJM1T were phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylinositol. The primary respiratory quinone of strain YJM1T was MK-9(H2), and the major fatty acids of strains YJM1T and YJM12S were anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0, and iso-C16 : 0. The DNA G+C content, based on the whole genome sequence of strain YJM1T, was 68.3 mol%. Average nucleotide identity values and digital DNA-DNA hybridization values between strain YJM1T and the reference strains ranged from 75.0 to 92.7 % and from 21.0 to 65.3 %, respectively. Strain YJM1T exhibited antimicrobial activity against Bacillus subtilis and Escherichia coli. Considering the chemotaxonomic, phenotypic, genotypic, and phylogenetic results, we propose the strain YJM1T represents a novel species in the genus Arthrobacter and suggest the name Arthrobacter horti sp. nov. (type strain YJM1T=KACC 23300T=JCM 36483T).
Collapse
Affiliation(s)
- Mingyeong Park
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | | |
Collapse
|
2
|
Guzman J, Raval D, Hauck D, Titz A, Poehlein A, Degenkolb T, Daniel R, Vilcinskas A. The resuscitation-promoting factor (Rpf) from Micrococcus luteus and its putative reaction product 1,6-anhydro-MurNAc increase culturability of environmental bacteria. Access Microbiol 2023; 5:000647.v4. [PMID: 37841103 PMCID: PMC10569661 DOI: 10.1099/acmi.0.000647.v4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Dormant bacterial cells do not divide and are not immediately culturable, but they persist in a state of low metabolic activity, a physiological state having clinical relevance, for instance in latent tuberculosis. Resuscitation-promoting factors (Rpfs) are proteins that act as signalling molecules mediating growth and replication. In this study we aimed to test the effect of Rpfs from Micrococcus luteus on the number and diversity of cultured bacteria using insect and soil samples, and to examine if the increase in culturability could be reproduced with the putative reaction product of Rpf, 1,6-anhydro-N-acetylmuramic acid (1,6-anhydro-MurNAc). The rpf gene from Micrococcus luteus was amplified and cloned into a pET21b expression vector and the protein was expressed in Escherichia coli BL21(DE3) cells and purified by affinity chromatography using a hexa-histidine tag. 1,6-Anhydro-MurNAc was prepared using reported chemical synthesis methods. Recombinant Rpf protein or 1,6-anhydro-MurNAc were added to R2A cultivation media, and their effect on the culturability of bacteria from eight environmental samples including four cockroach guts and four soils was examined. Colony-forming units, 16S rRNA gene copies and Illumina amplicon sequencing of the 16S rRNA gene were measured for all eight samples subjected to three different treatments: Rpf, 1,6-anhydro-MurNAc or blank control. Both Rpf and 1,6-anhydro-MurNAc increased the number of colony-forming units and of 16S rRNA gene copies across the samples although the protein was more effective. The Rpf and 1,6-anhydro-MurNAc promoted the cultivation of a diverse set of bacteria and in particular certain clades of the phyla Actinomycetota and Bacillota . This study opens the path for improved cultivation strategies aiming to isolate and study yet undescribed living bacterial organisms.
Collapse
Affiliation(s)
- Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dipansi Raval
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Dirk Hauck
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) – Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- German Center for Infection Research, site Hannover-Braunschweig, Saarbrücken, Germany
- Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Thomas Degenkolb
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
3
|
Bhadrecha P, Singh S, Dwibedi V. 'A plant's major strength in rhizosphere': the plant growth promoting rhizobacteria. Arch Microbiol 2023; 205:165. [PMID: 37012531 DOI: 10.1007/s00203-023-03502-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
Human activities, industrialization and civilization have deteriorated the environment which eventually has led to alarming effects on plants and animals by heightened amounts of chemical pollutants and heavy metals in the environment, which create abiotic stress. Environmental conditions like drought, salinity, diminished macro-and micro-nutrients also contribute in abiotic stress, resulting in decrement of survival and growth of plants. Presence of pathogenic and competitive microorganisms, as well as pests lead to biotic stress and a plant alone can not defend itself. Thankfully, nature has rendered plant's rhizosphere with plant growth promoting rhizobacteria which maintain an allelopathic relationship with host plant to defend the plant and let it flourish in abiotic as well as biotic stress situations. This review discusses the mechanisms behind increase in plant growth via various direct and indirect traits expressed by associated microorganisms in the rhizosphere, along with their current scenario and promising future for sustainable agriculture. It also gives details of ten such bacterial species, viz. Acetobacter, Agrobacterium, Alcaligenes, Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter and Frankia, whose association with the host plants is famed for enhancing plant's growth and survival.
