1
|
Liu GH, Narsing Rao MP, Chen QQ, Che JM, Shi H, Liu B, Li WJ. Evansella halocellulosilytica sp. nov., an alkali-halotolerant and cellulose-dissolving bacterium isolated from bauxite residue. Extremophiles 2022; 26:19. [PMID: 35661272 DOI: 10.1007/s00792-022-01267-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
An alkali and salt-tolerating strain FJAT-44876T was isolated from the bauxite residue sample. The 16S rRNA gene sequence and phylogenetic analysis suggest that strain FJAT-44876T was a member of the genus Evansella. It grew at 15-45 ℃ (optimum 20-25 ℃) and pH 6.5-11.0 (optimum pH 8.0-9.0) with 0-20% (w/v) NaCl (optimum 6-8%). The major fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, iso-C17:0, and C16:0. The cell wall peptidoglycan contained meso-diaminopimelic acid and MK-7 as the menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, and phosphatidylglycerol. The genomic DNA G+C content was 38.2%. The average nucleotide identity values between strain FJAT-44876T and closely related members were below the cutoff level for species delineation. Thus, based on the above results, strain FJAT-44876T represents a novel species of the genus Evansella, for which the name Evansella halocellulosilytica sp. nov., is proposed. The type strain is FJAT-44876T (=CCTCC AB 2016264T = DSM 104633T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, People's Republic of China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qian-Qian Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, People's Republic of China
| | - Jian-Mei Che
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, People's Republic of China
| | - Huai Shi
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, People's Republic of China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
2
|
Saini K, Gupta R. Cell Surface Expression of γ-CGTase from Evansella caseinilytica on E. coli: Application in the enzymatic conversion of starch to γ-cyclodextrin. Enzyme Microb Technol 2022; 159:110066. [DOI: 10.1016/j.enzmictec.2022.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022]
|
3
|
Saini K, Kashyap A, Saini M, Gupta R. Gamma cyclodextrin glycosyltransferase from evansella caseinilytica: production, characterization and product specificity. 3 Biotech 2022; 12:16. [PMID: 34926120 PMCID: PMC8669088 DOI: 10.1007/s13205-021-03077-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Alkalohalophilic Evansella caseinilytica produced an extracellular cyclodextrin glycosyltransferase (CGTase) with cyclization activity of 43.5 ± 4.4 U/L in M1 medium containing 1% starch and 6% NaCl in nutrient broth at 37 ºC, pH 9.0, after 48 h. This is the first report of CGTase from this bacterium. 0.1% starch was found to induce CGTase, and further optimization using one variable at a time approach followed by statistical optimization led to 5.5-fold enhancement resulting in 240.5 ± 5.46 U/L. Six parameters were identified as positive signals using Plackett-Burman (PB). Of these, yeast extract, MgSO4 and tryptone were taken further for Response Surface Methodology (RSM) by disposing beef extract and fixing starch and soya peptone. The optimized M4 medium consisted of tryptone (0.1%, w/v), yeast extract (0.25%, w/v), MgSO4 (8 mM, w/v), potato starch (0.1%, w/v) and soya peptone (0.2%, w/v). CGTase was further purified with 6.44-fold purification and 19.32% yield employing starch affinity. It was found to be monomeric, corresponding to a size of 68 kDa as estimated by SDS-PAGE and was further confirmed to be 65 kDa by size exclusion chromatography. γ-Cyclodextrins were produced as the major product with a conversion of 5% soluble starch into 20.38% γ-cyclodextrins after 24 h reaction, as determined by HPLC. Peptide fingerprint after LC-MS analysis matched with IPT/TIG domain-containing protein within the genome of E. caseinilytica. Further blastp analysis revealed the closest homology with γ-CGTase from an alkalophilic E. clarkii, thereby confirming CGTase from E. caseinilytica as γ-CGTase.
Collapse
Affiliation(s)
- Kuldeep Saini
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021 India
| | - Amuliya Kashyap
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021 India
| | - Meenu Saini
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
4
|
Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753-5798. [PMID: 33112222 DOI: 10.1099/ijsem.0.004475] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium. The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer 'Bacillus kyonggiensis' to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis) or the Cereus clade (containing B. anthracis and B. cereus). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.
