1
|
Montano HG, Bertaccini A, Fiore N. Phytoplasma-Associated Diseases in South America: Thirty Years of Research. Microorganisms 2024; 12:1311. [PMID: 39065080 PMCID: PMC11278980 DOI: 10.3390/microorganisms12071311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Phytoplasma-associated diseases are mainly insect-transmitted and are present worldwide. Considering that disease detection is a relevant environmental factor that may elucidate the presence of these diseases, a review reporting the geographic distribution of phytoplasma taxa in geographically consistent areas helps manage diseases appropriately and reduce their spreading. This work summarizes the data available about the identification of the phytoplasma associated with several diverse diseases in South America in the last decades. The insect vectors and putative vectors together with the plant host range of these phytoplasmas are also summarized. Overall, 16 'Candidatus Phytoplasma' species were detected, and those most frequently detected in agricultural-relevant crops such as corn, alfalfa, grapevine, and other horticultural species are 'Ca. P. pruni', 'Ca. P. asteris', and 'Ca. P. fraxini'.
Collapse
Affiliation(s)
- Helena Guglielmi Montano
- Department of Entomology and Plant Pathology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, Brazil;
| | - Assunta Bertaccini
- Department of Agriculture and Food Science, Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Nicola Fiore
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago 8820808, Chile;
| |
Collapse
|
2
|
Cui W, Muñoz V, Navarrete M, Cabrera S, Campodonico J, Estrada M, Zamorano A, Fiore N. Insect Vector and Reservoir Plant of ' Fragaria × ananassa' Phyllody Phytoplasma (16SrXIII-F) in Central Region of Chile. PLANT DISEASE 2024; 108:1861-1868. [PMID: 38319626 DOI: 10.1094/pdis-12-23-2552-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Strawberry phyllody has emerged as a prevalent disease affecting Chilean strawberry in recent years. The causal pathogen, 'Fragaria × ananassa' phyllody phytoplasma (StrPh), is categorized within the 16S ribosomal group XIII that is exclusively found in the Americas. In the context of economically significant crops, hemipteran insect vectors and alternative host plants play a pivotal role in their natural dissemination. This study comprehensively examined the key epidemiological facets of StrPh in the central region of Chile: the insect vector and alternative hosts. Through field surveys, we identified an abundance of an insect species, Cixiosoma sp., in an StrPh-infected strawberry field and confirmed its role as a vector of this phytoplasma through subsequent transmission assays. Moreover, we found a spontaneous weed species, Galega officinalis, to be infected with StrPh, raising the possibility of it being a potential alternative host plant for this phytoplasma. StrPh was also detected in cold-stored strawberry runners purchased from a nursery that supplies the local strawberry cultivation, suggesting a potential source of this phytoplasma in Chile. Collectively, these findings provide a significant epidemiological source of StrPh dissemination in central Chile.
Collapse
Affiliation(s)
- Weier Cui
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Valentina Muñoz
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Melisa Navarrete
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Sebastian Cabrera
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Juan Campodonico
- Ph.D. Program in Science, Ecology, and Evolution Mention, Faculty of Sciences, University Austral of Chile, Valdivia, Chile
| | - Mauricio Estrada
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Alan Zamorano
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| | - Nicola Fiore
- Department of Plant Health, Faculty of Agricultural Sciences, University of Chile, Santiago, RM 8820808, Chile
| |
Collapse
|
3
|
Fernández FD, Yan XH, Kuo CH, Marcone C, Conci LR. Improving the Comprehension of Pathogenicity and Phylogeny in ' Candidatus Phytoplasma meliae' through Genome Characterization. Microorganisms 2024; 12:142. [PMID: 38257969 PMCID: PMC10819327 DOI: 10.3390/microorganisms12010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
'Candidatus Phytoplasma meliae' is a pathogen associated with chinaberry yellowing disease, which has become a major phytosanitary problem for chinaberry forestry production in Argentina. Despite its economic impact, no genome information of this phytoplasma has been published, which has hindered its characterization at the genomic level. In this study, we used a metagenomics approach to analyze the draft genome of the 'Ca. P. meliae' strain ChTYXIII. The draft assembly consisted of twenty-one contigs with a total length of 751.949 bp, and annotation revealed 669 CDSs, 34 tRNAs, and 1 set of rRNA operons. The metabolic pathways analysis showed that ChTYXIII contains the complete core genes for glycolysis and a functional Sec system for protein translocation. Our phylogenomic analysis based on 133 single-copy genes and genome-to-genome metrics supports the classification as unique 'Ca. P. species' within the MPV clade. We also identified 31 putative effectors, including a homolog to SAP11 and others that have only been described in this pathogen. Our ortholog analysis revealed 37 PMU core genes in the genome of 'Ca. P. meliae' ChTYXIII, leading to the identification of 2 intact PMUs. Our work provides important genomic information for 'Ca. P. meliae' and others phytoplasmas for the 16SrXIII (MPV) group.