Collapse
Affiliation(s)
- Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, Gautam Budh Nagar, Uttar Pradesh, 203201, India
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
- Thapar Institute of Engineering and Technology, Department of Biotechnology, 147004, PATIALA, India.
| |
Collapse
|
4
|
Selmani Z, Attard E, Lauga B, Barakat M, Ortet P, Tulumello J, Achouak W, Kaci Y, Heulin T. Culturing the desert microbiota. Front Microbiol 2023; 14:1098150. [PMID: 37113232 PMCID: PMC10126307 DOI: 10.3389/fmicb.2023.1098150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last 30 years, the description of microbial diversity has been mainly based on culture-independent approaches (metabarcoding and metagenomics) allowing an in-depth analysis of microbial diversity that no other approach allows. Bearing in mind that culture-dependent approaches cannot replace culture-independent approaches, we have improved an original method for isolating strains consisting of "culturing" grains of sand directly on Petri dishes (grain-by-grain method). This method allowed to cultivate up to 10% of the bacteria counted on the surface of grains of the three sites studied in the Great Western Erg in Algeria (Timoudi, Béni Abbès, and Taghit), knowing that on average about 10 bacterial cells colonize each grain. The diversity of culturable bacteria (collection of 290 strains) predicted by 16S rRNA gene sequencing revealed that Arthrobacter subterraneus, Arthrobacter tecti, Pseudarthrobacter phenanthrenivorans, Pseudarthrobacter psychrotolerans, and Massilia agri are the dominant species. The comparison of the culture-dependent and -independent (16S rRNA gene metabarcoding) approaches at the Timoudi site revealed 18 bacterial genera common to both approaches with a relative overestimation of the genera Arthrobacter/Pseudarthrobacter and Kocuria, and a relative underestimation of the genera Blastococcus and Domibacillus by the bacterial culturing approach. The bacterial isolates will allow further study on the mechanisms of tolerance to desiccation, especially in Pseudomonadota (Proteobacteria).
Collapse
Affiliation(s)
- Zakia Selmani
- Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Eleonore Attard
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, Pau, France
| | - Béatrice Lauga
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l’Adour, Pau, France
| | - Mohamed Barakat
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Philippe Ortet
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Joris Tulumello
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Wafa Achouak
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
| | - Yahia Kaci
- Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Thierry Heulin
- CEA, CNRS, BIAM, LEMiRE, Aix-Marseille Université, Saint-Paul-lèz-Durance, France
- *Correspondence: Thierry Heulin,
| |
Collapse
|
5
|
Vodickova P, Suman J, Benesova E, Strejcek M, Neumann-Schaal M, Cajthaml T, Ridl J, Pajer P, Ulbrich P, Uhlik O, Lipovova P. Arthrobacter polaris sp. nov., a new cold-adapted member of the family Micrococcaceae isolated from Antarctic fellfield soil. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An aerobic, Gram-stain-positive and non-spore-forming strain, designated C1-1T, was isolated from a fellfield soil sample collected from frost-sorted polygons on Jane Col, Signy Island, Maritime Antarctic. Cells with a size of 0.65–0.9×1.2–1.7 µm have a flagellar motile apparatus and exhibit a rod–coccus growth cycle. Optimal growth conditions were observed at 15–20 °C, pH 7.0 and NaCl concentration up to 0.5 % (w/v) in the medium. The 16S rRNA gene sequence of C1-1T showed the highest pairwise similarity of 98.77 % to
Arthrobacter glacialis
NBRC 113092T. Phylogenetic trees based on the 16S rRNA and whole-genome sequences revealed that strain C1-1T belongs to the genus
Arthrobacter
and is most closely related to members of the ‘
Arthrobacter psychrolactophilus
group’. The G+C content of genomic DNA was 58.95 mol%. The original and orthologous average nucleotide identities between strain C1-1T and
A. glacialis
NBRC 113092T were 77.15 % and 77.38 %, respectively. The digital DNA–DNA relatedness values between strain C1-1T and
A. glacialis
NBRC 113092T was 21.6 %. The polar lipid profile was composed mainly of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified glycolipid. The predominant cellular fatty acids were anteiso-C15 : 0 (75 %) and anteiso-C17 : 0 (15.2 %). Menaquinone MK-9(H2) (86.4 %) was the major respiratory quinone in strain C1-1T. The peptidoglycan type was determined as A3α (l-Lys–l-Ala3; A11.6). Based on all described phylogenetic, physiological and chemotaxonomic characteristics, we propose that strain C1-1T (=DSM 112353T=CCM 9148T) is the type strain of a novel species Arthrobacter polaris sp. nov.
