1
|
Khan IUH, Chen W, Cloutier M, Lapen DR, Craiovan E, Wilkes G. Pathogenicity assessment of Arcobacter butzleri isolated from Canadian agricultural surface water. BMC Microbiol 2024; 24:17. [PMID: 38191309 PMCID: PMC10773081 DOI: 10.1186/s12866-023-03119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Water is considered a source for the transmission of Arcobacter species to both humans and animals. This study was conducted to assess the prevalence, distribution, and pathogenicity of A. butzleri strains, which can potentially pose health risks to humans and animals. Cultures were isolated from surface waters of a mixed-use but predominately agricultural watershed in eastern Ontario, Canada. The detection of antimicrobial resistance (AMR) and virulence-associated genes (VAGs), as well as enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) assays were performed on 913 A. butzleri strains isolated from 11 agricultural sampling sites. RESULTS All strains were resistant to one or more antimicrobial agents, with a high rate of resistance to clindamycin (99%) and chloramphenicol (77%), followed by azithromycin (48%) and nalidixic acid (49%). However, isolates showed a significantly (p < 0.05) high rate of susceptibility to tetracycline (1%), gentamycin (2%), ciprofloxacin (4%), and erythromycin (5%). Of the eight VAGs tested, ciaB, mviN, tlyA, and pldA were detected at high frequency (> 85%) compared to irgA (25%), hecB (19%), hecA (15%), and cj1349 (12%) genes. Co-occurrence analysis showed A. butzleri strains resistant to clindamycin, chloramphenicol, nalidixic acid, and azithromycin were positive for ciaB, tlyA, mviN and pldA VAGs. ERIC-PCR fingerprint analysis revealed high genetic similarity among strains isolated from three sites, and the genotypes were significantly associated with AMR and VAGs results, which highlight their potential environmental ubiquity and potential as pathogenic. CONCLUSIONS The study results show that agricultural activities likely contribute to the contamination of A. butzleri in surface water. The findings underscore the importance of farm management practices in controlling the potential spread of A. butzleri and its associated health risks to humans and animals through contaminated water.
Collapse
Affiliation(s)
- Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| | - Wen Chen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Graham Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Natural Resources Canada, Ottawa, ON, Canada
| |
Collapse
|
2
|
Paintsil EK, Ofori LA, Akenten CW, Zautner AE, Mbwana J, Khan NA, Lusingu JPA, Kaseka J, Minja DTR, Gesase S, Jaeger A, Lamshöft M, May J, Obiri-Danso K, Krumkamp R, Dekker D. Antibiotic-Resistant Arcobacter spp. in commercial and smallholder farm animals in Asante Akim North Municipality, Ghana and Korogwe Town Council, Tanzania: a cross-sectional study. Gut Pathog 2023; 15:63. [PMID: 38042805 PMCID: PMC10693124 DOI: 10.1186/s13099-023-00588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND Arcobacter species are considered emerging foodborne pathogens that can potentially cause serious infections in animals and humans. This cross-sectional study determined the frequency of potentially pathogenic Arcobacter spp. in both commercial and smallholder farm animals in Ghana and Tanzania. A total of 1585 and 1047 (poultry and livestock) samples were collected in Ghana and Tanzania, respectively. Selective enrichment media, along with oxidase and Gram testing, were employed for isolation of suspected Arcobacter spp. and confirmation was done using MALDI-TOF MS. Antibiotic susceptibility was assessed through disk diffusion method and ECOFFs were generated, for interpretation, based on resulting inhibition zone diameters. RESULTS The overall Arcobacter frequency was higher in Ghana (7.0%, n = 111) than in Tanzania (2.0%, n = 21). The frequency of Arcobacter in commercial farms in Ghana was 10.3% (n/N = 83/805), while in Tanzania, it was 2.8% (n/N = 12/430). Arcobacter was detected in only 3.6% (n/N = 28/780) of the samples from smallholder farms in Ghana and 1.5% (n/N = 9/617) of the samples from Tanzania. For commercial farms, in Ghana, the presence of Arcobacter was more abundant in pigs (45.1%, n/N = 37/82), followed by ducks (38.5%, n/N = 10/26) and quails (35.7%, n/N = 10/28). According to MALDI-TOF-based species identification, Arcobacter butzleri (91.6%, n/N = 121/132), Arcobacter lanthieri (6.1%, n/N = 8/132), and Arcobacter cryaerophilus (2.3%, n/N = 3/132) were the only three Arcobacter species detected at both study sites. Almost all of the Arcobacter from Ghana (98.2%, n/N = 109/111) were isolated during the rainy season. The inhibition zone diameters recorded for penicillin, ampicillin, and chloramphenicol allowed no determination of an epidemiological cut-off value. However, the results indicated a general resistance to these three antimicrobials. Multidrug resistance was noted in 57.1% (n/N = 12/21) of the Arcobacter isolates from Tanzania and 45.0% (n/N = 50/111) of those from Ghana. The type of farm (commercial or smallholder) and source of the sample (poultry or livestock) were found to be associated with multi-drug resistance. CONCLUSIONS The high levels of MDR Arcobacter detected from farms in both countries call for urgent attention and comprehensive strategies to mitigate the spread of antimicrobial resistance in these pathogens.
Collapse
Affiliation(s)
- Ellis Kobina Paintsil
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, 039-5028, Kumasi, Ghana.
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, 039-5028, Kumasi, Ghana.
- Department of Implementation Research, One Health Bacteriology Group, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, 039-5028, Kumasi, Ghana
| | - Charity Wiafe Akenten
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogya Road, 039-5028, Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, 039-5028, Kumasi, Ghana
- Department of Implementation Research, One Health Bacteriology Group, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Andreas E Zautner
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-Von-Guericke University Magdeburg, 39120, Magdeburg, Germany
| | - Joyce Mbwana
- National Institute for Medical Research (NIMR), Tanga Centre, Tanga, Tanzania
| | - Neyaz Ahmed Khan
- Department of Implementation Research, One Health Bacteriology Group, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - John P A Lusingu
- National Institute for Medical Research (NIMR), Tanga Centre, Tanga, Tanzania
| | - Joseph Kaseka
- National Institute for Medical Research (NIMR), Tanga Centre, Tanga, Tanzania
| | - Daniel T R Minja
- National Institute for Medical Research (NIMR), Tanga Centre, Tanga, Tanzania
| | - Samwel Gesase
- National Institute for Medical Research (NIMR), Tanga Centre, Tanga, Tanzania
| | - Anna Jaeger
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Maike Lamshöft
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359, Hamburg, Germany
- Tropical Medicine II, University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, 039-5028, Kumasi, Ghana
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Denise Dekker
- Department of Implementation Research, One Health Bacteriology Group, Bernhard Nocht Institute for Tropical Medicine (BNITM), Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| |
Collapse
|
3
|
Binder R, Hahn A, Eberhardt KA, Hagen RM, Rohde H, Loderstädt U, Feldt T, Sarfo FS, Di Cristanziano V, Kahlfuss S, Frickmann H, Zautner AE. Comparison of the Diagnostic Accuracy of Three Real-Time PCR Assays for the Detection of Arcobacter butzleri in Human Stool Samples Targeting Different Genes in a Test Comparison without a Reference Standard. Microorganisms 2023; 11:1313. [PMID: 37317286 DOI: 10.3390/microorganisms11051313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Potential etiological relevance for gastroenteric disorders including diarrhea has been assigned to Arcobacter butzleri. However, standard routine diagnostic algorithms for stool samples of patients with diarrhea are rarely adapted to the detection of this pathogen and so, A. butzleri is likely to go undetected unless it is specifically addressed, e.g., by applying pathogen-specific molecular diagnostic approaches. In the study presented here, we compared three real-time PCR assays targeting the genes hsp60, rpoB/C (both hybridization probe assays) and gyrA (fluorescence resonance energy transfer assay) of A. butzleri in a test comparison without a reference standard using a stool sample collection with a high pretest probability from the Ghanaian endemicity setting. Latent class analysis was applied with the PCR results obtained with a collection of 1495 stool samples showing no signs of PCR inhibition to assess the real-time PCR assays' diagnostic accuracy. Calculated sensitivity and specificity were 93.0% and 96.9% for the hsp60-PCR, 100% and 98.2% for the rpoB/C-PCR, as well as 12.7% and 99.8% for the gyrA-PCR, respectively. The calculated A. butzleri prevalence within the assessed Ghanaian population was 14.7%. As indicated by test results obtained with high-titer spiked samples, cross-reactions of the hsp60-assay and rpoB/C-assay with phylogenetically related species such as A. cryaerophilus can occur but are less likely with phylogenetically more distant species like, e.g., A. lanthieri. In conclusion, the rpoB/C-assay showed the most promising performance characteristics as the only assay with sensitivity >95%, albeit associated with a broad 95%-confidence interval. In addition, this assay showed still-acceptable specificity of >98% in spite of the known cross-reactivity with phylogenetically closely related species such as A. cryaerophilus. If higher certainty is desired, the gyrA-assay with specificity close to 100% can be applied for confirmation testing with samples showing positive rpoB/C-PCR results. However, in case of a negative result in the gyrA-assay, this cannot reliably exclude the detection of A. butzleri in the rpoB/C-assay due to the gyrA-assay's very low sensitivity.