Collapse
Key Words
- classification of Bacillus species
- conserved signature indels
- emendation of genus Bacillus
- genus Bacillus and the family Bacillaceae
- novel Bacillaceae genera Alteribacter, Ectobacillus, Evansella, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Niallia, Priestia, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sutcliffiella and Weizmannia
- phylogenomic and comparative genomic analyses
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| |
Collapse
|
5
|
Kumar S, Singh H, Kaur M, Kaur L, Tanuku NRS, Pinnaka AK. Bacillus shivajii sp. nov., isolated from a water sample of Sambhar salt lake, India. Int J Syst Evol Microbiol 2018; 68:3463-3470. [PMID: 30207517 DOI: 10.1099/ijsem.0.003008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-positive, rod-shaped, motile, spore-forming, strictly aerobic, alkali- and halo- tolerant bacterium, designated strain AK72T, was isolated from a water sample collected from Sambhar salt lake, Rajasthan, India. The colony appears circular, shiny, smooth, translucent or slightly pale in colour and convex with an entire margin after 48 h incubation at 37 °C with pH 9. Growth of the bacterium occurred at 10-42 °C (optimum, 25-37 °C), at salinities of 0.5-10 % (w/v) NaCl (optimum 3-5 % NaCl) and pH of 6-10 (optimum pH 9). Strain AK72T was positive for oxidase, catalase, nitrate reductase, phenylalanine deaminase, ornithine decarboxylase, aesculinase, lipase and urease activities. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 and the cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The major polar lipids of the strain were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid, three unidentified phospholipids and three unidentified lipids. The genomic DNA G+C content of the strain AK72T was 36.8 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain AK72T was closely related to Bacillus cellulosilyticus (96.5 %) and Bacillus vedderi (96.3 %), but the novel strain AK72T formed a separate clade with Bacillus aurantiacus whereas B. cellulosilyticus and B. vedderi were clustered in a separate clade. The above data in combination with the phenotypic characteristics and phylogenetic data inferred that strain AK72T represents a novel species of the genus Bacillus, for which the name Bacillusshivajii sp. nov. is proposed. The type strain is AK72T (=MTCC 12636T=KCTC 33981T=JCM 32183T).
Collapse
Affiliation(s)
- Shekhar Kumar
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Harjodh Singh
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India.,2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India.,3CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Manpreet Kaur
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India.,2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India.,3CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Lakhwinder Kaur
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Naga Radha Srinivas Tanuku
- 2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India.,4CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530017, India
| | - Anil Kumar Pinnaka
- 1MTCC-Microbial Type Culture Collection & Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India.,2Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, Chennai, India
| |
Collapse
|
6
|
Singh H, Kaur M, Kaur L, Sharma S, Mishra S, Tanuku NRS, Pinnaka AK. Bacillus lacus sp. nov., isolated from a water sample of a salt lake in India. Int J Syst Evol Microbiol 2018; 68:801-809. [DOI: 10.1099/ijsem.0.002588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Harjodh Singh
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Council of Scientific and Industrial Research (CSIR) Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Manpreet Kaur
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Council of Scientific and Industrial Research (CSIR) Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Lakhwinder Kaur
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Shivani Sharma
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Sunita Mishra
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- Council of Scientific and Industrial Research (CSIR) Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Naga Radha Srinivas Tanuku
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
- CSIR-National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam 530017, India
| | - Anil Kumar Pinnaka
- MTCC-Microbial Type Culture Collection and Gene Bank, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
- Academy of Scientific and Innovative Research, (AcSIR), CSIR Campus, Chennai, India
| |
Collapse
|
7
|
Borsodi AK, Tóth E, Aszalós JM, Bárány Á, Schumann P, Spröer C, Kovács AL, Márialigeti K, Szili-Kovács T. Bacillus kiskunsagensis sp. nov., a novel alkaliphilic and moderately halophilic bacterium isolated from soda soil. Int J Syst Evol Microbiol 2017; 67:3490-3495. [DOI: 10.1099/ijsem.0.002149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Andrea K. Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Júlia M. Aszalós
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Ágnes Bárány
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7 B, 38124 Braunschweig, Germany
| | - Attila L. Kovács