Collapse
Affiliation(s)
- Patricie Vodickova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Eva Benesova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic
| | - Jakub Ridl
- Department of Zoology, Faculty of Science, Charles University, Viničná 1594, 128 00, Prague 2, Czech Republic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 16001, Prague 6, Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Petra Lipovova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| |
Collapse
|
6
|
Fang Z, Zhao X, Wu Q, Li S, Liu Q, Tan L, Weng Q. Arthrobacter cavernae sp. nov., a novel actinobacterium isolated from sediment of karst cave. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, Gram-stain-positive, aerobic, non-endospore-forming, non-motile and rod-shaped bacterium designated PO-11T was isolated from sediment of karst cave collected in Libo county, Guizhou Province, PR China. The isolate grew optimally on R2A agar at 25 °C, pH 8.0 and with 0.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that PO-11T belonged to the genus
Arthrobacter
and was most closely related to
Arthrobacter methylotrophus
TGAT (98.3 % sequence similarity),
Arthrobacter alkaliphilus
LC6T (97.7 %) and
Arthrobacter ramosus
CCM1646T (97.1 %). Genome sequencing revealed a genome size of 4 073 119 bp and the genomic DNA G+C content was 66.16 mol%. Its DNA–DNA relatedness values with
A. methylotrophus
TGAT,
A. alkaliphilus
LC6T and
A. ramosus
CCM1646T were 23.0, 22.9 and 23.2 %, respectively. The main fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The major respiratory quinone was MK-9(H2). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, glycolipid, phosphatidylethanolamine, phosphatidylinositol and unidentified lipids. Thus, based on phylogenetic and phenotypic and chemotaxonomic data, strain PO-11T represents a novel species of the genus
Arthrobacter
, for which the name Arthrobacter cavernae sp. nov. is proposed. The type strain is strain PO-11T (=CCTCC AB 2021070T=LMG 32459T).
Collapse
Affiliation(s)
- Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| | - Xiaoyong Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| | - Shixia Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| | - Qiuping Liu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| | - Qingbei Weng
- Qiannan Normal University for Nationalities, Duyun 558000, PR China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, PR China
| |
Collapse
|
7
|
Fu H, Ding L, Zhai J, Wang X. Purification effect evaluation of the designed new volcanic soil adsorption material containing bioreactor for eutrophic water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59821-59833. [PMID: 34148168 DOI: 10.1007/s11356-021-14924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to investigate the purification effect of a new adsorption material containing bioreactor and the critical role of viable but non-culturable (VBNC) bacteria in a eutrophication ecosystem. Major water quality parameters of the prepared eutrophic water were determined, and the microbial community was analyzed during 2 years. The results showed that removal rates of total phosphorus (TP), total nitrogen (TN), chlorophyll-a (Chl-a), and chemical oxygen demand (COD) were 90.7-95.9%, 84.5-92.4%, 87.9-95.8%, and 68.3-82.7%, respectively, indicating the high efficiency of the bioreactor in the eutrophic water treatment. Although the bioreactor had been operated for 2 years, water from the treatment group was much clearer and odorless than from the control group, exhibiting the long service life of the bioreactor. Stopping operation in August caused significant decrease of the removal rates of major water quality parameters (p < 0.05). This operational stop event and high temperature in summer exerted a dual effect on the bioreactor, whereas the impact could be minimized when the bioreactor was running. Moreover, the total bacteria under +Rpf (active resuscitation-promoting factor) treatment were higher than under -Rpf (inactive resuscitation-promoting factor) treatment, implying that Rpf could resuscitate VBNC bacteria in the eutrophication ecosystem. Nine strains of VBNC bacteria were isolated based on the BLAST results of the 16S rRNA gene. Also, these bacteria might contribute to the eutrophic water treatment based on their functions of phosphorus collecting and denitrification. These results provided new insights for engineering technology innovations, and consequently these findings had benefits in eutrophic water treatment.
