1
|
Guo ZC, Cui MH, Yang CX, Dai HL, Yang TY, Zhai LZ, Chen Y, Liu WZ, Wang AJ. Electrical stress and acid orange 7 synergistically clear the blockage of electron flow in the methanogenesis of low-strength wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100410. [PMID: 38572083 PMCID: PMC10987894 DOI: 10.1016/j.ese.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
Energy recovery from low-strength wastewater through anaerobic methanogenesis is constrained by limited substrate availability. The development of efficient methanogenic communities is critical but challenging. Here we develop a strategy to acclimate methanogenic communities using conductive carrier (CC), electrical stress (ES), and Acid Orange 7 (AO7) in a modified biofilter. The synergistic integration of CC, ES, and AO7 precipitated a remarkable 72-fold surge in methane production rate compared to the baseline. This increase was attributed to an altered methanogenic community function, independent of the continuous presence of AO7 and ES. AO7 acted as an external electron acceptor, accelerating acetogenesis from fermentation intermediates, restructuring the bacterial community, and enriching electroactive bacteria (EAB). Meanwhile, CC and ES orchestrated the assembly of the archaeal community and promoted electrotrophic methanogens, enhancing acetotrophic methanogenesis electron flow via a mechanism distinct from direct electrochemical interactions. The collective application of CC, ES, and AO7 effectively mitigated electron flow impediments in low-strength wastewater methanogenesis, achieving an additional 34% electron recovery from the substrate. This study proposes a new method of amending anaerobic digestion systems with conductive materials to advance wastewater treatment, sustainability, and energy self-sufficiency.
Collapse
Affiliation(s)
- Ze-Chong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Xue Yang
- School of Geography and Tourism, Harbin University, Harbin, 150001, China
| | - Hong-Liang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Tong-Yi Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Lin-Zhi Zhai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Vigderovich H, Eckert W, Elvert M, Gafni A, Rubin-Blum M, Bergman O, Sivan O. Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments. Front Microbiol 2023; 14:1206414. [PMID: 37577416 PMCID: PMC10415106 DOI: 10.3389/fmicb.2023.1206414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.
Collapse
Affiliation(s)
- Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Marcus Elvert
- MARUM—Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Oded Bergman
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Moroz OM, Hnatush SO, Yavorska HV, Zvir GI, Tarabas OV. Influence of potassium dichromate on the reduction of sulfur, nitrate and nitrite ions by bacteria Desulfuromonas sp. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This article presents the regularities of reduction of sulfur, nitrate and nitrite ions by sulfur reducing bacteria Desulfuromonas sp., which were isolated from the water of the man-made Yavorivske Lake (Lviv Region, Ukraine), under the influence of potassium dichromate. This bacteria in the process of anaerobic respiration can use and reduce different electron acceptors, such as sulfur, nitrates, nitrites, oxidized forms of heavy metals, in particular, hexavalent chromium. Technogenically altered ecotopes are characterized by complex pollution, so several electron acceptors are available to bacteria at the same time. Strains of microorganisms isolated from such ecotopes are adapted to unfavourable conditions and therefore have high biotechnological potential. The purpose of this work was to investigate the regularities of elemental sulfur, nitrate or nitrite ion usage by sulfidogenic bacteria of Desulfuromonas genus in conditions of simultaneous presence in the medium of another electron acceptor – Cr(VI), to establish the succession of reduction of electron acceptors by strains of these bacteria and to evaluate the efficiency of their possible application in technologies of complex purification of the environment from metal compounds and other inorganic toxicants. Bacteria were grown under anaerobic conditions in Kravtsov-Sorokin medium without SO42– and without Mohr’s salt for 10 days. To study the efficiency of sulfur, nitrate or nitrite ions’ reduction at simultaneous presence in the medium of Cr(VI) bacteria were sown in media with elemental sulfur, NaNO3, NaNO2 or K2Cr2O7 to final S0, NO3–, NO2–or Cr(VI) concentration in the medium of 3.47 (concentration of SO42– in