Collapse
Affiliation(s)
- Franco Daniel Fernández
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
| | - Xiao-Hua Yan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Luis Rogelio Conci
- Instituto Nacional de Tecnología Agropecuaria (INTA), Centro de Investigaciones Agropecuarias (CIAP), Instituto de Patología Vegetal (IPAVE), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola (UFYMA), Camino 60 cuadras km 5 ½ (X5020ICA), Córdoba X5020ICA, Argentina
| |
Collapse
|
4
|
Wei W, Zhao Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. BIOLOGY 2022; 11:1119. [PMID: 35892975 PMCID: PMC9394401 DOI: 10.3390/biology11081119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Phytoplasmas are pleomorphic, wall-less intracellular bacteria that can cause devastating diseases in a wide variety of plant species. Rapid diagnosis and precise identification of phytoplasmas responsible for emerging plant diseases are crucial to preventing further spread of the diseases and reducing economic losses. Phytoplasma taxonomy (identification, nomenclature, and classification) has lagged in comparison to culturable bacteria, largely due to lack of axenic phytoplasma culture and consequent inaccessibility of phenotypic characteristics. However, the rapid expansion of molecular techniques and the advent of high throughput genome sequencing have tremendously enhanced the nucleotide sequence-based phytoplasma taxonomy. In this article, the key events and milestones that shaped the current phytoplasma taxonomy are highlighted. In addition, the distinctions and relatedness of two parallel systems of 'Candidatus phytoplasma' species/nomenclature system and group/subgroup classification system are clarified. Both systems are indispensable as they serve different purposes. Furthermore, some hot button issues in phytoplasma nomenclature are also discussed, especially those pertinent to the implementation of newly revised guidelines for 'Candidatus Phytoplasma' species description. To conclude, the challenges and future perspectives of phytoplasma taxonomy are briefly outlined.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA;
| | | |
Collapse
|
5
|
Bertaccini A. Plants and Phytoplasmas: When Bacteria Modify Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111425. [PMID: 35684198 PMCID: PMC9182842 DOI: 10.3390/plants11111425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 05/14/2023]
Abstract
Plant pathogen presence is very dangerous for agricultural ecosystems and causes huge economic losses. Phytoplasmas are insect-transmitted wall-less bacteria living in plants, only in the phloem tissues and in the emolymph of their insect vectors. They are able to manipulate several metabolic pathways of their hosts, very often without impairing their life. The molecular diversity described (49 'Candidatus Phytoplasma' species and about 300 ribosomal subgroups) is only in some cases related to their associated symptomatology. As for the other plant pathogens, it is necessary to verify their identity and recognize the symptoms associated with their presence to appropriately manage the diseases. However, the never-ending mechanism of patho-adaptation and the copresence of other pathogens makes this management difficult. Reducing the huge impact of phytoplasma-associated diseases in all the main crops and wild species is, however, relevant, in order to reduce their effects that are jeopardizing plant biodiversity.