Collapse
Affiliation(s)
- Ramona Binder
- Laboratory Department, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
| | - Andreas Hahn
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Kirsten Alexandra Eberhardt
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20359 Hamburg, Germany
- Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, 20539 Hamburg, Germany
| | - Ralf Matthias Hagen
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, 56070 Koblenz, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Ulrike Loderstädt
- Department of Hospital Hygiene & Infectious Diseases, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Fred Stephen Sarfo
- Kwame Nkrumah University of Science and Technology, Kumasi 00233, Ghana
- Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi 00233, Ghana
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50935 Cologne, Germany
| | - Sascha Kahlfuss
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- CHaMP-Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39104 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, 39104 Magdeburg, Germany
| | - Hagen Frickmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany
| | - Andreas Erich Zautner
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- CHaMP-Center for Health and Medical Prevention, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
4
|
Chuan J, Belov A, Cloutier M, Li X, Khan IUH, Chen W. Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BMC Genomics 2022; 23:471. [PMID: 35761183 PMCID: PMC9235176 DOI: 10.1186/s12864-022-08663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens.
Results
Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species.
Conclusions
The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.
Collapse
|
5
|
A Review on the Prevalence of Arcobacter in Aquatic Environments. WATER 2022. [DOI: 10.3390/w14081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arcobacter is an emerging pathogen that is associated with human and animal diseases. Since its first introduction in 1991, 33 Arcobacter species have been identified. Studies have reported that with the presence of Arcobacter in environmental water bodies, animals, and humans, a possibility of its transmission via water and food makes it a potential waterborne and foodborne pathogen. Therefore, this review article focuses on the general characteristics of Arcobacter, including its pathogenicity, antimicrobial resistance, methods of detection by cultivation and molecular techniques, and its presence in water, fecal samples, and animal products worldwide. These detection methods include conventional culture methods, and rapid and accurate Arcobacter identification at the species level, using quantitative polymerase chain reaction (qPCR) and multiplex PCR. Arcobacter has been identified worldwide from feces of various hosts, such as humans, cattle, pigs, sheep, horses, dogs, poultry, and swine, and also from meat, dairy products, carcasses, buccal cavity, and cloacal swabs. Furthermore, Arcobacter has been detected in groundwater, river water, wastewater (influent and effluent), canals, treated drinking water, spring water, and seawater. Hence, we propose that understanding the prevalence of Arcobacter in environmental water and fecal-source samples and its infection of humans and animals will contribute to a better strategy to control and prevent the survival and growth of the bacteria.
Collapse
|
6
|
Kerkhof PJ, On SLW, Houf K. Arcobacter vandammei sp. nov., isolated from the rectal mucus of a healthy pig. Int J Syst Evol Microbiol 2021; 71. [PMID: 34797211 DOI: 10.1099/ijsem.0.005113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A study on the polyphasic taxonomic classification of an Arcobacter strain, R-73987T, isolated from the rectal mucus of a porcine intestinal tract, was performed. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain could be assigned to the genus Arcobacter and suggested that strain R-73987T belongs to a novel undescribed species. Comparative analysis of the rpoB gene sequence confirmed the findings. Arcobacter faecis LMG 28519T was identified as its closest neighbour in a multigene analysis based on 107 protein- encoding genes. Further, whole-genome sequence comparisons by means of average nucleotide identity and in silico DNA-DNA hybridization between the genome of strain R-73987T and the genomes of validly named Arcobacter species resulted in values below 95-96 and 70 %, respectively. In addition, a phenotypic analysis further corroborated the conclusion that strain R-73987T represents a novel Arcobacter species, for which the name Arcobacter vandammei sp. nov. is proposed. The type strain is R-73987T (=LMG 31429T=CCUG 75005T). This appears to be the first Arcobacter species recovered from porcine intestinal mucus.
Collapse
Affiliation(s)
- Pieter-Jan Kerkhof
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Stephen L W On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Springs Road, Lincoln 7467, New Zealand
| | - Kurt Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.,Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Mudadu A, Salza S, Melillo R, Mara L, Piras G, Spanu C, Terrosu G, Fadda A, Virgilio S, Tedde T. Prevalence and pathogenic potential of Arcobacter spp. isolated from edible bivalve molluscs in Sardinia. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Mateus C, Nunes AR, Oleastro M, Domingues F, Ferreira S. RND Efflux Systems Contribute to Resistance and Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2021; 10:823. [PMID: 34356744 PMCID: PMC8300790 DOI: 10.3390/antibiotics10070823] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Ana Rita Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| |
Collapse
|
9
|
Khan IUH, Becker A, Cloutier M, Plötz M, Lapen DR, Wilkes G, Topp E, Abdulmawjood A. Loop-mediated isothermal amplification: Development, validation and application of simple and rapid assays for quantitative detection of species of Arcobacteraceae family- and species-specific Aliarcobacter faecis and Aliarcobacter lanthieri. J Appl Microbiol 2020; 131:288-299. [PMID: 33174331 PMCID: PMC8359143 DOI: 10.1111/jam.14926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/29/2022]
Abstract
Aim The family Arcobacteraceae formerly genus Arcobacter has recently been reclassified into six genera. Among nine species of the genus Aliarcobacter, Aliarcobacter faecis and Aliarcobacter lanthieri have been identified as emerging pathogens potentially cause health risks to humans and animals. This study was designed to develop/optimize, validate and apply Arcobacteraceae family‐ and two species‐specific (A. faecis and A. lanthieri) loop‐mediated isothermal amplification (LAMP) assays to rapidly detect and quantify total number of cells in various environmental niches. Methods and Results Three sets of LAMP primers were designed from conserved and variable regions of 16S rRNA (family‐specific) and gyrB (species‐specific) genes. Optimized Arcobacteraceae family‐specific LAMP assay correctly amplified and detected 24 species, whereas species‐specific LAMP assays detected A. faecis and A. lanthieri reference strains as well as 91 pure and mixed culture isolates recovered from aquatic and faecal sources. The specificity of LAMP amplification of A. faecis and A. lanthieri was further confirmed by restriction fragment length polymorphism analysis. Assay sensitivities were tested using variable DNA concentrations extracted from simulated target species cells in an autoclaved agricultural water sample by achieving a minimum detection limit of 10 cells mL−1 (10 fg). Direct DNA‐based quantitative detection, from agricultural surface water, identified A. faecis (17%) and A. lanthieri (1%) at a low frequency compared to family‐level (93%) with the concentration ranging from 2·1 × 101 to 2·2 × 105 cells 100 mL−1. Conclusions Overall, these three DNA‐based rapid and cost‐effective novel LAMP assays are sensitive and can be completed in less than 40 min. They have potential for on‐site quantitative detection of species of family Arcobacteraceae, A. faecis and A. lanthieri in food, environmental and clinical matrices. Significance and Impact of the Study The newly developed LAMP assays are specific, sensitive, accurate with higher reproducibility that have potential to facilitate in a less equipped lab setting and can help in early quantitative detection and rate of prevalence in environmental niches. The assays can be adopted in the diagnostic labs and epidemiological studies.