medium of standard composition) or 1.74, 3.47, 5.21, 6.94 and 10.41 mM. Biomass was determined by the turbidimetric method, and the concentrations of nitrate, nitrite, ammonium ions, hydrogen sulfide, Cr(VI), Cr(ІІІ) in cultural liquid were determined spectrophotometrically. It has been established that Cr(VI) inhibits the biomass accumulation and hydrogen sulfide production by bacteria of Desulfuromonas sp. after simultaneous addition into the medium of 3.47 mM S0 and 1.74–10.41 mM Cr(VI). In the medium with the same initial content (3.47 mM) of S0 and Cr(VI) bacteria produced Cr(III) at concentrations 3.3–3.4 times higher than that of hydrogen sulfide. It has been shown that K2Cr2O7 inhibits biomass accumulation, nitrate ions’ reduction and ammonium ions’ production by bacteria after simultaneous addition into the medium of 3.47 mM NO3– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO3– and 3.47 mM Cr(VI). In the medium with the same initial content (3.47 mM) of NO3– and Cr(VI) bacteria reduced up to 1.2 times more nitrate ions than Cr(VI) with the production of ammonium ions at concentrations the same times higher than those of Cr(III). It has been established that K2Cr2O7 inhibits biomass accumulation, nitrite ions’ reduction and ammonium ions’ production by bacteria after simultaneous addition into the medium of 3.47 mM NO2– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO2– and 3.47 mM Cr(VI). In the medium with the same initial content of (3.47 mM) NO2– and Cr(VI) the reduction of Cr(VI) by bacteria was only slightly, up to 1.1 times, lower than the reduction of nitrite ions, almost the same concentrations of trivalent chromium and ammonium ions were detected in the cultural liquid. The processes of nitrate and nitride reduction carried out by bacteria of Desulfuromonas genus were revealed to be less sensitive to the negative influence of sodium dichromate, as compared with the process of sulfur reduction, because in the media with the same initial content (3.47 mM) of NO3– or NO2– and Cr(VI) bacteria produced 1.1–1.2 times more NH4+ than Cr(III), but in the medium with the same initial content (3.47 mM) of S0 and Cr(VI) ) bacteria produced over than three times more Cr(III) than hydrogen sulfide. Our data allow us to conclude that bacteria of Desulfuromonas genus, the investigated strains of which are adapted to high concentrations (up to 10.41 mM) of inorganic toxicants, play an important role in the geochemical cycles of sulfur, nitrogen and chromium in aquatic environments that have been under anthropogenic influence.
Collapse
|
4
|
Wunder LC, Aromokeye DA, Yin X, Richter-Heitmann T, Willis-Poratti G, Schnakenberg A, Otersen C, Dohrmann I, Römer M, Bohrmann G, Kasten S, Friedrich MW. Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments. THE ISME JOURNAL 2021; 15:3587-3604. [PMID: 34155335 PMCID: PMC8630232 DOI: 10.1038/s41396-021-01014-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Permanently cold marine sediments are heavily influenced by increased input of iron as a result of accelerated glacial melt, weathering, and erosion. The impact of such environmental changes on microbial communities in coastal sediments is poorly understood. We investigated geochemical parameters that shape microbial community compositions in anoxic surface sediments of four geochemically differing sites (Annenkov Trough, Church Trough, Cumberland Bay, Drygalski Trough) around South Georgia, Southern Ocean. Sulfate reduction prevails in Church Trough and iron reduction at the other sites, correlating with differing local microbial communities. Within the order Desulfuromonadales, the family Sva1033, not previously recognized for being capable of dissimilatory iron reduction, was detected at rather high relative abundances (up to 5%) while other members of Desulfuromonadales were less abundant (<0.6%). We propose that Sva1033 is capable of performing dissimilatory iron reduction in sediment incubations based on RNA stable isotope probing. Sulfate reducers, who maintain a high relative abundance of up to 30% of bacterial 16S rRNA genes at the iron reduction sites, were also active during iron reduction in the incubations. Thus, concurrent sulfate reduction is possibly masked by cryptic sulfur cycling, i.e., reoxidation or precipitation of produced sulfide at a small or undetectable pool size. Our results show the importance of iron and sulfate reduction, indicated by ferrous iron and sulfide, as processes that shape microbial communities and provide evidence for one of Sva1033's metabolic capabilities in permanently cold marine sediments.