Collapse
Affiliation(s)
- Assunta Bertaccini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
6
|
Survey for ' Candidatus Liberibacter' and ' Candidatus Phytoplasma' in Citrus in Chile. Pathogens 2021; 11:pathogens11010048. [PMID: 35055996 PMCID: PMC8781817 DOI: 10.3390/pathogens11010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022] Open
Abstract
The considerable economic losses in citrus associated with ‘Candidatus Liberibacter’ and ‘Candidatus Phytoplasma’ presence have alerted all producing regions of the world. In Chile, none of these bacteria have been reported in citrus species. During the years 2017 and 2019, 258 samples presenting symptoms similar to those associated with the presence of these bacteria were examined. No detection of ‘Ca. Liberibacter’ associated with “huanglongbing” disease was obtained in the tested samples; therefore, this quarantine pest is maintained as absent in Chile. However, 14 plants resulted positive for phytoplasmas enclosed in subgroups 16SrV-A (12 plants) and 16SrXIII-F (2 plants). Although they have been found in other plant species, this is the first report of these phytoplasmas in citrus worldwide.
Collapse
|
7
|
Phytoplasma diseases of plants: molecular diagnostics and way forward. World J Microbiol Biotechnol 2021; 37:102. [PMID: 34009500 DOI: 10.1007/s11274-021-03061-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Phytoplasmas are obligate phytopathogenic bacteria associated with devastating diseases in hundreds of crops across the world. They have been responsible for huge economic losses in many crop plants for decades now. Isolation and establishment of axenic culture of phytoplasma in complex media is a recent progress in phytoplasma research. Earlier methods for phytoplasma disease detection included symptom profiling, microscopy, serology and dodder transmission studies. With advancement in the field of molecular biology, phytoplasma diagnostics and characterisation witnessed radical improvement. Starting from PCR amplification which often necessities a nested PCR on account of low titre of phytoplasmas, to the closed tube quantitative PCR assays and then the ddPCR, an array of diagnostics have been developed for phytoplasma. The isothermal diagnostic platforms are the latest addition to this and the Loop Mediated Isothermal Amplification (LAMP) assay has been applied for the detection of phytoplasma from several hosts. The futuristic approach in phytoplasma detection will be very likely provided by an integration of nanotechnology and molecular diagnostics. Phytoplasma disease management majorly relies on early detection, vector control, use of disease free planting materials and cultivation of resistant varieties. Hence understanding the molecular mechanism of phytoplasma-host interaction is as important as timely and accurate detection, in the management of phytoplasma diseases. Further, the changing climatic scenario and global warming may lead to an upsurge in the phytoplasma diseases spread and severity across the world, making disease management even more challenging.
Collapse
|
8
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Bosco D, Chiumenti M, Di Serio F, Galetto L, Marzachì C, Pautasso M, Jacques M. Pest categorisation of the non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2020; 18:e05929. [PMID: 32626484 PMCID: PMC7008834 DOI: 10.2903/j.efsa.2020.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of nine phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. (hereafter "host plants") known to occur only outside the EU or having a limited presence in the EU. This opinion covers the (i) reference strains of 'Candidatus Phytoplasma australiense', 'Ca. P. fraxini', 'Ca. P. hispanicum', 'Ca. P. trifolii', 'Ca. P. ziziphi', (ii) related strains infecting the host plants of 'Ca. P. aurantifolia', 'Ca. P. pruni', and 'Ca. P. pyri', and (iii) an unclassified phytoplasma causing Buckland valley grapevine yellows. Phytoplasmas can be detected by available methods and are efficiently transmitted by vegetative propagation, with plants for planting acting as a major entry pathway and a long-distance spread mechanism. Phytoplasmas are also transmitted in a persistent and propagative manner by some insect families of the Fulgoromorpha, Cicadomorpha and Sternorrhyncha (order Hemiptera). No transovarial, pollen or seed transmission has been reported. The natural host range of the categorised phytoplasmas varies from one to more than 90 plant species, thus increasing the possible entry pathways. The host plants are widely cultivated in the EU. All the categorised phytoplasmas can enter and spread through the trade of host plants for planting, and by vectors. Establishment of these phytoplasmas is not expected to be limited by EU environmental conditions. The introduction of these phytoplasmas in the EU would have an economic impact. There are measures to reduce the risk of entry, establishment, spread and impact. Uncertainties result from limited information on distribution, biology and epidemiology. All the phytoplasmas categorised here meet the criteria evaluated by EFSA to qualify as potential Union quarantine pests, and they do not qualify as potential regulated non-quarantine pests, because they are non-EU phytoplasmas.