Collapse
Affiliation(s)
- I U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - A Becker
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hannover, Germany
| | - M Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - M Plötz
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hannover, Germany
| | - D R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - G Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada.,Natural Resources Canada, Ottawa, ON, Canada
| | - E Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - A Abdulmawjood
- Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Foundation, Hannover, Germany
| |
Collapse
|
10
|
Miltenburg MG, Cloutier M, Craiovan E, Lapen DR, Wilkes G, Topp E, Khan IUH. Real-time quantitative PCR assay development and application for assessment of agricultural surface water and various fecal matter for prevalence of Aliarcobacter faecis and Aliarcobacter lanthieri. BMC Microbiol 2020; 20:164. [PMID: 32546238 PMCID: PMC7298852 DOI: 10.1186/s12866-020-01826-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aliarcobacter faecis and Aliarcobacter lanthieri are recently identified as emerging human and animal pathogens. In this paper, we demonstrate the development and optimization of two direct DNA-based quantitative real-time PCR assays using species-specific oligonucleotide primer pairs derived from rpoB and gyrA genes for A. faecis and A. lanthieri, respectively. Initially, the specificity of primers and amplicon size of each target reference strain was verified and confirmed by melt curve analysis. Standard curves were developed with a minimum quantification limit of 100 cells mL- 1 or g- 1 obtained using known quantities of spiked A. faecis and A. lanthieri reference strains in autoclaved agricultural surface water and dairy cow manure samples. RESULTS Each species-specific qPCR assay was validated and applied to determine the rate of prevalence and quantify the total number of cells of each target species in natural surface waters of an agriculturally-dominant and non-agricultural reference watershed. In addition, the prevalence and densities were determined for human and various animal (e.g., dogs, cats, dairy cow, and poultry) fecal samples. Overall, the prevalence of A. faecis for surface water and feces was 21 and 28%, respectively. The maximum A. faecis concentration for water and feces was 2.3 × 107 cells 100 mL- 1 and 1.2 × 107 cells g- 1, respectively. A. lanthieri was detected at a lower frequency (2%) with a maximum concentration in surface water of 4.2 × 105 cells 100 mL- 1; fecal samples had a prevalence and maximum density of 10% and 2.0 × 106 cells g- 1, respectively. CONCLUSIONS The results indicate that the occurrence of these species in agricultural surface water is potentially due to fecal contamination of water from livestock, human, or wildlife as both species were detected in fecal samples. The new real-time qPCR assays can facilitate rapid and accurate detection in < 3 h to quantify total numbers of A. faecis and A. lanthieri cells present in various complex environmental samples.
Collapse
Affiliation(s)
- Mary G Miltenburg
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.,Canadian Food Inspection Agency (CFIA), Ottawa, ON, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - Graham Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.,Natural Resources Canada, Ottawa, ON, Canada
| | - Edward Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
11
|
Alonso R, Girbau C, Martinez-Malaxetxebarria I, Pérez-Cataluña A, Salas-Massó N, Romalde JL, Figueras MJ, Fernandez-Astorga A. Aliarcobacter vitoriensis sp. nov., isolated from carrot and urban wastewater. Syst Appl Microbiol 2020; 43:126091. [PMID: 32690190 DOI: 10.1016/j.syapm.2020.126091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Two isolates, one recovered from a carrot and another one from urban wastewater, were characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both isolates clustered together, and were most closely related to Aliarcobacter lanthieri. Multilocus phylogenetic analysis (MLPA) using the concatenated sequences of five housekeeping genes (atpA, gyrA, gyrB, hsp60 and rpoB) suggested that these isolates formed a distinct phylogenetic lineage among the genera derived from the former genus Arcobacter. Whole-genome sequence, in silico DNA-DNA hybridization (isDDH) and the average nucleotide identity (ANI) value between the genome of strain F199T and those of related species confirmed that these isolates represent a novel species. These strains can be differentiated from its phylogenetically closest species A. lanthieri by its inability to growth on 1% glycine and by their enzyme activity of esterase lipase (C8) and acid phosphatase. Our results, by the application of a polyphasic analysis, confirmed that these two isolates represent a novel species of the genus Aliarcobacter, for which the name Aliarcobacter vitoriensis sp. nov. is proposed. The type strain is F199T (=CECT 9230T=LMG 30050T).
Collapse
Affiliation(s)
- Rodrigo Alonso
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Cecilia Girbau
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| | - Alba Pérez-Cataluña
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología & Instituto CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782 Spain
| | - María José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Aurora Fernandez-Astorga
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
12
|
Nelapati S, Tumati SR, Thirtham MR, Ramani Pushpa RN, Kamisetty AK, Ch BK. Occurrence, virulence gene and antimicrobial susceptibility profiles of Arcobacter sp. isolated from catla (Catla catla) in India. Lett Appl Microbiol 2020; 70:365-371. [PMID: 32012305 DOI: 10.1111/lam.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Abstract
In the present study, a total of 100 catla (Catla catla-major South Asian carp, local name botcha) collected from local fish markets and aquaculture ponds were subjected for isolation and characterization of Arcobacter sp. In all, 21 Arcobacter sp. were isolated, of which 18 (85·7%) were Arcobacter butzleri and three (14%) were A. cryoaerophilus as identified by multiplex PCR. All 18 A. butzleri isolates were positive for mviN, ciaB and tlyA virulence genes, three of A. cryoaerophilus isolates carried mviN gene and none of the isolates were positive for cadF, irgA, cj1349, hecA and hecB genes. All isolates (n = 21) were resistant to penicillin (100%). Meanwhile, 71·43, 23·81, 23·81, 14·29 and 9·52% of the isolates showed resistance towards vancomycin, nalidixic acid, erythromycin, cefixime and kanamycin, respectively. Multidrug resistance was observed in 23·81% of the Arcobacter sp. isolates and none of the isolates were positive for any of the extended spectrum beta-lactamases either by phenotypic or by molecular identification genes (blaOXA , blaSHV , blaTEM , blaCTX-M1 , blaCTX-M2 and blaCTX-M9 groups). The results emphasize the need to implement specific control procedures to reduce the use of antibiotics in aquaculture particularly the ones which are very important in human medicine. SIGNIFICANCE AND IMPACT OF THE STUDY: Arcobacter species are emerging food- and water-borne human pathogens. In this study, Arcobacter butzleri was predominant in fish compared to A. cryoaerohilus and A. skirrowii. Higher incidence of arcobacters in fish market samples suggests cross contamination and unhygienic handling of fish in markets. Virulence genes profile and antibiotics resistance of the Arcobacter sp. isolated in current study indicate pathogenic potential of Arcobacter sp. to humans. Occurrence of multidrug-resistant Arcobacter sp. in fish is a major concern in food safety. To our knowledge, this is the first report of Arcobacter sp. from freshwater fish, catla (Catla catla) in India.