Collapse
Affiliation(s)
- Huiling Fu
- School of Safety and Environment Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Linxian Ding
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingyu Zhai
- Ecological Environment Monitoring Station of Yuxi city, Department of Ecology and Environment of Yunnan Province, Yuxi, 653100, China
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, China.
| |
Collapse
|
8
|
Abstract
A Gram-stain-positive, aerobic and rod-shaped bacterial strain, designated JH1-1T, was isolated from a forest soil sample collected in Suwon, Gyeonggi-do, Republic of Korea. Strain JH1-1T could grow at 10-35 °C (optimum, 28-30 °C), pH 4.5-8.5 and tolerated 5 % (w/v) NaCl. Strain JH1-1T was most closely related to members of the genus Arthrobacter, namely Arthrobacter alkaliphilus LC6T (98.5 % similarity), Arthrobacter methylotrophus TGAT (98.4 %), Arthrobacter ramosus CCM 1646T (97.8 %), Arthrobacter bambusae THG-GM18T (97.5 %) and Arthrobacter pokkalii P3B162T (97.3 %). The strain grew well on Reasoner's 2A agar, tryptone soya agar, nutrient agar, Mueller-Hinton agar and Luria-Bertani agar. The major polar lipid profile comprised phosphatidylglycerol, diphosphatidylglycerol, unidentified phospholipid and unidentified glycolipids. The major respiratory quinone was MK-9(H2). The main fatty acids were C15 : 0 anteiso, C15 : 0 iso, C16 : 0 iso and C17 :0 anteiso. The DNA G+C content of the isolated strain based on the whole genome sequence was 63.6 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain JH1-1T and its reference type strains ranged from 81.3 to 85.4 % and from 21.1 to 29.1 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain JH1-1T could be differentiated phylogenetically and phenotypically from the recognized species of the genus Arthrobacter. Therefore, strain JH1-1T is considered to represent a novel species, for which the name Arthrobacter terricola sp. nov. is proposed. The type strain is JH1-1T (=KACC 21385T=JCM 33641T).
Collapse
Affiliation(s)
- Ngoc Hoang Trinh
- Thai Nguyen University of Sciences, Thai Nguyen City, Thai Nguyen province 250000, Vietnam.,Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
9
|
González-Dominici LI, Saati-Santamaría Z, García-Fraile P. Genome Analysis and Genomic Comparison of the Novel Species Arthrobacter ipsi Reveal Its Potential Protective Role in Its Bark Beetle Host. MICROBIAL ECOLOGY 2021; 81:471-482. [PMID: 32901388 DOI: 10.1007/s00248-020-01593-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
The pine engraver beetle, Ips acuminatus Gyll, is a bark beetle that causes important damages in Scots pine (Pinus sylvestris) forests and plantations. As almost all higher organisms, Ips acuminatus harbours a microbiome, although the role of most members of its microbiome is not well understood. As part of a work in which we analysed the bacterial diversity associated to Ips acuminatus, we isolated the strain Arthrobacter sp. IA7. In order to study its potential role within the bark beetle holobiont, we sequenced and explored its genome and performed a pan-genome analysis of the genus Arthrobacter, showing specific genes of strain IA7 that might be related with its particular role in its niche. Based on these investigations, we suggest several potential roles of the bacterium within the beetle. Analysis of genes related to secondary metabolism indicated potential antifungal capability, confirmed by the inhibition of several entomopathogenic fungal strains (Metarhizium anisopliae CCF0966, Lecanicillium muscarium CCF6041, L. muscarium CCF3297, Isaria fumosorosea CCF4401, I. farinosa CCF4808, Beauveria bassiana CCF4422 and B. brongniartii CCF1547). Phylogenetic analyses of the 16S rRNA gene, six concatenated housekeeping genes (tuf-secY-rpoB-recA-fusA-atpD) and genome sequences indicated that strain IA7 is closely related to A. globiformis NBRC 12137T but forms a new species within the genus Arthrobacter; this was confirmed by digital DNA-DNA hybridization (37.10%) and average nucleotide identity (ANIb) (88.9%). Based on phenotypic and genotypic features, we propose strain IA7T as the novel species Arthrobacter ipsi sp. nov. (type strain IA7T = CECT 30100T = LMG 31782T) and suggest its protective role for its host.
Collapse
Affiliation(s)
- Lihuén Iraí González-Dominici
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain
| | - Paula García-Fraile
- Microbiology and Genetics Department, University of Salamanca, Salamanca, Spain.