Collapse
|
9
|
EFSA Panel on Plant Health (PLH), Bragard C, Dehnen‐Schmutz K, Gonthier P, Jaques Miret JA, Justesen AF, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Bosco D, Chiumenti M, Di Serio F, Galetto L, Marzachì C, Pautasso M, Jacques M. List of non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. EFSA J 2020; 18:e05930. [PMID: 32626485 PMCID: PMC7008801 DOI: 10.2903/j.efsa.2020.5930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Plant Health prepared a list of non-EU phytoplasmas of Cydonia Mill., Fragaria L., Malus Mill., Prunus L., Pyrus L., Ribes L., Rubus L. and Vitis L. A systematic literature review and search of databases identified 27 phytoplasmas infecting one or more of the host genera under consideration. These phytoplasmas were assigned to three categories. The first group (a) consists of 10 non-EU phytoplasmas, known to occur only outside the EU ('Candidatus Phytoplasma australiense', 'Ca. P. hispanicum', 'Ca. P. pruni'-related strain (NAGYIII), 'Ca. P. pyri'-related strain (PYLR) and Buckland valley grapevine yellows phytoplasma) or having only limited presence in the EU ('Ca. P. aurantifolia'-related strains, 'Ca. P. fraxini', 'Ca. P. phoenicium', 'Ca. P. trifolii' and 'Ca. P. ziziphi'). The second group (b) consists of three non-EU phytoplasmas, whose presence in the target plant species is not fully supported by the available literature. The third group (c) consists of 14 phytoplasmas with substantial presence in the EU (i.e. they are originally described or reported from the EU or known to occur or be widespread in some EU Member States or frequently reported in the EU). Phytoplasmas of categories (b) and (c) were excluded at this stage from further categorisation efforts. One phytoplasma from category (a) ('Ca. P. phoenicium') was excluded from further categorisation, as a pest risk assessment has been performed by EPPO. Comments provided by the EU Member States were integrated in the opinion. The main uncertainties of this listing concern: the geographic distribution and prevalence, the taxonomy, biology and host range. The phytoplasmas considered as non-EU and whose presence in target plant species is fully supported by literature (category (a)) are categorised by the Panel in a separate opinion.
Collapse
|
10
|
Servín-Villegas R, Caamal-Chan MG, Chavez-Medina A, Loera-Muro A, Barraza A, Medina-Hernández D, Holguín-Peña RJ. Identification of a 'Candidatus Phytoplasma hispanicum'-related strain, associated with yellows-type diseases, in smoke-tree sharpshooter (Homalodisca liturata Ball). Int J Syst Evol Microbiol 2018; 68:2093-2101. [PMID: 29638211 DOI: 10.1099/ijsem.0.002745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 16SrXIII group from phytoplasma bacteria were identified in salivary glands from Homalodisca liturata, which were collected in El Comitán on the Baja California peninsula in Mexico. We were able to positively identify 15 16S rRNA gene sequences with the corresponding signature sequence of 'CandidatusPhytoplasma' (CAAGAYBATKATGTKTAGCYGGDCT) and in silico restriction fragment length polymorphism (RFLP) profiles (F value estimations) coupled with a phylogenetic analysis to confirm their relatedness to 'CandidatusPhytoplasma hispanicum', which in turn belongs to the 16SrXIII group. A restriction analysis was carried out with AluI and EcoRI to confirm that the five sequences belongs to subgroup D. The rest of the sequences did not exhibit any known RFLP profile related to a subgroup reported in the 16SrXIII group.