Collapse
Affiliation(s)
- S Nelapati
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - S R Tumati
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - M R Thirtham
- College of Veterinary Science, Tirupati, Andhra Pradesh, India
| | - R N Ramani Pushpa
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - A K Kamisetty
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| | - B K Ch
- NTR College of Veterinary Science, Gannavaram, Krishna District, Andhra Pradesh, India
| |
Collapse
|
13
|
Marta C, Giovanni N, Angela M, Loredana C, Elisabetta B, Laura D, Anna M, Angela DP, Gianfranco S, Antonio P. Large genetic diversity of Arcobacter butzleri isolated from raw milk in Southern Italy. Food Microbiol 2019; 89:103403. [PMID: 32139002 DOI: 10.1016/j.fm.2019.103403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022]
Abstract
Arcobacter butzleri is a zoonotic foodborne pathogen able to cause enteric and extraintestinal diseases. Its occurrence in foodstuff is well recognized worldwide but data on its presence in foods from Southern Italy are scarce. In this study the results on the occurrence and genotyping of Arcobacter spp. in bulk milk samples collected in Southern Italy are reported. Out of 484 samples, 64 (13.2%) resulted positive for the presence of Arcobacter spp. Using Real Time PCR but as few as 31.2% of these samples turned out as positive by using the cultural method, showing an overall prevalence of 4.1%. All isolates were identified as A. cryaerophilus using the biochemical identification whilst the sequencing of the atpA gene revealed that all the isolates were A. butzleri. Among the confirmed isolates, 16 different Sequence Types (ST) were identified using the Multi Locus Sequence Typing (MLST), 14 (87.5%) of which were previously unreported. Our survey reveals the presence of A. butzleri in bulk tank milk from Southern Italy and highlights the discrepancy between the two approaches used both for the detection (i.e., real time PCR vs cultural method) and the identification (i.e., biochemical test vs aptA sequencing) of Arcobacter spp In addition, a large genetic diversity among the isolates was detected and this makes the identification of source of the infections very challenging in outbreaks investigation.
Collapse
Affiliation(s)
- Caruso Marta
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Via Manfredonia 20, 71122, Foggia, Italy
| | - Normanno Giovanni
- Department of Science of Agriculture, Food and Environment (SAFE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| | - Miccolupo Angela
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Via Manfredonia 20, 71122, Foggia, Italy
| | - Capozzi Loredana
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Via Manfredonia 20, 71122, Foggia, Italy
| | - Bonerba Elisabetta
- Department of Veterinary Medicine, SP Casamassima, Km 3, 70010, Valenzano, (BA), Italy
| | - Difato Laura
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Via Manfredonia 20, 71122, Foggia, Italy
| | - Mottola Anna
- Department of Veterinary Medicine, SP Casamassima, Km 3, 70010, Valenzano, (BA), Italy
| | - Di Pinto Angela
- Department of Veterinary Medicine, SP Casamassima, Km 3, 70010, Valenzano, (BA), Italy
| | - Santagada Gianfranco
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Via Manfredonia 20, 71122, Foggia, Italy
| | - Parisi Antonio
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Foggia, Via Manfredonia 20, 71122, Foggia, Italy
| |
Collapse
|
14
|
Zheng W, Wen X. How exogenous influent communities and environmental conditions affect activated sludge communities in the membrane bioreactor of a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:622-630. [PMID: 31539970 DOI: 10.1016/j.scitotenv.2019.07.310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
In this study, the residual population of influent and activated sludge (AS) communities was defined based on their occurrence frequency and relative abundance through long-term and fine-scale sampling from the membrane bioreactor (MBR) of a wastewater treatment plant (WWTP). There were 481 OTUs defined as the residual OTUs, which taken up 67.90 ± 9.36% of relative abundance in the influent community. Besides, 6.76 ± 5.71% of the residual population migrated to and remained in the AS community. Additionally, the residual populations were more likely to be anaerobes and microaerobes. As the most predominant genus from residual community, the relative abundance of Arcobacter was reduced from 15.78 ± 3.58% in the influent to 1.15 ± 1.35% in the AS. The residues that migrated from the influent have increased the richness and evenness of AS community, as well as the dissimilarities among samples over long-term. The rank-abundance distribution showed identical pattern for the residual species between influent and AS. By adopting the analysis of neutral model, 2766 out of 7491 shared OTUs between influent and AS communities were identified as neutral OTUs, which respectively made up 53.9% and 41.8% of the total relative abundance of influent and AS communities. These indicated that the AS community was to some extent, but not entirely assembled by neutral process. For the residual community in the AS, dissolved oxygen (DO) was positively associated with several aerobic genera, meanwhile influent chemical oxygen demand (COD) had positive relationship with genus Pseudomonas. Last but most importantly, the influent community could not inoculate the nitrifiers in the AS, but instead, was able to inoculate the denitrifiers; as well as enhance the biodiversity and the ability of resisting external disturbance for the AS community in MBR.
Collapse
Affiliation(s)
- Wanlin Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xianghua Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
15
|
Pérez-Cataluña A, Salas-Massó N, Figueras MJ. Arcobacter lacus sp. nov. and Arcobacter caeni sp. nov., two novel species isolated from reclaimed water. Int J Syst Evol Microbiol 2019; 69:3326-3331. [DOI: 10.1099/ijsem.0.003101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Alba Pérez-Cataluña
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - María José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
16
|
Pérez-Cataluña A, Salas-Massó N, Diéguez AL, Balboa S, Lema A, Romalde JL, Figueras MJ. Corrigendum (2): Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos. Front Microbiol 2019; 10:2253. [PMID: 31611866 PMCID: PMC6779803 DOI: 10.3389/fmicb.2019.02253] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alba Pérez-Cataluña
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Figueras
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
17
|
Mizutani Y, Iehata S, Mori T, Oh R, Fukuzaki S, Tanaka R. Diversity, enumeration, and isolation of Arcobacter spp. in the giant abalone, Haliotis gigantea. Microbiologyopen 2019; 8:e890. [PMID: 31168933 PMCID: PMC6813453 DOI: 10.1002/mbo3.890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Arcobacter have been frequently detected in and isolated from bivalves, but there is very little information on the genus Arcobacter in the abalone, an important fishery resource. This study aimed to investigate the genetic diversity and abundance of bacteria from the genus Arcobacter in the Japanese giant abalone, Haliotis gigantea, using molecular methods such as Arcobacter‐specific clone libraries and fluorescence in situ hybridization (FISH). Furthermore, we attempted to isolate the Arcobacter species detected. Twelve genotypes of clones were obtained from Arcobacter‐specific clone libraries. These sequences are not classified with any other known Arcobacter species including pathogenic Arcobacter spp., A. butzleri, A. skirrowii, and A. cryaerophilus, commonly isolated or detected from bivalves. From the FISH analysis, we observed that ARC94F‐positive cells, presumed to be Arcobacter, accounted for 6.96 ± 0.72% of all EUB338‐positive cells. In the culture method, three genotypes of Arcobacter were isolated from abalones. One genotype had a similarity of 99.2%–100.0% to the 16S rRNA gene of Arcobacter marinus, while the others showed only 93.3%–94.3% similarity to other Arcobacter species. These data indicate that abalones carry Arcobacter as a common bacterial genus which includes uncultured species.
