1
|
Nguyen TTH, Vuong TQ, Han HL, Kim SG. Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov., marine anaerobic laminarin and xylan degraders in the phylum Bacteroidota. Sci Rep 2024; 14:24329. [PMID: 39414901 PMCID: PMC11484911 DOI: 10.1038/s41598-024-74787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
The bacterial group of the phylum Bacteroidota greatly contributes to the global carbon cycle in marine ecosystems through its specialized ability to degrade marine polysaccharides. In this study, it is proposed that two novel facultative anaerobic strains, DS1-an-13321T and DS1-an-2312T, which were isolated from a sea squirt, represent a novel genus, Halosquirtibacter, with two novel species in the family Prolixibacteraceae. The 16S rRNA sequence similarities of these two strains were 91.26% and 91.37%, respectively, against Puteibacter caeruleilacunae JC036T, which is the closest recognized neighbor. The complete genomes of strains DS1-an-13321T and DS1-an-2312T each consisted of a single circular chromosome with a size of 4.47 and 5.19 Mb, respectively. The average amino acid identity and the percentage of conserved proteins against the type species of the genera in the family Prolixibacteraceae ranged from 48.33 to 52.35% and 28.34-37.37%, respectively, which are lower than the threshold for genus demarcation. Strains DS1-an-13321T and DS1-an-2312T could grow on galactose, glucose, maltose, lactose, sucrose, laminarin, and starch, and only DS1-an-2312T could grow on xylose and xylan under fermentation conditions. These strains produced acetic acid and propionic acid as the major fermentation products. Genome mining of the genomes of the two strains revealed 27 and 34 polysaccharide utilization loci, which included 155 and 249 carbohydrate-active enzymes (CAZymes), covering 57 and 65 CAZymes families, respectively. The laminarin-degrading enzymes in both strains were cell-associated, and showed exo-hydrolytic activity releasing glucose as a major product. The xylan-degrading enzymes of strain DS1-an-2312T was also cell-associated, and had endo-hydrolytic activities, releasing xylotriose and xylotetraose as major products. The evidence from phenotypic, biochemical, chemotaxonomic, and genomic characteristics supported the proposal of a novel genus with two novel species in the family Prolixibacteraceae, for which the names Halosquirtibacter laminarini gen. nov., sp. nov. and Halosquirtibacter xylanolyticus sp. nov. are proposed. The type strain of Halosquirtibacter laminarini is DS1-an-13321T (= KCTC 25031T = DSM 115329T) and the type strain of Halosquirtibacter xylanolyticus is DS1-an-2312T (= KCTC 25032T = DSM 115328T).
Collapse
Affiliation(s)
- Tra T H Nguyen
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tien Q Vuong
- Phacogen Institute of Technology, B4 building, Pham Ngoc Thach street, Kim Lien, Dong Da district, Hanoi, 10700, Vietnam
| | - Ho Le Han
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Da Nang, 550000, Vietnam
| | - Song-Gun Kim
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Liu Y, Song X, Hou X, Wang Y, Cao X. Effect of Mn-HA on ARGs and MRGs in nitrogen-culturing sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121615. [PMID: 38936019 DOI: 10.1016/j.jenvman.2024.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The simultaneous escalation in ARGs (antibiotic resistance genes) and MRGs (metal resistance genes) further complicates the intricate network of factors contributing to the proliferation of microbial resistance. Manganese, which has been reported to affect the resistance of bacteria to antibiotics and metals, plays a vital role in microbial nitrogen metabolism. Moreover, nitrifying and denitrifying populations are potential hosts for ARGs. In this study, manganese was introduced in its prevalent organic chelated form in the environment (Manganese humus chelates, Mn-HA) to a N metabolism sludge to explore the effect of manganese on MRGs and ARGs dissemination. Metagenomics results revealed that manganese availability enhances nitrogen metabolism, while a decrease in ARGs was noted which may be attributed to the inhibition of horizontal gene transfer (HGT), reflected in the reduced integrase -encoded gene int. Population analysis revealed that nitrifier and denitrifier genus harbor MRGs and ARGs, indicating that nitrifier and denitrifier are hosts of MRGs and ARGs. This raises the question of whether the prevalence of ARGs is always increased in metal-contained environments.