Collapse
Affiliation(s)
- Lea C Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David A Aromokeye
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| | - Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Graciana Willis-Poratti
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- Instituto Antártico Argentino, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Annika Schnakenberg
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carolin Otersen
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Ingrid Dohrmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Miriam Römer
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Gerhard Bohrmann
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Sabine Kasten
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
5
|
Xie L, Yoshida N, Ishii S, Meng L. Isolation and Polyphasic Characterization of Desulfuromonas versatilis sp. Nov., an Electrogenic Bacteria Capable of Versatile Metabolism Isolated from a Graphene Oxide-Reducing Enrichment Culture. Microorganisms 2021; 9:1953. [PMID: 34576847 PMCID: PMC8465243 DOI: 10.3390/microorganisms9091953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, a novel electrogenic bacterium denoted as strain NIT-T3 of the genus Desulfuromonas was isolated from a graphene-oxide-reducing enrichment culture that was originally obtained from a mixture of seawater and coastal sand. Strain NIT-T3 utilized hydrogen and various organic acids as electron donors and exhibited respiration using electrodes, ferric iron, nitrate, and elemental sulfur. The strain contained C16:1ω7c, C16:0, and C15:0 as major fatty acids and MK-8, 9, and 7 as the major respiratory quinones. Strain NIT-T3 contained four 16S rRNA genes and showed 95.7% similarity to Desulfuromonasmichiganensis BB1T, the closest relative. The genome was 4.7 Mbp in size and encoded 76 putative c-type cytochromes, which included 6 unique c-type cytochromes (<40% identity) compared to those in the database. Based on the physiological and genetic uniqueness, and wide metabolic capability, strain NIT-T3 is proposed as a type strain of 'Desulfuromonas versatilis' sp. nov.
Collapse
Affiliation(s)
- Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Shun’ichi Ishii
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Kanagawa, Japan;
| | - Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| |
Collapse
|
6
|
Pal S, Dutta A, Sarkar J, Roy A, Sar P, Kazy SK. Exploring the diversity and hydrocarbon bioremediation potential of microbial community in the waste sludge of Duliajan oil field, Assam, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50074-50093. [PMID: 33945094 DOI: 10.1007/s11356-021-13744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Microbial community analysis of crude oil containing sludge collected from Duliajan oil field, Assam, India, showed the predominance of hydrocarbon-degrading bacteria such as Pseudomonas (20.1%), Pseudoxanthomonas (15.8%), Brevundimonas (1.6%), and Bacillus (0.8%) alongwith anaerobic, fermentative, nitrogen-fixing, nitrate-, sulfate-, and metal-reducing, syntrophic bacteria, and methanogenic archaea. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated gene collection for potential hydrocarbon degradation, lipid, nitrogen, sulfur, and methane metabolism. The culturable microbial community was predominated by Pseudomonas and Bacillus with the metabolic potential for utilizing diverse hydrocarbons, crude oil, and actual petroleum sludge as sole carbon source during growth and tolerating various environmental stresses prevailing in such contaminated sites. More than 90% of the isolated strains could produce biosurfactant and exhibit catechol 2,3-dioxygenase activity. Nearly 30% of the isolates showed alkane hydroxylase activity with the maximum specific activity of 0.54 μmol min-1 mg-1. The study provided better insights into the microbial diversity and functional potential within the crude oil containing sludge which could be exploited for in situ bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Avishek Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
- School of Bio Science, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, 713209, India.
| |
Collapse
|
7
|
Guo Y, Aoyagi T, Hori T. Comparative insights into genome signatures of ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. BMC Genomics 2021; 22:475. [PMID: 34171987 PMCID: PMC8235581 DOI: 10.1186/s12864-021-07809-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Halotolerant Fe (III) oxide reducers affiliated in the family Desulfuromonadaceae are ubiquitous and drive the carbon, nitrogen, sulfur and metal cycles in marine subsurface sediment. Due to their possible application in bioremediation and bioelectrochemical engineering, some of phylogenetically close Desulfuromonas spp. strains have been isolated through enrichment with crystalline Fe (III) oxide and anode. The strains isolated using electron acceptors with distinct redox potentials may have different abilities, for instance, of extracellular electron transport, surface recognition and colonization. The objective of this study was to identify the different genomic signatures between the crystalline Fe (III) oxide-stimulated strain AOP6 and the anode-stimulated strains WTL and DDH964 by comparative genome analysis. RESULTS The AOP6 genome possessed the flagellar biosynthesis gene cluster, as well as diverse and abundant genes involved in chemotaxis sensory systems and c-type cytochromes capable of reduction of electron acceptors with low redox potentials. The WTL and DDH964 genomes lacked the flagellar biosynthesis cluster and exhibited a massive expansion of transposable gene elements that might mediate genome rearrangement, while they were deficient in some of the chemotaxis and cytochrome genes and included the genes for oxygen resistance. CONCLUSIONS Our results revealed the genomic signatures distinctive for the ferric iron oxide- and anode-stimulated Desulfuromonas spp. strains. These findings highlighted the different metabolic abilities, such as extracellular electron transfer and environmental stress resistance, of these phylogenetically close bacterial strains, casting light on genome evolution of the subsurface Fe (III) oxide reducers.