Collapse
Affiliation(s)
- Yukino Mizutani
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| | - Shunpei Iehata
- School of Fisheries and Aquaculture Science, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Ryota Oh
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| | - Satoshi Fukuzaki
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| | - Reiji Tanaka
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| |
Collapse
|
18
|
Zambri M, Cloutier M, Adam Z, Lapen DR, Wilkes G, Sunohara M, Topp E, Talbot G, Khan IUH. Novel virulence, antibiotic resistance and toxin gene-specific PCR-based assays for rapid pathogenicity assessment of Arcobacter faecis and Arcobacter lanthieri. BMC Microbiol 2019; 19:11. [PMID: 30634926 PMCID: PMC6330389 DOI: 10.1186/s12866-018-1357-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022] Open
Abstract
Background Arcobacter faecis and A. lanthieri are two newly classified species of genus Arcobacter. The prevalence and distribution of virulence, antibiotic resistance and toxin (VAT) genes in these species are required to assess their potential pathogenic health impacts to humans and animals. This study (i) developed species- and gene-specific primer pairs for the detection of six virulence, two antibiotic resistance, and three toxin genes in two target species; (ii) optimized eight single-tube multiplex and three monoplex PCR protocols using the newly developed species- and gene-specific primers; and (iii) conducted specificity and sensitivity evaluations as well as validation of eleven mono- and multiplex PCR assays by testing A. faecis (n= 29) and A. lanthieri (n= 10) strains isolated from various fecal and agricultural water sources to determine the prevalence and distribution of VAT genes and assess the degree of pathogenicity within the two species. Results Detection of all ten and eleven target VAT genes, and expression of cytolethal distending toxin (cdtA, cdtB and cdtC) genes in A. faecis and A. lanthieri reference strains with high frequency in field isolates suggest that they are potentially pathogenic strains. These findings indicate that these two species can pose a health risk to humans and animals. Conclusions The study results show that the developed mono- and multiplex PCR (mPCR) assays are simple, rapid, reliable and sensitive for the simultaneous assessment of the potential pathogenicity and antibiotic resistance profiling of tet(O) and tet(W) genes in these two newly discovered species. Also, these assays can be useful in diagnostic and analytical laboratories to determine the pathotypes and assessment of the virulence and toxin factors associated to human and animal infections. Electronic supplementary material The online version of this article (10.1186/s12866-018-1357-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew Zambri
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Zaky Adam
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada.,School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Graham Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Mark Sunohara
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada
| | - Edward Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre (SRDC), Agriculture and Agri-Food Canada, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
19
|
Miller WG, Yee E, Bono JL. Complete Genome Sequence of the Arcobacter suis Type Strain LMG 26152. Microbiol Resour Announc 2018; 7:e01307-18. [PMID: 30533764 PMCID: PMC6256499 DOI: 10.1128/mra.01307-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 11/25/2022] Open
Abstract
Arcobacter species are prevalent in pigs, and strains have been isolated from pig feces and pork meat; some Arcobacter strains may be porcine abortifacients. Arcobacter suis was recovered from pork meat in Spain. This study describes the whole-genome sequence of the A. suis type strain LMG 26152 (=F41T =CECT 7833T).
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Emma Yee
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - James L. Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska, USA
| |
Collapse
|
20
|
Shrestha RG, Tanaka Y, Malla B, Tandukar S, Bhandari D, Inoue D, Sei K, Sherchand JB, Haramoto E. Development of a Quantitative PCR Assay for Arcobacter spp. and its Application to Environmental Water Samples. Microbes Environ 2018; 33:309-316. [PMID: 30185726 PMCID: PMC6167121 DOI: 10.1264/jsme2.me18052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Arcobacter spp. are emerging pathogens associated with gastroenteritis in humans. The objective of this study was to develop a highly sensitive and broadly reactive quantitative PCR (qPCR) assay for Arcobacter spp. and to apply the developed assay to different water sources in the Kathmandu Valley, Nepal. Fifteen samples to be analyzed by next-generation sequencing were collected from 13 shallow dug wells, a deep tube well, and a river in the Kathmandu Valley in August 2015. Among the 86 potential pathogenic bacterial genera identified, Acinetobacter, Pseudomonas, Flavobacterium, and Arcobacter were detected with relatively high abundance in 15, 14, 12, and 8 samples, respectively. A primer pair was designed with maximal nucleotide homologies among Arcobacter spp. by comparing the sequences of 16S rRNA genes. These primers were highly specific to most of the known species of Arcobacter and quantified between 1.0×101 and 6.4×106 copies reaction−1 and sometimes detected as few as 3 copies reaction−1. The qPCR assay was used to quantify Arcobacter spp. in bacterial DNA in not only the above 15 water samples, but also in 33 other samples collected from 15 shallow dug wells, 6 shallow tube wells, 5 stone spouts, 4 deep tube wells, and 3 springs. Thirteen (27%) out of 48 samples tested were positive for Arcobacter spp., with concentrations of 5.3–9.1 log copies 100 mL−1. This qPCR assay represents a powerful new tool to assess the prevalence of Arcobacter spp. in environmental water samples.
Collapse
Affiliation(s)
- Rajani Ghaju Shrestha
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi
| | - Yasuhiro Tanaka
- Department of Environmental Sciences, University of Yamanashi
| | - Bikash Malla
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi
| | - Sarmila Tandukar
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi
| | | | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University
| | - Kazunari Sei
- Department of Health Science, Kitasato University
| | | | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi
| |
Collapse
|
21
|
Pérez-Cataluña A, Salas-Massó N, Diéguez AL, Balboa S, Lema A, Romalde JL, Figueras MJ. Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos. Front Microbiol 2018; 9:2077. [PMID: 30233547 PMCID: PMC6131481 DOI: 10.3389/fmicb.2018.02077] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022] Open
Abstract
Since the description of the genus Arcobacter in 1991, a total of 27 species have been described, although some species have shown 16S rRNA similarities below 95%, which is the cut-off that usually separates species that belong to different genera. The objective of the present study was to reassess the taxonomy of the genus Arcobacter using information derived from the core genome (286 genes), a Multilocus Sequence Analysis (MLSA) with 13 housekeeping genes, as well as different genomic indexes like Average Nucleotide Identity (ANI), in silico DNA–DNA hybridization (isDDH), Average Amino-acid Identity (AAI), Percentage of Conserved Proteins (POCPs), and Relative Synonymous Codon Usage (RSCU). The study included a total of 39 strains that represent all the 27 species included in the genus Arcobacter together with 13 strains that are potentially new species, and the analysis of 57 genomes. The different phylogenetic analyses showed that the Arcobacter species grouped into four clusters. In addition, A. lekithochrous and the candidatus species ‘A. aquaticus’ appeared, as did A. nitrofigilis, the type species of the genus, in separate branches. Furthermore, the genomic indices ANI and isDDH not only confirmed that all the species were well-defined, but also the coherence of the clusters. The AAI and POCP values showed intra-cluster ranges above the respective cut-off values of 60% and 50% described for species belonging to the same genus. Phenotypic analysis showed that certain test combinations could allow the differentiation of the four clusters and the three orphan species established by the phylogenetic and genomic analyses. The origin of the strains showed that each of the clusters embraced species recovered from a common or related environment. The results obtained enable the division of the current genus Arcobacter in at least seven different genera, for which the names Arcobacter, Aliiarcobacter gen. nov., Pseudoarcobacter gen. nov., Haloarcobacter gen. nov., Malacobacter gen. nov., Poseidonibacter gen. nov., and Candidate ‘Arcomarinus’ gen. nov. are proposed.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria J Figueras
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
22
|
Pérez-Cataluña A, Salas-Massó N, Figueras MJ. Arcobacter canalis sp. nov., isolated from a water canal contaminated with urban sewage. Int J Syst Evol Microbiol 2018; 68:1258-1264. [PMID: 29488868 DOI: 10.1099/ijsem.0.002662] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Four bacterial strains recovered from shellfish (n=3) and from the water (n=1) of a canal contaminated with urban sewage were recognized as belonging to a novel species of the genus Arcobacter (represented by strain F138-33T) by using a polyphasic characterization. All the new isolates required 2 % NaCl to grow. Phylogenetic analyses based on 16S rRNA gene sequences indicated that all strains clustered together, with the most closely related species being Arcobacter marinus and Arcobactermolluscorum. However, phylogenetic analyses using the concatenated sequences of housekeeping genes (atpA, gyrB, hsp60, gyrA and rpoB) showed that all the novel strains formed a distinct lineage within the genus Arcobacter. Results of in silico DNA-DNA hybridization and the average nucleotide identity between the genome of strain F138-33T and those of the closely related species A. marinus and other relatively closely related species such as A. molluscorum and Arcobacterhalophilus were all below 70 and 96 %, respectively. All the above results, together with the 15 physiological and biochemical tests that could distinguish the newly isolated strains from the closely related species, confirmed that these strains represent a novel species for which the name Arcobacter canalis sp. nov. is proposed, with the type strain F138-33T (=CECT 8984T=LMG 29148T).