Collapse
Affiliation(s)
- Rosalía Servín-Villegas
- Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Maria Goretty Caamal-Chan
- CONACYT-CIBNOR. Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Alicia Chavez-Medina
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Bulevar Juan de Dios Bátiz Paredes #250, Colonia San Joachin, Guasave, Sinaloa, Mexico
| | - Abraham Loera-Muro
- CONACYT-CIBNOR. Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Aarón Barraza
- CONACYT-CIBNOR. Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Diana Medina-Hernández
- Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| | - Ramón Jaime Holguín-Peña
- Centro de Investigaciones Biológicas del Noroeste. Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, 23096 La Paz, Baja California Sur, Mexico
| |
Collapse
|
11
|
Melo LDA, Ventura JA, Costa H, Kitajima EW, Ferreira J, Bedendo IP. Delineation of a novel subgroup 16SrXIII-J phytoplasma, a 'Candidatus Phytoplasma hispanicum'-related strain, based on computer-simulated RFLP and phylogenetic analysis. Int J Syst Evol Microbiol 2018; 68:962-966. [PMID: 29458464 DOI: 10.1099/ijsem.0.002547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Symptoms of fruit phyllody and slow growth, which are suggestive of phytoplasma infection, were observed in strawberry plants cultivated in commercial fields. In order to provide evidence of association of phytoplasma with affected plants, assays for detecting and identifying were performed through computer-simulated restriction fragment length polymorphism (RFLP) and phylogenetic analysis. Total DNA was extracted from symptomatic and asymptomatic samples and used as template in nested PCR primed by the primers P1/Tint followed by R16F2n/16R2. Amplified DNA fragments of 1.2 kb from the 16S rRNA gene revealed the presence of phytoplasma in all symptomatic samples. Molecular detection was confirmed by electron transmission microscopy, which evidenced pleomorphic bodies in the phloem vessels. Nucleotide sequence representative of the strawberry phytoplasma shared 97.2 to 99 % similarity with phytoplasmas currently classified as members of the distinct subgroups within the 16SrXIII group. Similarity coefficient (F) values ranged from 0.70 to 0.92, indicating that strawberry phytoplasma delineates a new strain in addition to 'Candidatus Phytoplasma hispanicum'-related strains. The evolutionary tree displayed that this strain emerges as a new branch in relation to those previously described. The novel strain, designated SFP (strawberry fruit phyllody) phytoplasma represents the new 16SrXIII-J subgroup and its sequence, denominated SFP-Br02, was deposited in the GenBank database (EU719108). These findings contribute for the knowledge of the genetic diversity existing among members of the group 16SrXIII and establishes strawberry as an additional host of representatives of this group in Brazil.