- Spanish-Portuguese Institute for Agricultural Research (CIALE), Villamayor, Salamanca, Spain.
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
- Associated R&D Unit, USAL-CSIC (IRNASA), Salamanca, Spain.
| |
Collapse
|
10
|
Li Y, Chen J, Wang Y, Ma D, Rui W. The effects of the recombinant YeaZ of Vibrio harveyi on the resuscitation and growth of soil bacteria in extreme soil environment. PeerJ 2020; 8:e10342. [PMID: 33391864 PMCID: PMC7759134 DOI: 10.7717/peerj.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Numerous bacteria entered the viable but non-culturable state due to the stresses of dry and salt in soils. YeaZ of Gram-negative bacteria is a resuscitation promoting factor (Rpf) homologous protein could resuscitate bacteria of natural environment in VBNC state. To investigate the promoting effect of YeaZ on the isolation of viable but non-culturable (VBNC) bacteria from soil samples in extreme environments, the recombinant YeaZ of Vibrio harveyi was prepared and added to the soil samples from volcanic soil and saline soil in Northwest China. The study has shown that YeaZ can promote the recovery and growth of soil microorganisms, and the number of cultivable bacteria in volcanic and saline soil has increased from 0.17 × 103 and 2.03 × 103 cfu⋅ml−1 to 1.00 × 103 and 5.55 × 103 cfu⋅ml−1, respectively. The 16S rDNA gene sequencing and phylogenetic analysis showed that YeaZ played an essential role in the increase of composition and diversity of bacteria. A total of 13 bacterial strains were isolated from the volcanic soil samples, which belong to phyla Actinobacteria, Firmicutes and Gamma-proteobacteria. Four species, including Ornithinimicrobium kibberense, Agrococcus citreus, Stenotrophomonas rhizophila and Pseudomonas zhaodongensis were found in the control group, while Micrococcus antarcticus, Kocuria rose, Salinibacterium xinjiangense, Planococcus antarcticus, Ornithinimicrobium kibberense and Pseudomonas zhaodongensis were isolated from the treatment groups (addition of YeaZ). Twenty-one strains were isolated from the saline soil samples, including eight species from the control group and thirteen species from the treatment groups, among which nine species were only found, including Bacillus oceanisediminis, Brevibacillus brevis, Paenibacillus xylanilyticus, Microbacterium maritypicum, B. subtilis, B. alcalophilus, B. niabensis, Oceanimonas doudoroffii and Zobellella taiwanensis. The results suggest that addition of YeaZ to soil samples can promote the recovery of VBNC. This method has the implications for the discovery of VBNC bacteria that have potential environmental functions.
Collapse
Affiliation(s)
- Yanlin Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China.,Chongqing Key Laboratory of Environmental Materials & Remediation Technologies/College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of life science and engineering, Lanzhou University of Technology, Lanzhou, China
| | - Dan Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wenhong Rui
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
11
|
Arthrobacter sedimenti sp. nov., isolated from river sediment in Yuantouzhu park, China. Arch Microbiol 2020; 202:2551-2556. [PMID: 32661667 DOI: 10.1007/s00203-020-01968-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
A Gram-stain positive, motile, aerobic and rod-shaped strain (MIC A30T) was isolated from river sediment in Yuantouzhu park, Wuxi City, China. Growth occurred at 20-40 °C, at pH 6.0-9.0 and at 0-5.0% NaCl. Strain MIC A30T was moderately related to Arthrobacter liuii CGMCC 1.12778T (97.9%), Arthrobacter pokkaliiT (97.9%) and Arthrobacter globiformis NBRC 12137T (96.7%) by 16S rRNA analysis. The DNA-DNA relatedness values between strain MIC A30T and these reference strains were below 30%. The DNA G+C content was 63.1 mol%. Average nucleotide identity (ANI) and genome-to-genome distance (GGD) values between strain MIC A30T and A. liuii CGMCC 1.12778T were 60.34% and 29.39%, respectively. Quinone was identified as MK-9(H2). Major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. Major fatty acids were iso-C15:0, anteiso-C15:0 and anteiso-C17:0. Whole-cell sugars were galactose, mannose and rhamnose. The cell wall peptidoglycan contained A4α peptidoglycan type with lysine as the diagnostic diamino acid. Based on several taxonomic results, strain MIC A30T is identified as a novel species in genus Arthrobacter, whose name is proposed as Arthrobacter sedimenti sp. nov. The type strain is MIC A30T (= KACC 19599T = CGMCC 1.13474T).