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - María José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
23
|
Ramees TP, Dhama K, Karthik K, Rathore RS, Kumar A, Saminathan M, Tiwari R, Malik YS, Singh RK. Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - a comprehensive review. Vet Q 2017; 37:136-161. [PMID: 28438095 DOI: 10.1080/01652176.2017.1323355] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Arcobacter has emerged as an important food-borne zoonotic pathogen, causing sometimes serious infections in humans and animals. Newer species of Arcobacter are being incessantly emerging (presently 25 species have been identified) with novel information on the evolutionary mechanisms and genetic diversity among different Arcobacter species. These have been reported from chickens, domestic animals (cattle, pigs, sheep, horses, dogs), reptiles (lizards, snakes and chelonians), meat (poultry, pork, goat, lamb, beef, rabbit), vegetables and from humans in different countries. Arcobacters are implicated as causative agents of diarrhea, mastitis and abortion in animals, while causing bacteremia, endocarditis, peritonitis, gastroenteritis and diarrhea in humans. Three species including A. butzleri, A. cryaerophilus and A. skirrowii are predominantly associated with clinical conditions. Arcobacters are primarily transmitted through contaminated food and water sources. Identification of Arcobacter by biochemical tests is difficult and isolation remains the gold standard method. Current diagnostic advances have provided various molecular methods for efficient detection and differentiation of the Arcobacters at genus and species level. To overcome the emerging antibiotic resistance problem there is an essential need to explore the potential of novel and alternative therapies. Strengthening of the diagnostic aspects is also suggested as in most cases Arcobacters goes unnoticed and hence the exact epidemiological status remains uncertain. This review updates the current knowledge and many aspects of this important food-borne pathogen, namely etiology, evolution and emergence, genetic diversity, epidemiology, the disease in animals and humans, public health concerns, and advances in its diagnosis, prevention and control.
Collapse
Affiliation(s)
- Thadiyam Puram Ramees
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kumaragurubaran Karthik
- c Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Ramswaroop Singh Rathore
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ashok Kumar
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Mani Saminathan
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Yashpal Singh Malik
- e Division of Biological Standardization , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Raj Kumar Singh
- f ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| |
Collapse
|
24
|
On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. Int J Syst Evol Microbiol 2017; 67:5296-5311. [PMID: 29034857 PMCID: PMC5845751 DOI: 10.1099/ijsem.0.002255] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Ongoing changes in taxonomic methods, and in the rapid development of the taxonomic structure of species assigned to the Epsilonproteobacteria have lead the International Committee of Systematic Bacteriology Subcommittee on the Taxonomy of Campylobacter and Related Bacteria to discuss significant updates to previous minimal standards for describing new species of Campylobacteraceae and Helicobacteraceae. This paper is the result of these discussions and proposes minimum requirements for the description of new species belonging to the families Campylobacteraceae and Helicobacteraceae, thus including species in Campylobacter, Arcobacter, Helicobacter, and Wolinella. The core underlying principle remains the use of appropriate phenotypic and genotypic methods to characterise strains sufficiently so as to effectively and unambiguously determine their taxonomic position in these families, and provide adequate means by which the new taxon can be distinguished from extant species and subspecies. This polyphasic taxonomic approach demands the use of appropriate reference data for comparison to ensure the novelty of proposed new taxa, and the recommended study of at least five strains to enable species diversity to be assessed. Methodological approaches for phenotypic and genotypic (including whole-genome sequence comparisons) characterisation are recommended.
Collapse
Affiliation(s)
- Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, PO Box 85084, Lincoln, New Zealand
| | - William G. Miller
- U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Agricultural Research Service, Albany, CA, USA
| | - Kurt Houf
- Department of Veterinary Public Health, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - James G. Fox
- Department of Comparative Medicine, Massachusetts Institute of Technology, 77, Massachusetts Avenue, Cambiridge, MA 02139, USA
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
25
|
Khan IUH, Cloutier M, Libby M, Lapen DR, Wilkes G, Topp E. Enhanced Single-tube Multiplex PCR Assay for Detection and Identification of Six Arcobacter Species. J Appl Microbiol 2017; 123:1522-1532. [PMID: 28960631 DOI: 10.1111/jam.13597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022]
Abstract
AIM A single-tube multiplex PCR (mPCR) assay was developed for rapid, sensitive and simultaneous detection and identification of six Arcobacter species including two new species, A. lanthieri and A. faecis, along with A. butzleri, A. cibarius, A. cryaerophilus and A. skirrowii on the basis of differences in the lengths of their PCR products. Previously designed monoplex, mPCR and RFLP assays do not detect or differentiate A. faecis and A. lanthieri from other closely related known Arcobacter spp. METHODS AND RESULTS Primer pairs for each target species (except A. skirrowii) and mPCR protocol were newly designed and optimized using variable regions of housekeeping including cpn60, gyrA, gyrB and rpoB genes. The accuracy and specificity of the mPCR assay was assessed using DNA templates from six targets and 11 other Arcobacter spp. as well as 50 other bacterial reference species and strains. Tests on the DNA templates of target Arcobacter spp. were appropriately identified, whereas all 61 other DNA templates from other bacterial species and strains were not amplified. Sensitivity and specificity of the mPCR assay was 10 pg μl-1 of DNA concentration per target species. The optimized assay was further evaluated, validated and compared with other mPCR assays by testing Arcobacter cultures isolated from various faecal and water sources. CONCLUSIONS Study results confirm that the newly developed mPCR assay is rapid, accurate, reliable, simple, and valuable for the simultaneous detection and routine diagnosis of six human- and animal-associated Arcobacter spp. SIGNIFICANCE AND IMPACT OF THE STUDY The new mPCR assay is useful not only for pure but also mixed cultures. Moreover, it has the ability to rapidly detect six species which enhances the value of this technology for aetiological and epidemiological studies.