Collapse
Affiliation(s)
- Yong Guo
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
8
|
Valkanas MM, Rosso T, Packard JE, Trun NJ. Limited carbon sources prevent sulfate remediation in circumneutral abandoned mine drainage. FEMS Microbiol Ecol 2021; 97:6070647. [PMID: 33417684 DOI: 10.1093/femsec/fiaa262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/31/2020] [Indexed: 01/04/2023] Open
Abstract
Passive remediation systems (PRS) use both biotic and abiotic processes to precipitate contaminants from abandoned mine drainage (AMD) so that the contaminants do not spread into local watersheds. PRS are efficient at removing heavy metals but sulfate remediation frequently does not occur. To understand the reasons for the lack of sulfate remediation, we studied four PRS that treat circumneutral AMD and one raw mine drainage discharge. Using 16S sequencing analysis, microbial community composition revealed a high relative abundance of bacterial families with sulfur cycling genera. Anaerobic abiotic studies showed that sulfide was quickly geochemically oxidized in the presence of iron hydroxides, leading to a buildup of sulfur intermediates. Supplementation of laboratory grown microbes from the PRS with lactate demonstrated the ability of actively growing microbes to overcome this abiotic sulfide oxidation by increasing the rate of sulfate reduction. Thus, the lack of carbon sources in the PRS contributes to the lack of sulfate remediation. Bacterial community analysis of 16S rRNA gene revealed that while the microbial communities in different parts of the PRS were phylogenetically distinct, the contaminated environments selected for communities that shared similar metabolic capabilities.
Collapse
Affiliation(s)
- Michelle M Valkanas
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Taylor Rosso
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Jessica E Packard
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| | - Nancy J Trun
- Department of Biological Sciences, Duquesne University, 256 Mellon Hall, 600 Forbes Ave, Pittsburgh, PA 15282, USA
| |
Collapse
|
9
|
Wang LK, Chen X, Wei W, Xu Q, Sun J, Mannina G, Song L, Ni BJ. Biological Reduction of Nitric Oxide for Efficient Recovery of Nitrous Oxide as an Energy Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1992-2005. [PMID: 33430585 DOI: 10.1021/acs.est.0c04037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemical absorption-biological reduction based on Fe(II)EDTA is a promising technology to remove nitric oxide (NO) from flue gases. However, limited effort has been made to enable direct energy recovery from NO through production of nitrous oxide (N2O) as a potential renewable energy rather than greenhouse gas. In this work, the enhanced energy recovery in the form of N2O via biological NO reduction was investigated by conducting short-term and long-term experiments at different Fe(II)EDTA-NO and organic carbon levels. The results showed both NO reductase and N2O reductase were inhibited at Fe(II)EDTA-NO concentration up to 20 mM, with the latter being inhibited more significantly, thus facilitating N2O accumulation. Furthermore, N2O accumulation was enhanced under carbon-limiting conditions because of electron competition during short-term experiments. Up to 47.5% of NO-N could be converted to gaseous N2O-N, representing efficient N2O recovery. Fe(II)EDTA-NO reduced microbial diversity and altered the community structure toward Fe(II)EDTA-NO-reducing bacteria-dominated culture during long-term experiments. The most abundant bacterial genus Pseudomonas, which was able to resist the toxicity of Fe(II)EDTA-NO, was significantly enriched, with its relative abundance increased from 1.0 to 70.3%, suggesting Pseudomonas could be the typical microbe for the energy recovery technology in NO-based denitrification.