Collapse
Affiliation(s)
- Yingying Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Cheng KY, Acuña CR, Kaksonen AH, Esslemont G, Douglas GB. Sequential hydrotalcite precipitation, microbial sulfate reduction and in situ hydrogen sulfide removal for neutral mine drainage treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171537. [PMID: 38460684 DOI: 10.1016/j.scitotenv.2024.171537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
This study proposed and examined a new process flowsheet for treating neutral mine drainage (NMD) from an open-pit gold mine. The process consisted of three sequential stages: (1) in situ hydrotalcite (HT) precipitation; (2) low-cost carbon substrate driven microbial sulfate reduction; and (3) ferrosol reactive barrier for removing biogenic dissolved hydrogen sulfide (H2S). For concept validation, laboratory-scale columns were established and operated for a 140-days period with key process performance parameters regularly measured. At the end, solids recovered from various depths of the ferrosol column were analysed for elemental composition and mineral phases. Prokaryotic microbial communities in various process locations were characterised using 16S rRNA gene sequencing. Results showed that the Stage 1 HT-treatment substantially removed a range of elements (As, B, Ba, Ca, F, Zn, Si, and U) in the NMD, but not nitrate or sulfate. The Stage 2 sulfate reducing bioreactor (SRB) packed with 70 % (v/v) Eucalyptus woodchip, 1 % (w/v) ground (<1 mm) dried Typha biomass, and 10 % (w/v) NMD-pond sediment facilitated complete nitrate removal and stable sulfate removal of ca. 50 % (50 g-SO4 m-3 d-1), with an average H2S generation rate of 10 g-H2S m-3d-1. The H2S-removal performance of the Stage 3 ferrosol column was compared with a synthetic amorphous Fe-oxyhydroxide-amended sand control column. Although both columns facilitated excellent (95-100 %) H2S removal, the control column only enabled a further ca. 10 % sulfate reduction, giving an overall sulfate removal of 56 %. In contrast, the ferrosol enabled an extra 99.9 % sulfate reduction in the SRB effluent, leading to a near complete sulfate removal. Overall, the process successfully eliminated a range of metal/metalloid contaminants, nitrate, sulfate (2500 mg-SO4 L-1 in the NMD to <10 mg-SO4 L-1 in the final effluent) and H2S (>95 % removal). Further optimisation is required to minimise release of ferrous iron from the ferrosol barrier into the final effluent.
Collapse
Affiliation(s)
- Ka Yu Cheng
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia (WA) 6014, Australia; School of Engineering & Energy, Murdoch University, WA 6150, Australia.
| | - Caroline Rubina Acuña
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia (WA) 6014, Australia
| | - Anna H Kaksonen
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia (WA) 6014, Australia; Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Faculty of Science and Engineering, Curtin University, Bentley, Australia; School of Engineering, University of Western Australia, Crawley, WA 6009, Australia
| | | | - Grant B Douglas
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia (WA) 6014, Australia; School of Molecular and Life Sciences, Curtin University, Bentley, WA 5102, Australia
| |
Collapse
|
4
|
Lazar CS, Schwab VF, Ueberschaar N, Pohnert G, Trumbore S, Küsel K. Microbial degradation and assimilation of veratric acid in oxic and anoxic groundwaters. Front Microbiol 2023; 14:1252498. [PMID: 37901809 PMCID: PMC10602745 DOI: 10.3389/fmicb.2023.1252498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Microbial communities are key players in groundwater ecosystems. In this dark environment, heterotrophic microbes rely on biomass produced by the activity of lithoautotrophs or on the degradation of organic matter seeping from the surface. Most studies on bacterial diversity in groundwater habitats are based on 16S gene sequencing and full genome reconstructions showing potential metabolic pathways used in these habitats. However, molecular-based studies do not allow for the assessment of population dynamics over time or the assimilation of specific compounds and their biochemical transformation by microbial communities. Therefore, in this study, we combined DNA-, phospholipid fatty acid-, and metabolomic-stable isotope probing to target and identify heterotrophic bacteria in the groundwater setting of the Hainich Critical Zone Exploratory (CZE), focusing on 2 aquifers with different physico-chemical conditions (oxic and anoxic). We incubated groundwater from 4 different wells using either 13C-labeled veratric acid (a lignin-derived compound) (single labeling) or a combination of 13CO2 and D-labeled veratric acid (dual labeling). Our results show that heterotrophic activities dominate all groundwater sites. We identified bacteria with the potential to break down veratric acid (Sphingobium or Microbacterium). We observed differences in heterotrophic activities between the oxic and anoxic aquifers, indicating local adaptations of bacterial populations. The dual labeling experiments suggested that the serine pathway is an important carbon assimilation pathway and that organic matter was an important source of hydrogen in the newly produced lipids. These experiments also yielded different labeled taxa compared to the single labeling experiments, showing that there exists a complex interaction network in the groundwater habitats.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Department of Biological Sciences, University of Quebec at Montreal (UQAM), Montreal, QC, Canada