Collapse
|
12
|
Wang RJ, Zhang SY, Ye YH, Yu Z, Qi H, Zhang H, Xue ZL, Wang JD, Wu M. Three New Isoflavonoid Glycosides from the Mangrove-Derived Actinomycete Micromonospora aurantiaca 110B. Mar Drugs 2019; 17:md17050294. [PMID: 31108876 PMCID: PMC6562861 DOI: 10.3390/md17050294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
The mangrove ecosystem is a rich resource for the discovery of actinomycetes with potential applications in pharmaceutical science. Besides the genus Streptomyces, Micromonospora is also a source of new bioactive agents. We screened Micromonospora from the rhizosphere soil of mangrove plants in Fujian province, China, and 51 strains were obtained. Among them, the extracts of 12 isolates inhibited the growth of human lung carcinoma A549 cells. Strain 110B exhibited better cytotoxic activity, and its bioactive constituents were investigated. Consequently, three new isoflavonoid glycosides, daidzein-4'-(2-deoxy-α-l-fucopyranoside) (1), daidzein-7-(2-deoxy-α-l-fucopyranoside) (2), and daidzein-4',7-di-(2-deoxy-α-l-fucopyranoside) (3) were isolated from the fermentation broth of strain 110B. The structures of the new compounds were determined by spectroscopic methods, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESIMS). The result of medium-changing experiments implicated that these new compounds were microbial biotransformation products of strain M. aurantiaca 110B. The three compounds displayed moderate cytotoxic activity to the human lung carcinoma cell line A549, hepatocellular liver carcinoma cell line HepG2, and the human colon tumor cell line HCT116, whereas none of them showed antifungal or antibacterial activities.
Collapse
Affiliation(s)
- Rui-Jun Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Shao-Yong Zhang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Yang-Hui Ye
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Zhen Yu
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Huan Qi
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Hui Zhang
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Zheng-Lian Xue
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| | - Ji-Dong Wang
- College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
- Zhejiang Key Laboratory of Antifungal Drugs, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China.
| | - Min Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
13
|
Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media - A review. J Adv Res 2019; 19:15-27. [PMID: 31341666 PMCID: PMC6630032 DOI: 10.1016/j.jare.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The plant microbiome culturomics is substantially lagging behind the human microbiome. Conventional chemically-synthetic culture media recover < 10% of plant-associated microbiota. Plant-based culture media (PCM) are introduced as a novel tool for plant microbiome culturomics. PCM extended the microbiota culturability to recover unculturable bacterial taxa. Streamlined- and large-genomes conspicuously contribute to the dilemma of unculturability.
Improving cultivability of a wider range of bacterial and archaeal community members, living natively in natural environments and within plants, is a prerequisite to better understanding plant-microbiota interactions and their functions in such very complex systems. Sequencing, assembling, and annotation of pure microbial strain genomes provide higher quality data compared to environmental metagenome analyses, and can substantially improve gene and protein database information. Despite the comprehensive knowledge which already was gained using metagenomic and metatranscriptomic methods, there still exists a big gap in understanding in vivo microbial gene functioning in planta, since many differentially expressed genes or gene families are not yet annotated. Here, the progress in culturing procedures for plant microbiota depending on plant-based culture media, and their proficiency in obtaining single prokaryotic isolates of novel and rapidly increasing candidate phyla are reviewed. As well, the great success of culturomics of the human microbiota is considered with the main objective of encouraging microbiologists to continue minimizing the gap between the microbial richness in nature and the number of species in culture, for the benefit of both basic and applied microbiology. The clear message to fellow plant microbiologists is to apply plant-tailored culturomic techniques that might open up novel procedures to obtain not-yet-cultured organisms and extend the known plant microbiota repertoire to unprecedented levels.