Collapse
Affiliation(s)
- Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xueming Chen
- College of Environment and Resources, Fuzhou University, Fujian 350116, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Giorgio Mannina
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Engineering Department, Palermo University, Viale delle Scienze, ed. 8, 90128 Palermo, Italy
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
10
|
Сhaіka OM, Peretyatko TB. Effect of abiotic factors on sulfidogenic activity of bacteria Desulfuromonas sp. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sulfur-reducing bacteria are promising agents for the development of new methods of wastewater treatment with the removal of ions of heavy metals and organic compounds. Study of the effect of various environmental factors on the growth and sulfidogenic activity of sulfur-reducing bacteria allows one to investigate the adaptability of these microorganisms to stress factors. The paper deals with the effect of рН, different concentrations of elemental sulfur, hydrogen sulfide and presence of various electron acceptors on the growth and sulfidogenic activity of bacteria Desulfuromonas sp. YSDS-3. The calculation of C/S ratio for sulfur-reducing bacteria Desulfuromonas sp. YSDS-3 was made, with the comparison with similar parameters of sulfate-reducing bacteria. In the medium with elemental sulfur, concentration of hydrogen sulfide increased with the concentration of elemental sulfur. Bacteria Desulfuromonas sp. YSDS-3 accumulated their biomass in the most effective way at the concentration of elemental sulfur of 10–100 mM. In the medium with polysulfide form of sulfur at the neutral pH, bacteria produced hydrogen sulfide and accumulated biomass the best. Hydrogen sulfide at the concentration of 3 mM did not inhibit the bacterial growth, but further increase in the hydrogen sulfide concentration inhibited the growth of bacteria. The bacteria did not grow at the hydrogen sulfide concentration of 25 mM and above. As the concentration of elemental sulfur and cell density increases, sulfidogenic activity of the bacteria grows. Presence of two electron acceptors (S and K2Cr2O7, S and MnO2, S and Fe (III)) did not affect the accumulation of biomass of the bacteria Desulfuromonas sp. YSDS-3. However, under such conditions the bacteria accumulated 1.5–2.5 times less hydrogen sulfide than in the test medium. After 12–24 h of cultivation, different concentrations of elemental sulfur had a significant effect on the sulfidogenic activity. However, during 3–16 days of cultivation, the percentage of effect of elemental sulfur concentration decreased to 31%, while the percentage of effect of cell density increased threefold. Presence in the medium of the electron acceptors (Cr (VI), MnO2, Fe (III)) alternative to elemental sulfur led to a significant decrease in the content of hydrogen sulfide produced by sulfur-reducing bacteria.
Collapse
|
11
|
Community Structure Analyses of Anodic Biofilms in a Bioelectrochemical System Combined with an Aerobic Reactor. ENERGIES 2019. [DOI: 10.3390/en12193643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bioelectrochemical system (BES)-based reactors have a limited range of use, especially in aerobic conditions, because these systems usually produce current from exoelectrogenic bacteria that are strictly anaerobic. However, some mixed cultures of bacteria in aerobic reactors can form surface biofilms that may produce anaerobic conditions suitable for exoelectrogenic bacteria to thrive. In this study, we combined a BES with an aerobic trickling filter (TF) reactor for wastewater treatment and found that the BES-TF setup could produce electricity with a coulombic efficiency of up to 15% from artificial wastewater, even under aerobic conditions. The microbial communities within biofilms formed at the anodes of BES-TF reactors were investigated using high throughput 16S rRNA gene sequencing. Efficiency of reduction in chemical oxygen demand and total nitrogen content of wastewater using this system was >97%. Bacterial community analysis showed that exoelectrogenic bacteria belonging to the genera Geobacter and Desulfuromonas were dominant within the biofilm coating the anode, whereas aerobic bacteria from the family Rhodocyclaceae were abundant on the surface of the biofilm. Based on our observations, we suggest that BES-TF reactors with biofilms containing aerobic bacteria and anaerobic exoelectrogenic bacteria on the anodes can function in aerobic environments.