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Valérie F. Schwab
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Nico Ueberschaar
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Pohnert
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Susan Trumbore
- Department Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Wang J, Li X, Guan F, Yang Z, Zhai X, Zhang Y, Tang X, Duan J, Xiao H. The Isolation of Anaerobic and Facultative Anaerobic Sulfate-Reducing Bacteria (SRB) and a Comparison of Related Enzymes in Their Sulfate Reduction Pathways. Microorganisms 2023; 11:2019. [PMID: 37630579 PMCID: PMC10458228 DOI: 10.3390/microorganisms11082019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are an important group of microorganisms that cause microbial corrosion. In this study, culturable SRB were isolated and identified from the inner rust layer of three kinds of steel and from sediments, and a comparison of amino acid sequences encoding related enzymes in the sulfate reduction pathway between anaerobic and facultative anaerobic SRB strains was carried out. The main results are as follows. (1) Seventy-seven strains were isolated, belonging to five genera and seven species, with the majority being Desulfovibrio marinisediminis. For the first time, Holodesulfovibrio spirochaetisodalis and Acinetobacter bereziniae were separated from the inner rust layer of metal, and sulfate reduction by A. bereziniae, Virgibacillus dokdonensis, and Virgibacillus chiguensis, etc., was also demonstrated for the first time. (2) Three strains of strictly anaerobic bacteria and four strains of facultative anaerobic bacteria were screened from seven bacterial strains. (3) Most of the anaerobic SRB only contained enzymes for the dissimilatory sulfate reduction pathway, while those of facultative anaerobic bacteria capable of producing hydrogen sulfide included two possible ways: containing the related enzymes from the dissimilatory pathway only, or containing enzymes from both dissimilatory and assimilation pathways. This study newly discovered that some bacterial genera exhibit sulfate reduction ability and found that there are differences in the distribution of enzymes related to the sulfate reduction pathway between anaerobic and facultative anaerobic SRB type trains, providing a basis for the development and utilization of sulfate-reducing bacterial resources and furthering our understanding of the metabolic mechanisms of SRB.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Xiaohong Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266000, China
| |
Collapse
|
6
|
Yu WX, Liang QY, Xuan XQ, Du ZJ, Mu DS. Gaoshiqia sediminis gen. nov., sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2023; 73. [PMID: 37133916 DOI: 10.1099/ijsem.0.005855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
A Gram-stain-negative, facultative anaerobic, motile, rod-shaped and orange bacterium, designated A06T, was obtained off the coast of Weihai, PR China. Cells were 0.4-0.5×0.6-1.0 µm in size. Strain A06T grew at 20-40 °C (optimum, 33 °C), at pH 6.0-8.0 (optimum, pH 6.5-7.0) and in the presence of 0-8 % NaCl (w/v) (optimum, 2 %). Cells were oxidase and catalase positive. Menaquinone-7 was detected as the major respiratory quinone. The dominant cellular fatty acids were identified as C15:0 2-OH, iso-C15:0, anteiso-C15:0 and iso-C15:1 ω6c. The DNA G+C content of strain A06T was 46.1 mol%. The polar lipids were phosphatidylethanolamine, one aminolipid, one glycolipid and three unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A06T is a member of the family Prolixibacteraceae and exhibited the highest sequence similarity to Mangrovibacterium diazotrophicum DSM 27148T (94.3 %). Based on its phylogenetic and phenotypic characteristics, strain A06T is considered to represent a novel genus in the family Prolixibacteraceae, for which the name Gaoshiqia gen. nov. is proposed. The type species is Gaoshiqia sediminis sp. nov., with type strain A06T (=KCTC 92029T=MCCC 1H00491T). The identification and acquisition of microbial species and genes in sediments will help broaden the understanding of microbial resources and lay a foundation for its application in biotechnology. Strain A06T uses an enrichment method, so the isolation of strain A06T is of great significance to the enrichment of marine microbial resources.