Collapse
|
14
|
Yu XY, Zhai JY, Wu C, Zhang CY, Shi JY, Ding LX, Wu M. Pseudomonas pharmafabricae sp. nov., Isolated From Pharmaceutical Wastewater. Curr Microbiol 2018; 75:1119-1125. [PMID: 29725767 DOI: 10.1007/s00284-018-1495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022]
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterial strain, designated ZYSR67-ZT, was isolated from a pharmaceutical wastewater sample collected from a chemical factory in Zhejiang, China. The strain was motile by a single polar flagellum and grew at 4-42 °C (optimum, 35 °C), pH 5.0-9.0 (optimum, 6.0) and 0-5.0% (w/v) NaCl (optimum, 2.0%). Based on multilocus sequence analysis using 16S rRNA, gyrB, rpoB and rpoD, the strain ZYSR67-ZT formed a distinct phylogenetic group in the genus Pseudomonas. The average nucleotide identity values between strain ZYSR67-ZT and the closely related 10 type strains of the Pseudomonas species were 75.8-78.6%. The in silico DNA-DNA hybridization values indicated that strain ZYSR67-ZT and the type strains of the Pseudomonas shared 21.4-23.1% DNA relatedness. The predominant isoprenoid quinone system was ubiquinone-9 while ubiquinone-8 was present in trace amounts. The major fatty acids (> 10%) identified were C12:0, C16:0, C18:1 ω7c and summed features 3 (C16:1 ω7c and/or iso-C15:0 2OH). The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content was 62.6 mol%. On the basis of morphological, physiological and chemotaxonomic characteristics, together with the results of phylogenetic analysis, strain ZYSR67-ZT was proposed to represent a novel species of the genus Pseudomonas, named Pseudomonas pharmafabricae sp. nov.. The type strain is ZYSR67-ZT (= CGMCC 1.15498T = JCM 31306T).
Collapse
Affiliation(s)
- Xiao-Yun Yu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jing-Yu Zhai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Chen Wu
- Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, People's Republic of China
| | - Chong-Ya Zhang
- Ocean College, Zhejiang University, Zhoushan, 316000, People's Republic of China
| | - Jie-Ying Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Lin-Xian Ding
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
15
|
Zhang Q, Oh M, Kim JH, Kanjanasuntree R, Konkit M, Sukhoom A, Kantachote D, Kim W. Arthrobacter paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 2018; 68:47-51. [DOI: 10.1099/ijsem.0.002426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qi Zhang
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Mihee Oh
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Rungravee Kanjanasuntree
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Maytiya Konkit
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ampaitip Sukhoom
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
16
|
Liu Q, Xin YH, Zhou YG, Chen WX. Multilocus sequence analysis of homologous recombination and diversity in Arthrobacter sensu lato named species and glacier-inhabiting strains. Syst Appl Microbiol 2017; 41:23-29. [PMID: 29129356 DOI: 10.1016/j.syapm.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/30/2017] [Accepted: 08/19/2017] [Indexed: 10/18/2022]
Abstract
Members of the bacterial genus Arthrobacter sensu lato are Gram-positive actinomycetes distributed worldwide and found in numerous environments including soil, water, glacier ice, and sewage. Homologous recombination is an important driving force in bacterial evolution, but its impact on Arthrobacter sensu lato evolution is poorly understood. We evaluated homologous recombination among 41 Arthrobacter sensu lato named species, using multilocus sequence analysis (MLSA). A high level of recombination was found, associated with strong diversification and a reticulate evolutionary pattern of Arthrobacter sensu lato. We also collected a total of 31 cold-adapted Arthrobacter sensu lato strains from two cold glaciers located in northwest China and two temperate glaciers in southwest China, and evaluated their diversity and population structure by MLSA. The glacier strains displayed high diversity, but rates of recombination among the four glacier groups were quite low, indicating that barriers to homologous recombination formed in the past among the populations on different glaciers. Our findings indicate that historical glaciation events shaped the contemporary distributions, taxonomic relationships, and phylogeographic patterns of Arthrobacter sensu lato species on glaciers.
Collapse
Affiliation(s)
- Qing Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Hua Xin
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Zeng B, Zhao J, Guo W, Zhang S, Hua Y, Tang J, Kong F, Yang X, Fu L, Liao K, Yu X, Chen G, Jin L, Shuai S, Yang J, Si X, Ning R, Mishra S, Li Y. High-Altitude Living Shapes the Skin Microbiome in Humans and Pigs. Front Microbiol 2017; 8:1929. [PMID: 29056930 PMCID: PMC5635199 DOI: 10.3389/fmicb.2017.01929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
While the skin microbiome has been shown to play important roles in health and disease in several species, the effects of altitude on the skin microbiome and how high-altitude skin microbiomes may be associated with health and disease states remains largely unknown. Using 16S rRNA marker gene sequencing, we characterized the skin microbiomes of people from two racial groups (the Tibetans and the Hans) and of three local pig breeds (Tibetan pig, Rongchang pig, and Qingyu pig) at high and low altitudes. The skin microbial communities of low-altitude pigs and humans were distinct from those of high-altitude pigs and humans, with five bacterial taxa (Arthrobacter, Paenibacillus, Carnobacterium, and two unclassified genera in families Cellulomonadaceae and Xanthomonadaceae) consistently enriched in both pigs and humans at high altitude. Alpha diversity was also significantly lower in skin samples collected from individuals living at high altitude compared to individuals at low altitude. Several of the taxa unique to high-altitude humans and pigs are known extremophiles adapted to harsh environments such as those found at high altitude. Altogether our data reveal that altitude has a significant effect on the skin microbiome of pigs and humans.