Collapse
Affiliation(s)
- I U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - M Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - M Libby
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - D R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - G Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - E Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
26
|
Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Bossier P, Vandamme P. Arcobacter haliotis sp. nov., isolated from abalone species Haliotis gigantea. Int J Syst Evol Microbiol 2017; 67:3050-3056. [PMID: 28820118 DOI: 10.1099/ijsem.0.002080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, polar-flagellated and rod-shaped, sometimes slightly curved bacterium, designated MA5T, was isolated from the gut of an abalone of the species Haliotis gigantea collected in Japan. Phylogenetic analyses based on 16S rRNA, gyrB, hsp60 and rpoB gene sequences placed strain MA5T in the genus Arcobacter in an independent phylogenetic line. Comparison of the 16S rRNA gene sequence of this strain with those of the type strains of the established Arcobacter species revealed A. nitrofigilis (95.1 %) as nearest neighbour. Strain MA5T grew optimally at 25 °C, pH 6.0 to 9.0 and in the presence of 2 to 5 % (w/v) NaCl under both aerobic and microaerobic conditions. The predominant fatty acids found were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C12 : 0 3-OH and C18 : 1 ω7c. Menaquinone-6 (MK-6) and menaquinone-7 (MK-7) were found as the major respiratory quinones. The major polar lipids detected were phosphatidylethanolamine and phosphatidylglycerol. Strain MA5T could be differentiated phenotypically from the phylogenetic closest Arcobacter species by its ability to grow on 0.05 % safranin and 0.01 % 2,3,5-triphenyl tetrazolium chloride (TTC), but not on 0.5 % NaCl. The obtained DNA G+C content of strain MA5T was 27.9 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic distinctiveness of MA5T, this strain is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter haliotis sp. nov. is proposed. The type strain is MA5T (=LMG 28652T=JCM 31147T).
Collapse
Affiliation(s)
- Reiji Tanaka
- Laboratory of Marine Microbiology, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Science, Ghent University, Campus Ledeganck, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Yukino Mizutani
- Laboratory of Marine Microbiology, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - Shunpei Iehata
- School of Fisheries and Aquaculture Science, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Science, Ghent University, Campus Ledeganck, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Campus Ledeganck, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
27
|
González A, Bayas Morejón IF, Ferrús MA. Isolation, molecular identification and quinolone-susceptibility testing of Arcobacter spp. isolated from fresh vegetables in Spain. Food Microbiol 2017; 65:279-283. [PMID: 28400014 DOI: 10.1016/j.fm.2017.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Some species of the Arcobacter genus are considered emerging foodborne and waterborne enteropathogens. However, the presence of Arcobacter spp. in vegetables very little is known, because most studies have focused on foods of animal origin. On the other hand, quinolones are considered as first-line drugs for the treatment of infection by campylobacteria in human patients, but few data are currently available about the resistance levels to these antibiotics among Arcobacter species. Therefore, the aim of this study was to investigate the presence and diversity of arcobacters isolated from fresh vegetables such as lettuces, spinaches, chards and cabbages. Resistance to quinolones of the isolates was also investigated. One hundred fresh vegetables samples purchased from seven local retail markets in Valencia (Spain) during eight months were analysed. The study included 41 lettuces, 21 spinaches, 34 chards and 4 cabbages. Samples were analysed by culture and by molecular methods before and after enrichment. By culture, 17 out of 100 analysed samples were Arcobacter positive and twenty-five isolates were obtained from them. Direct detection by PCR was low, with only 4% Arcobacter spp. positive samples. This percentage increased considerably, up 20%, after 48 h enrichment. By polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), 17 out of the 25 isolates were identified as A. butzleri and 8 as A. cryaerophilus. Only two A. butzleri isolates showed resistance to levofloxacin and ciprofloxacin. The sequencing of a fragment of the QRDR region of the gyrA gene from the quinolones-resistant isolates revealed the presence of a mutation in position 254 of this gene (C-T transition). This study is the first report about the presence of pathogenic species of Arcobacter spp. in chards and cabbages and confirms that fresh vegetables can act as transmission vehicle to humans. Moreover, the presence of A. butzleri quinolone resistant in vegetables could pose a potential public health risk.
Collapse
Affiliation(s)
- Ana González
- Department of Biotechnology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Isidro Favián Bayas Morejón
- Department of Biotechnology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María Antonia Ferrús
- Department of Biotechnology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
28
|
Rovetto F, Carlier A, Van den Abeele AM, Illeghems K, Van Nieuwerburgh F, Cocolin L, Houf K. Characterization of the emerging zoonotic pathogen Arcobacter thereius by whole genome sequencing and comparative genomics. PLoS One 2017; 12:e0180493. [PMID: 28671965 PMCID: PMC5495459 DOI: 10.1371/journal.pone.0180493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/17/2017] [Indexed: 11/24/2022] Open
Abstract
Four Arcobacter species have been associated with human disease, and based on current knowledge, these Gram negative bacteria are considered as potential food and waterborne zoonotic pathogens. At present, only the genome of the species Arcobacter butzleri has been analysed, and still little is known about their physiology and genetics. The species Arcobacter thereius has first been isolated from tissue of aborted piglets, duck and pig faeces, and recently from stool of human patients with enteritis. In the present study, the complete genome and analysis of the A. thereius type strain LMG24486T, as well as the comparative genome analysis with 8 other A. thereius strains are presented. Genome analysis revealed metabolic pathways for the utilization of amino acids, which represent the main source of energy, together with the presence of genes encoding for respiration-associated and chemotaxis proteins. Comparative genome analysis with the A. butzleri type strain RM4018 revealed a large correlation, though also unique features. Furthermore, in silico DDH and ANI based analysis of the nine A. thereius strains disclosed clustering into two closely related genotypes. No discriminatory differences in genome content nor phenotypic behaviour were detected, though recently the species Arcobacter porcinus was proposed to encompass part of the formerly identified Arcobacter thereius strains. The report of the presence of virulence associated genes in A. thereius, the presence of antibiotic resistance genes, verified by in vitro susceptibility testing, as well as other pathogenic related relevant features, support the classification of A. thereius as an emerging pathogen.
Collapse
Affiliation(s)
- Francesca Rovetto
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Aurélien Carlier
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium
| | | | - Koen Illeghems
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, Ghent, Belgium
| | - Luca Cocolin
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Kurt Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|
29
|
Diéguez AL, Balboa S, Magnesen T, Romalde JL. Arcobacter lekithochrous sp. nov., isolated from a molluscan hatchery. Int J Syst Evol Microbiol 2017; 67:1327-1332. [PMID: 28109200 DOI: 10.1099/ijsem.0.001809] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four bacterial strains, LFT 1.7T, LT2C 2.5, LT4C 2.8 and TM 4.6, were isolated from great scallop (Pecten maximus) larvae and tank seawater in a Norwegian hatchery and characterized by a polyphasic approach including determination of phenotypic, chemotaxonomic and genomic traits. All were Gram-stain-negative, motile rods, oxidase- and catalase-positive and required sea salts for growth. Major fatty acids present were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), summed feature 8 (C18 : 1ω7c or C18 : 1ω6c), C16 : 0, C14 : 0, summed feature 2 (C14 : 0 3-OH/iso-C16 : 1 I), C12 : 0 3-OH and C12 : 0. Strain LFT 1.7T contained menaquinone MK-6 as the sole respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that all strains formed a distinct lineage within the genus Arcobacter with a low similarity to known species (94.77-95.32 %). The DNA G+C content was 28.7 mol%. Results of in silico DNA-DNA hybridization and average nucleotide identity confirmed that the isolates constitute a novel species of Arcobacter, for which the name Arcobacter lekithochrous sp. nov. is proposed. The type strain is LFT 1.7T (=CECT 8942T=DSM 100870T).