Collapse
|
12
|
Barua S, Zakaria BS, Lin L, Dhar BR. Shaping microbial communities with conductive carbon fibers to enhance methane productivity and kinetics. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Wolff D, Krah D, Dötsch A, Ghattas AK, Wick A, Ternes TA. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. WATER RESEARCH 2018; 143:313-324. [PMID: 29986241 DOI: 10.1016/j.watres.2018.06.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/02/2018] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
The biological potential of conventional wastewater treatment plants to remove micropollutants mainly depends on process conditions and the predominant microbial community. To explore this dependence and to connect the occurrence of genera with operating conditions, five pilot-scale reactors with different process conditions were combined into two reactor cascades and fed with the effluent of the primary clarifier of a municipal WWTP. All reactors and the WWTP were analyzed for the removal of 33 micropollutants by LC-MS/MS and the presence of the microbial community using 16S rRNA gene sequencing. The overall removal of the micropollutants was slightly improved (ca. 20%) by the reactor cascades in comparison to the WWTP while certain compounds such as diatrizoate, venlafaxine or diclofenac showed an enhanced removal (ca. 70% in one or both cascades). To explore the diverse bacteria in more detail, the general community was divided into a core and a specialized community. Despite their profoundly different operating parameters (especially redox conditions), the different treatments share a core community consisted of 143 genera (9% of the overall community). Furthermore, the alpha- and beta-biodiversity as well as the occurrence of several genera belonging to the specialized microbial community could be linked to the prevalent process conditions of the individual treatments. Members of the specialized community also correlated with the removal of certain groups of micropollutants. Hence, the comparison of the specialized community with micropollutant removal and operating conditions via correlation analysis is a valuable tool for an extended evaluation of prevalent process conditions. Based on an extended data set this approach could also be used to identify organisms as indicators for operating conditions which are beneficial for an improved removal of specific micropollutants.
Collapse
Affiliation(s)
- David Wolff
- Federal Institute of Hydrology (BfG), D-56068, Koblenz, Am Mainzer Tor 1, Germany
| | - Daniel Krah
- Federal Institute of Hydrology (BfG), D-56068, Koblenz, Am Mainzer Tor 1, Germany
| | - Andreas Dötsch
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), D-76344, Eggenstein-Leopoldshafen, Hermann-von-Helmholtz-Platz 1, Germany
| | - Ann-Kathrin Ghattas
- Federal Institute of Hydrology (BfG), D-56068, Koblenz, Am Mainzer Tor 1, Germany
| | - Arne Wick
- Federal Institute of Hydrology (BfG), D-56068, Koblenz, Am Mainzer Tor 1, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology (BfG), D-56068, Koblenz, Am Mainzer Tor 1, Germany.
| |
Collapse
|
14
|
Imchen M, Kumavath R, Barh D, Vaz A, Góes-Neto A, Tiwari S, Ghosh P, Wattam AR, Azevedo V. Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Sci Rep 2018; 8:11187. [PMID: 30046123 PMCID: PMC6060162 DOI: 10.1038/s41598-018-29521-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
The mangrove ecosystem harbors a complex microbial community that plays crucial role in biogeochemical cycles. In this study, we analyzed mangrove sediments from India using de novo whole metagenome next generation sequencing (NGS) and compared their taxonomic and functional community structures to mangrove metagenomics samples from Brazil and Saudi Arabia. The most abundant phyla in the mangroves of all three countries was Proteobacteria, followed by Firmicutes and Bacteroidetes. A total of 1,942 genes were found to be common across all the mangrove sediments from each of the three countries. The mangrove resistome consistently showed high resistance to fluoroquinolone and acriflavine. A comparative study of the mangrove resistome with other ecosystems shows a higher frequency of heavy metal resistance in mangrove and terrestrial samples. Ocean samples had a higher abundance of drug resistance genes with fluoroquinolone and methicillin resistance genes being as high as 28.178% ± 3.619 and 10.776% ± 1.823. Genes involved in cobalt-zinc-cadmium resistance were higher in the mangrove (23.495% ± 4.701) and terrestrial (27.479% ± 4.605) ecosystems. Our comparative analysis of samples collected from a variety of habitats shows that genes involved in resistance to both heavy metals and antibiotics are ubiquitous, irrespective of the ecosystem examined.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India.,Division of Bioinformatics and Computational Genomics, NITTE University Center for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Vaz
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science Virginia Commonwealth University, Virginia, 23284, USA