Collapse
Affiliation(s)
- Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, United States
| | - Wei Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yutong Hua
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingsi Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Fanli Kong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewu Yang
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Lizhi Fu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Kun Liao
- Pasturage Station of Tongjiang Agriculture Bureau, Bazhong, China
| | - Xianqiong Yu
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Guohong Chen
- Animal Husbandry and Technology Bureau of Daocheng County, Daocheng, China
| | - Long Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiandong Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Si
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ruihong Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sudhanshu Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Krishnan R, Menon RR, Tanaka N, Busse HJ, Krishnamurthi S, Rameshkumar N. Arthrobacter pokkalii sp nov, a Novel Plant Associated Actinobacterium with Plant Beneficial Properties, Isolated from Saline Tolerant Pokkali Rice, Kerala, India. PLoS One 2016; 11:e0150322. [PMID: 26963092 PMCID: PMC4786123 DOI: 10.1371/journal.pone.0150322] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 02/12/2016] [Indexed: 11/19/2022] Open
Abstract
A novel yellow colony-forming bacterium, strain P3B162T was isolated from the pokkali rice rhizosphere from Kerala, India, as part of a project study aimed at isolating plant growth beneficial rhizobacteria from saline tolerant pokkali rice and functionally evaluate their abilities to promote plant growth under saline conditions. The novel strain P3B162T possesses plant growth beneficial traits such as positive growth on 1-aminocyclopropane-1-carboxylic acid (ACC), production of indole acetic acid (IAA) and siderophore. In addition, it also showed important phenotypic characters such as ability to form biofilm and utilization of various components of plant root exudates (sugars, amino acids and organic acids), clearly indicating its lifestyle as a plant rhizosphere associated bacterium. Taxonomically, the novel strain P3B162T was affiliated to the genus Arthrobacter based on the collective results of phenotypic, genotypic and chemotaxonomic analyses. Moreover, molecular analysis using 16S rRNA gene showed Arthrobacter globiformis NBRC 12137T, Arthrobacter pascens DSM 20545T and Arthrobacter liuii DSXY973T as the closely related phylogenetic neighbours, showing more than 98% 16S rRNA similarity values, whereas the recA gene analysis displayed Arthrobacter liuii JCM 19864T as the nearest neighbour with 94.7% sequence similarity and only 91.7% to Arthrobacter globiformis LMG 3813T and 88.7% to Arthrobacter pascens LMG 16255T. However, the DNA-DNA hybridization values between strain P3B162T, Arthrobacter globiformis LMG 3813T, Arthrobacter pascens LMG 16255T and Arthrobacter liuii JCM 19864T was below 50%. In addition, the novel strain P3B162T can be distinguished from its closely related type strains by several phenotypic characters such as colony pigment, tolerance to NaCl, motility, reduction of nitrate, hydrolysis of DNA, acid from sucrose, cell wall sugars and cell wall peptidoglycan structure. In conclusion, the combined results of this study support the classification of strain P3B162T as a novel Arthrobacter species and we propose Arthrobacter pokkalii sp.nov.as its name. The type strain is P3B162T (= KCTC 29498T = MTCC 12358T).
Collapse
Affiliation(s)
- Ramya Krishnan
- Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India
| | - Rahul Ravikumar Menon
- Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India
| | - Naoto Tanaka
- NODAI Culture Collection Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156–8502, Japan
| | - Hans-Jürgen Busse
- Institute of Microbiology, Veterinary University Vienna, A-1210, Vienna, Austria
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, 160036, India
| | - Natarajan Rameshkumar
- Biotechnology Department, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram, 695 019, Kerala, India
| |
Collapse
|