Collapse
Affiliation(s)
- Luciano de Aquino Melo
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| | - José Aires Ventura
- INCAPER, Instituo Capixaba de Pesquisa e Extensão Rural, Rua Afonso Sarlo, 160, 29052-010 Vitória, ES, Brazil
| | - Hélcio Costa
- INCAPER, Instituo Capixaba de Pesquisa e Extensão Rural, Rua Afonso Sarlo, 160, 29052-010 Vitória, ES, Brazil
| | - Elliot Watanabe Kitajima
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| | - Jacson Ferreira
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| | - Ivan Paulo Bedendo
- Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Caixa Postal 09, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
12
|
Pérez-López E, Rodríguez-Martínez D, Olivier CY, Luna-Rodríguez M, Dumonceaux TJ. Molecular diagnostic assays based on cpn60 UT sequences reveal the geographic distribution of subgroup 16SrXIII-(A/I)I phytoplasma in Mexico. Sci Rep 2017; 7:950. [PMID: 28424530 PMCID: PMC5430490 DOI: 10.1038/s41598-017-00895-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/16/2017] [Indexed: 01/31/2023] Open
Abstract
Geographically diverse samples from strawberry exhibiting symptoms of Strawberry Green Petal (SbGP), periwinkle plants with virescence, and blackberry, blueberry, and raspberry plants displaying yellowing and inedible fruits, were assayed for the presence of phytoplasma DNA. PCR targeting the 16S rRNA-encoding gene and chaperonin-60 (cpn60) showed that the plants were infected with phytoplasma subgroup16SrXIII-(A/I)I (SbGP/MPV). To examine the geographic distribution of this pathogen in Mexico, we designed an array of cpn60-targeted molecular diagnostic assays for SbGP/MPV phytoplasma. A fluorescent microsphere hybridization assay was designed that was capable of detecting SbGP/MPV phytoplasma in infected plant tissues, successfully differentiating it from other known phytoplasma cpn60 UT sequences, while identifying a double infection with SbGP/MPV and aster yellows (16SrI) phytoplasma. Two quantitative assays, quantitative real-time PCR (qRT-PCR) and droplet digital PCR (ddPCR), gave similar results in infected samples. Finally, a loop-mediated isothermal amplification (LAMP) assay provided rapid detection of SbGP/MPV phytoplasma DNA. Application of these assays revealed that SbGP/MPV phytoplasma is widely distributed in Central Mexico, with positive samples identified from eleven localities within three states separated by hundreds of kilometres. These results also provide tools for determining the presence and geographic distribution of this pathogen in plant and insect samples in other localities.
Collapse
Affiliation(s)
- Edel Pérez-López
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | | | - Chrystel Y Olivier
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Mauricio Luna-Rodríguez
- Laboratorio de Genética e Interacciones Planta Microorganismos, Facultad de Ciencias Agrícolas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Tim J Dumonceaux
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
13
|
Fernández FD, Meneguzzi NG, Conci LR. Identification of three novel subgroups within the X-disease group phytoplasma associated with strawberry redness disease. Int J Syst Evol Microbiol 2017; 67:753-758. [DOI: 10.1099/ijsem.0.001636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Franco D Fernández
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA. Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina
| | - Natalia G Meneguzzi
- Estación Experimental Agropecuaria Famaillá-INTA, Ruta Prov. 301 km 32 (4132), Famaillá, Tucumán, Argentina
| | - Luis R Conci
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA. Av. 11 de septiembre 4755, X5014MGO, Córdoba, Argentina
| |
Collapse
|
14
|
Pérez-López E, Dumonceaux TJ. Detection and identification of the heterogeneous novel subgroup 16SrXIII-(A/I)I phytoplasma associated with strawberry green petal disease and Mexican periwinkle virescence. Int J Syst Evol Microbiol 2016; 66:4406-4415. [DOI: 10.1099/ijsem.0.001365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Edel Pérez-López
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de Las Culturas Veracruzanas, Xalapa, Veracruz, Mexico
| | - Tim J. Dumonceaux
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Davis RE, Harrison NA, Zhao Y, Wei W, Dally EL. ‘Candidatus Phytoplasma hispanicum’, a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus. Int J Syst Evol Microbiol 2016; 66:3463-3467. [DOI: 10.1099/ijsem.0.001218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Robert E. Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Nigel A. Harrison
- Plant Pathology Department, Research and Education Center, University of Florida, Fort Lauderdale, FL 33314, USA
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ellen L. Dally
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
16
|
Pérez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ. The underestimated diversity of phytoplasmas in Latin America. Int J Syst Evol Microbiol 2016; 66:492-513. [DOI: 10.1099/ijsem.0.000726] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Edel Pérez-López
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Avenida de Las Culturas Veracruzanas, Xalapa, Veracruz, Mexico
| | - Mauricio Luna-Rodríguez
- DGI-LATEX, Universidad Veracruzana, Avenida de Las Culturas Veracruzanas, Xalapa, Veracruz, Mexico
| | - Chrystel Y. Olivier
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - Tim J. Dumonceaux
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|