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech University, Blacksburg, Virginia, 24061, USA
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Li L, Qu Z, Jia R, Wang B, Wang Y, Qu D. Excessive input of phosphorus significantly affects microbial Fe(III) reduction in flooded paddy soils by changing the abundances and community structures of Clostridium and Geobacteraceae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:982-991. [PMID: 28724230 DOI: 10.1016/j.scitotenv.2017.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Microbial Fe(III) reduction can make an excellent contribution to the bioremediation of contaminated environments and potentially reduce methanogenesis. Excessive input of phosphorus (P) by P fertilizer application and eutrophied irrigation water might have a substantial influence on the process of microbial Fe(III) reduction in flooded paddy soils. To evaluate the effect of P application on microbial Fe(III) reduction, the responses of Clostridium and Geobacteraceae communities to different concentrations of P addition (CK: 0mmolPkg-1 soil; P1: 3.3mmolPkg-1 soil; P2: 20mmolPkg-1 soil) were investigated in anaerobically incubated paddy slurries. P addition significantly inhibited Fe(III) reduction during the early stage of incubation (from days 0 to 20). Compared with the CK treatment, the maximum Fe(III) reduction rate (Vmax) in treatments P1 and P2 remarkably decreased by 0.281 and 0.439mg·g-1·d-1, respectively. However, the addition of P had no significant effect on Fe(III) reduction during the later stage of incubation (after 20days). The abundances of Clostridium and Geobacteraceae were suppressed by P addition, and the suppression effect was more obvious with higher P concentration. P addition significantly changed the community structures of Clostridium and Geobacteraceae during the entire incubation. The communities of Clostridium and Geobacteraceae were closely correlated with the process of Fe(III) reduction. In conclusion, P addition could inhibit the microbial reduction of Fe(III) during the early stage of incubation by reducing the abundances and altering the community structures of Clostridium and Geobacteraceae, however, the inhibition could be eliminated with increased incubation time. This study demonstrates that soil microbial communities are sensitive to excessive P application, which can jointly impact relevant biogeochemical processes in flooded paddy soils.
Collapse
Affiliation(s)
- Lina Li
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, China
| | - Zhi Qu
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, China
| | - Rong Jia
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, China
| | - Baoli Wang
- College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Yuanyuan Wang
- College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China
| | - Dong Qu
- College of Natural Resources and Environment, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, China.
| |
Collapse
|
16
|
Leitner S, Berger H, Gorfer M, Reichenauer TG, Watzinger A. Isotopic effects of PCE induced by organohalide-respiring bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24803-24815. [PMID: 28913587 DOI: 10.1007/s11356-017-0075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Reductive dechlorination performed by organohalide-respiring bacteria (OHRB) enables the complete detoxification of certain emerging groundwater pollutants such as perchloroethene (PCE). Environmental samples from a contaminated site incubated in a lab-scale microcosm (MC) study enable documentation of such reductive dechlorination processes. As compound-specific isotope analysis is used to monitor PCE degradation processes, nucleic acid analysis-like 16S-rDNA analysis-can be used to determine the key OHRB that are present. This study applied both methods to laboratory MCs prepared from environmental samples to investigate OHRB-specific isotope enrichment at PCE dechlorination. This method linkage can enhance the understanding of isotope enrichment patterns of distinct OHRB, which further contribute to more accurate evaluation, characterisation and prospection of natural attenuation processes. Results identified three known OHRB genera (Dehalogenimonas, Desulfuromonas, Geobacter) in diverse abundance within MCs. One species of Dehalogenimonas was potentially involved in complete reductive dechlorination of PCE to ethene. Furthermore, the isotopic effects of PCE degradation were clustered and two isotope enrichment factors (ε) (- 11.6‰, - 1.7‰) were obtained. Notably, ε values were independent of degradation rates and kinetics, but did reflect the genera of the dechlorinating OHRB.
Collapse
Affiliation(s)
- Simon Leitner
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Harald Berger
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria
| | - Andrea Watzinger
- AIT Austrian Institute of Technology GmbH, Energy Department, Environmental Resources & Technologies, Konrad-Lorenz-Str. 24, 3430, Tulln, Austria.