- Department of Anatomy-, Cell- and Developmental Biology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, 1117 Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Tibor Szili-Kovács
- Institute for Soil Sciences and Agricultural Chemistry, Agricultural Research Center, Hungarian Academy of Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| |
Collapse
|
8
|
Genome Sequences of Salisediminibacterium haloalkalitolerans 10nlg, Bacillus lonarensis 25nlg, Bacillus caseinilyticus SP, Pelagirhabdus alkalitolerans S5, Salibacterium halotolerans S7 and Salipaludibacillus aurantiacus S9 six novel, Recently Described Compatible Solute Producing Bacteria. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Sisinthy S, Chakraborty D, Adicherla H, Gundlapally SR. Emended description of the family Chromatiaceae, phylogenetic analyses of the genera Alishewanella, Rheinheimera and Arsukibacterium, transfer of Rheinheimera longhuensis LH2-2 T to the genus Alishewanella and description of Alishewanella alkalitolerans sp. nov. from Lonar Lake, India. Antonie van Leeuwenhoek 2017; 110:1227-1241. [PMID: 28612170 DOI: 10.1007/s10482-017-0896-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
Abstract
Phylogenetic analyses were performed for members of the family Chromatiaceae, signature nucleotides deduced and the genus Alishewanella transferred to Chromatiaceae. Phylogenetic analyses were executed for the genera Alishewanella, Arsukibacterium and Rheinheimera and the genus Rheinheimera is proposed to be split, with the creation of the Pararheinheimera gen. nov. Furthermore, the species Rheinheimera longhuensis, is transferred to the genus Alishewanella as Alishewanella longhuensis comb. nov. Besides, the genera Alishewanella and Rheinheimera are also emended. Strain LNK-7.1T was isolated from a water sample from the Lonar Lake, India. Cells were Gram-negative, motile rods, positive for catalase, oxidase, phosphatase, contained C16:0, C17:1ω8c, summed feature3 (C16:1ω6c and/or C16:1ω7c) and summed feature 8 (C18:1ω7c) as major fatty acids, PE and PG as the major lipids and Q-8 as the sole respiratory quinone. Phylogenetic analyses using NJ, ME, ML and Maximum parsimony, based on 16S rRNA gene sequences, identified Alishewanella tabrizica RCRI4T as the closely related species of strain LNK-7.1T with a 16S rRNA gene sequence similarity of 98.13%. The DNA-DNA similarity between LNK-7.1T and the closely related species (A. tabrizica) was only 12.0% and, therefore, strain LNK-7.1T was identified as a novel species of the genus Alishewanella with the proposed name Alishewanella alkalitolerans sp. nov. In addition phenotypic characteristics confirmed the species status to strain LNK-7.1T. The type strain of A. alkalitolerans is LNK-7.1T (LMG 29592T = KCTC 52279T), isolated from a water sample collected from the Lonar lake, India.
Collapse
Affiliation(s)
- Shivaji Sisinthy
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Dwaipayan Chakraborty
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Harikrishna Adicherla
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Sathyanarayana Reddy Gundlapally
- Laboratory for Conservation of Endangered Species (LaCONES), CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
10
|
Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech 2016; 6:53. [PMID: 28330122 PMCID: PMC4752951 DOI: 10.1007/s13205-016-0377-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/03/2015] [Indexed: 01/26/2023] Open
Abstract
Alkaline proteases are important enzymes in many industrial applications, especially as additives in laundry detergent industry. Though there
are a number of Bacillus species which are reported to be producing proteases, the efficiency of a protease produced by a novel strain has to be studied in comparison to the others. Hence, in this study, an alkaline serine protease produced by a novel species Bacilluscaseinilyticus was purified and characterized for its possible usage in detergent industry. Ammonium sulphate, dialysis and DEAE column chromatographic methods were used for purification of the isolated alkaline protease. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 66 kDa. Peptide mass fingerprinting (PMF) was carried out using MALDI-TOF-TOF mass spectrometry and the peptides were found to be similar to that of subtilisin protease. Specific activity of purified protein was found to be 89.2 U/mg. Optimum pH and temperature for enzyme activity were at pH 8 and 60 °C, respectively, showing stability with 10 mM CaCl2. Phenyl methyl sulphonyl fluoride (PMSF) at both 5 and 10 mM concentrations completely inhibited the enzyme activity suggesting its serine nature. EDTA, metal ions Mg2+ and Ca2+ increased the enzyme activity. The one factor at a time optimisation of the protease production was carried to identify the important factors that affect its production. After optimisation, the protease was produced at lab scale, purified and characterised. This alkali, thermotolerant serine protease was found to be significantly stable in the presence of various surfactants and H2O2. Also, it was successfully able to remove blood stain when used as an additive along with commercial detergent suggesting its potential application in the laundry detergent industry.
Collapse
|