Collapse
Affiliation(s)
- Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago, 15782 Santiago de Compostela, Spain
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago, 15782 Santiago de Compostela, Spain
| | - Thorolf Magnesen
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago, 15782 Santiago de Compostela, Spain
| |
Collapse
|
30
|
Laishram M, Rathlavath S, Lekshmi M, Kumar S, Nayak BB. Isolation and characterization of Arcobacter spp. from fresh seafood and the aquatic environment. Int J Food Microbiol 2016; 232:87-9. [DOI: 10.1016/j.ijfoodmicro.2016.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
31
|
Villanueva MP, Medina G, Fernández H. Arcobacter butzleri survives within trophozoite of Acanthamoeba castellanii. Rev Argent Microbiol 2016; 48:105-9. [PMID: 26972277 DOI: 10.1016/j.ram.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022] Open
Abstract
The survival of three Arcobacter butzleri strains inside Acanthamoeba castellanii was assessed using axenic cultures of A. castellanii that were inoculated with the tested strains and incubated at 26°C under aerobic conditions for 240h. The behavior of bacteria in contact with amoebae was monitored using phase contrast microscopy. The bacterial survival rate within amoebae was assessed through counting colony forming units, using the gentamicin protection assay. All A. butzleri strains were able to survive during 240h within the amoebae, thus suggesting that (i) A. butzleri resists the amoebic digestion processes at least for the analyzed time; (ii) that A. castellanii could serve as an environmental reservoir for this bacterium, probably acting as a transmission vehicle for A. butzleri.
Collapse
Affiliation(s)
- María P Villanueva
- Instituto de Microbiología Clínica, Universidad Austral de Chile, PO Box 567, Valdivia, Chile
| | - Gustavo Medina
- Facultad de Ciencias de la Salud, Universidad Católica de Temuco, PO Box 15-D, Temuco, Chile
| | - Heriberto Fernández
- Instituto de Microbiología Clínica, Universidad Austral de Chile, PO Box 567, Valdivia, Chile.
| |
Collapse
|
32
|
Mottola A, Bonerba E, Figueras MJ, Pérez-Cataluña A, Marchetti P, Serraino A, Bozzo G, Terio V, Tantillo G, Di Pinto A. Occurrence of potentially pathogenic arcobacters in shellfish. Food Microbiol 2016; 57:23-7. [PMID: 27052698 DOI: 10.1016/j.fm.2015.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/18/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
Considering that several recent cases of human gastroenteritis have been associated with species from the Arcobacter genus, and that few data are currently available about the occurrence of this genus in Italian shellfish, the aim of the present study was to evaluate the occurrence of Arcobacter spp. and the presence of virulence-associated genes. The approach consisted of cultural and biomolecular (multiplex-PCR and 16S-RFLP) methods identifying isolates, followed by PCR assays aimed at the cadF, ciaB, cjl349, irgA, hecA putative virulence genes. Arcobacter spp. was detected in 16/70 (22.8%) shellfish samples. Specifically, Arcobacter spp. was highlighted in 10/42 (23.8%) mussel and in 6/28 (21.4%) clam samples. Subsequently, biomolecular assays revealed Arcobacter butzleri in 12/16 (75%) and Arcobacter cryaerophilus 1B in 4/16 (25%) isolates. PCRs aimed at the five putative virulence genes demonstrated widespread distribution of these genes among Arcobacter isolates and some differences from the results published by other authors. Our research provides more information regarding the health risks associated with the consumption of raw bivalve molluscs and underlines the need to implement an adequate control plan by performing intensive and continuous monitoring in order to guarantee human health.
Collapse
Affiliation(s)
- Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy.
| | - Elisabetta Bonerba
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Maria José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - Alba Pérez-Cataluña
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain
| | - Patrizia Marchetti
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, Via Tolara di Sopra 50, 40064 Ozzano Emilia (BO), Italy
| | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Giuseppina Tantillo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, 70010 Valenzano, Bari, Italy
| |
Collapse
|
33
|
Whiteduck-Léveillée J, Cloutier M, Topp E, Lapen DR, Talbot G, Villemur R, Khan IUH. Development and evaluation of multiplex PCR assays for rapid detection of virulence-associated genes in Arcobacter species. J Microbiol Methods 2016; 121:59-65. [PMID: 26769558 DOI: 10.1016/j.mimet.2015.12.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/17/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023]
Abstract
As the pathogenicity of Arcobacter species might be associated with various virulence factors, this study was aimed to develop and optimize three single-tube multiplex PCR (mPCR) assays that can efficiently detect multiple virulence-associated genes (VAGs) in Arcobacter spp. including the Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii, respectively. The recognized target virulence factors used in the study were fibronectin binding protein (cj1349), filamentous hemagglutinin (hecA), hemolysin activation protein (hecB), hemolysin (tlyA), integral membrane protein virulence factor (mviN), invasin (ciaB), outer membrane protein (irgA) and phospholipase (pldA). Identical results were obtained between singleplex PCR and mPCR assays and no cross- and/or non-specific amplification products were obtained when tested against other closely related bacterial species. The sensitivities of these three mPCR assays were ranging from 1ngμL(-1) to 100ngμL(-1) DNA. The developed assays with combinations of duplex or triplex PCR primer pairs of VAGs were further evaluated and validated by applying them to isolates of the A. butzleri, A. cryaerophilus and A. skirrowii recovered from fecal samples of human and animal origins. The findings revealed that the distribution of the ciaB (90%), mviN (70%), tlyA (50%) and pldA (45%) genes among these target species was significantly higher than the hecA (16%), hecB (10%) and each of irgA and cj1349 (6%) genes, respectively. The newly developed mPCR assays can be used as rapid technique and useful markers for the detection, prevalence and profiling of VAGs in the Arcobacter spp. Moreover, these assays can easily be performed with a high throughput to give a presumptive identification of the causal pathogen in epidemiological investigation of human infections.
Collapse
Affiliation(s)
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Edward Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre (SRDC), Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Richard Villemur
- INRS-Institute Armand-Frappier Research Centre, Laval, QC, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
| |
Collapse
|
34
|
Whiteduck-Léveillée K, Whiteduck-Léveillée J, Cloutier M, Tambong JT, Xu R, Topp E, Arts MT, Chao J, Adam Z, Lévesque CA, Lapen DR, Villemur R, Khan IUH. Identification, characterization and description of Arcobacter faecis sp. nov., isolated from a human waste septic tank. Syst Appl Microbiol 2015; 39:93-9. [PMID: 26723853 DOI: 10.1016/j.syapm.2015.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/29/2015] [Accepted: 12/03/2015] [Indexed: 02/04/2023]
Abstract
A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)).
Collapse
Affiliation(s)
| | | | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - James T Tambong
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Renlin Xu
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Edward Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| | - Michael T Arts
- Ryerson University, Department of Chemistry and Biology, Toronto, ON, Canada
| | - Jerry Chao
- Ontario Ministry of the Environment, Toronto, ON, Canada
| | - Zaky Adam
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - C André Lévesque
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Richard Villemur
- INRS-Institute Armand-Frappier Research Centre, Laval, QC, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
| |
Collapse
|