| |
Collapse
|
17
|
Sampaio DS, Almeida JRB, de Jesus HE, Rosado AS, Seldin L, Jurelevicius D. Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica. MICROBIAL ECOLOGY 2017; 74:810-820. [PMID: 28484799 DOI: 10.1007/s00248-017-0973-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic diesel fuel Arctic (DFA) degradation has already been demonstrated in Antarctic soils. However, studies comparing the distribution of anaerobic bacterial groups and of anaerobic hydrocarbon-degrading bacteria in Antarctic soils containing different concentrations of DFA are scarce. In this study, functional genes were used to study the diversity and distribution of anaerobic hydrocarbon-degrading bacteria (bamA, assA, and bssA) and of sulfate-reducing bacteria (SRB-apsR) in highly, intermediate, and non-DFA-contaminated soils collected during the summers of 2009, 2010, and 2011 from King George Island, Antarctica. Signatures of bamA genes were detected in all soils analyzed, whereas bssA and assA were found in only 4 of 10 soils. The concentration of DFA was the main factor influencing the distribution of bamA-containing bacteria and of SRB in the analyzed soils, as shown by PCR-DGGE results. bamA sequences related to genes previously described in Desulfuromonas, Lautropia, Magnetospirillum, Sulfuritalea, Rhodovolum, Rhodomicrobium, Azoarcus, Geobacter, Ramlibacter, and Gemmatimonas genera were dominant in King George Island soils. Although DFA modulated the distribution of bamA-hosting bacteria, DFA concentration was not related to bamA abundance in the soils studied here. This result suggests that King George Island soils show functional redundancy for aromatic hydrocarbon degradation. The results obtained in this study support the hypothesis that specialized anaerobic hydrocarbon-degrading bacteria have been selected by hydrocarbon concentrations present in King George Island soils.
Collapse
Affiliation(s)
- Dayanna Souza Sampaio
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Hugo E de Jesus
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alexandre S Rosado
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucy Seldin
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Jurelevicius
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco I, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
18
|
Miyahara M, Kouzuma A, Watanabe K. Sodium chloride concentration determines exoelectrogens in anode biofilms occurring from mangrove-grown brackish sediment. BIORESOURCE TECHNOLOGY 2016; 218:674-679. [PMID: 27420153 DOI: 10.1016/j.biortech.2016.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Single-chamber microbial fuel cells (MFCs) were inoculated with mangrove-grown brackish sediment (MBS) and continuously supplied with an acetate medium containing different concentrations of NaCl (0-1.8M). Different from MFCs inoculated with paddy-field soil (high power outputs were observed between 0.05 and 0.1M), power outputs from MBS-MFCs were high at NaCl concentrations from 0 to 0.6M. Amplicon-sequence analyses of anode biofilms suggest that different exoelectrogens occurred from MBS depending on NaCl concentrations; Geobacter occurred abundantly below 0.1M, whereas Desulfuromonas was abundant from 0.3M to 0.6M. These results suggest that NaCl concentration is the major determinant of exoelectrogens that occur in anode biofilms from MBS. It is also suggested that MBS is a potent source of microbes for MFCs to be operated in a wide range of NaCl concentrations.
Collapse
Affiliation(s)
- Morio Miyahara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| |
Collapse
|
19
|
Badalamenti JP, Summers ZM, Chan CH, Gralnick JA, Bond DR. Isolation and Genomic Characterization of 'Desulfuromonas soudanensis WTL', a Metal- and Electrode-Respiring Bacterium from Anoxic Deep Subsurface Brine. Front Microbiol 2016; 7:913. [PMID: 27445996 PMCID: PMC4914508 DOI: 10.3389/fmicb.2016.00913] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/27/2016] [Indexed: 11/25/2022] Open
Abstract
Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, ‘Desulfuromonas soudanensis’ strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that ‘D. soudanensis’ releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. ‘D. soudanensis’ contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of ‘D. soudanensis’ underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats.
Collapse
Affiliation(s)
| | - Zarath M Summers
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul MN, USA
| | - Chi Ho Chan
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint Paul MN, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint PaulMN, USA; Department of Microbiology, University of Minnesota - Twin Cities, MinneapolisMN, USA
| | - Daniel R Bond
- BioTechnology Institute, University of Minnesota - Twin Cities, Saint PaulMN, USA; Department of Microbiology, University of Minnesota - Twin Cities, MinneapolisMN, USA
| |
Collapse
|
20
|
Draft Genome Sequence of Desulfocarbo indianensis SCBM, a New Genus of Sulfate-Reducing Bacteria, Isolated from Water Extracted from an Active Coalbed Methane Gas Well. GENOME ANNOUNCEMENTS 2015; 3:3/5/e00970-15. [PMID: 26337881 PMCID: PMC4559730 DOI: 10.1128/genomea.00970-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used Illumina MiSeq technology to sequence the whole genome of Desulfocarbo indianensis SCBM, a new genus of sulfate-reducing bacteria isolated from a coal bed in Indiana, USA. This draft genome represents the first sequenced genome of the genus Desulfocarbo and the second known genome of the order Desulfarculales.
Collapse
|