Collapse
Affiliation(s)
- Wen-Xing Yu
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Qi-Yun Liang
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Xiao-Qi Xuan
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, PR China
| | - Da-Shuai Mu
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, PR China
| |
Collapse
|
7
|
Olmsted CN, Ort R, Tran PQ, McDaniel EA, Roden EE, Bond DR, He S, McMahon KD. Environmental predictors of electroactive bacterioplankton in small boreal lakes. Environ Microbiol 2023; 25:705-720. [PMID: 36529539 DOI: 10.1111/1462-2920.16314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Extracellular electron transfer (EET) by electroactive bacteria in anoxic soils and sediments is an intensively researched subject, but EET's function in planktonic ecology has been less considered. Following the discovery of an unexpectedly high prevalence of EET genes in a bog lake's bacterioplankton, we hypothesized that the redox capacities of dissolved organic matter (DOM) enrich for electroactive bacteria by mediating redox chemistry. We developed the bioinformatics pipeline FEET (Find EET) to identify and summarize predicted EET protein-encoding genes from metagenomics data. We then applied FEET to 36 bog and thermokarst lakes and correlated gene occurrence with environmental data to test our predictions. Our results provide indirect evidence that DOM may participate in bacterioplankton EET. We found a similarly high prevalence of genes encoding putative EET proteins in most of these lakes, where oxidative EET strongly correlated with DOM. Numerous novel clusters of multiheme cytochromes that may enable EET were identified. Taxa previously not considered EET-capable were found to carry EET genes. We propose that EET and DOM interactions are of ecologically important to bacterioplankton in small boreal lakes, and that EET, particularly by methylotrophs and anoxygenic phototrophs, should be further studied and incorporated into methane emission models of melting permafrost.
Collapse
Affiliation(s)
- Charles N Olmsted
- Department of Molecular and Environmental Toxicology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Trout Lake Station, Center for Limnology, University of Wisconsin - Madison, Boulder, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Roger Ort
- Trout Lake Station, Center for Limnology, University of Wisconsin - Madison, Boulder, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Daniel R Bond
- Department of Plant and Microbial Biology and BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Shaomei He
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Salgar-Chaparro SJ, Tarazona J, Machuca LL. Corrosion of Carbon Steel by Shewanella chilikensis DC57 Under Thiosulphate and Nitrate Reducing Conditions. Front Bioeng Biotechnol 2022; 10:825776. [PMID: 35360385 PMCID: PMC8961182 DOI: 10.3389/fbioe.2022.825776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Shewanella chilikensis DC57 is a bacterial strain isolated from a corrosion failure in a floating oil production system. Previous studies have indicated that this microorganism has potential to trigger corrosion of carbon steel through several metabolic pathways identified in its genome. In this study we evaluated the corrosion of carbon steel by S. chilikensis in the presence of thiosulphate or nitrate as terminal electron acceptors of the anaerobic respiration. Electrochemical response of carbon steel to the biofilm formation revealed differences in the corrosion process under the different electron acceptors conditions. Microscopic examination of the metal surface confirmed that S. chilikensis induced corrosion in both scenarios; however, in the presence of thiosulfate S. chilikensis triggered a higher pitting corrosion rate, whereas in presence of nitrate it promoted higher uniform corrosion. This study demonstrates the importance of understanding the metabolic versatility of microbes in order to assess the MIC risk of industrial facilities.
Collapse
|
9
|
Kim Y, Oh S. Machine-learning insights into nitrate-reducing communities in a full-scale municipal wastewater treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113795. [PMID: 34560468 DOI: 10.1016/j.jenvman.2021.113795] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
This study carried out machine-learning (ML) modeling using activated sludge microbiome data to predict the operational characteristics of biological unit processes (i.e., anaerobic, anoxic, and aerobic) in a full-scale municipal wastewater treatment plant. An ML application pipeline with optimization strategies (e.g., model selection, input data preprocessing, and hyperparameter tuning) could significantly improve prediction performance. Comparative analysis of the ML prediction performance suggested that linear models (support vector machine and logistic regression) had a high prediction performance (93% accuracy), comparable to that of non-linear models such as random forest. Feature importance analysis using the linear ML models identified the microbial taxa that were specifically associated with anoxic processes, many of which (e.g., Ferruginibacter) were found to have ecologically important genomic and phenotypic characteristics (e.g., for nitrate reduction). Time-series microbial community dynamics demonstrated that the taxa identified using ML were frequently occurring and dominating in the anoxic process over time, thus representing the core nitrate-reducing community. Despite the general dominance of the core community over time, the analysis further revealed successional seasonal patterns of distinct sub-groups, indicating differences in the functional contribution of sub-groups by season to the overall nitrate-reducing potential of the system. Overall, the results of this study suggest that ML modeling holds great promise for the predictive identification and understanding of key microbial players governing the functioning and stability of biological wastewater systems.
Collapse
Affiliation(s)
- Youngjun Kim
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
10
|
Mechanisms Driving Microbial Community Composition in Anaerobic Co-Digestion of Waste-Activated Sewage Sludge. Bioengineering (Basel) 2021; 8:bioengineering8120197. [PMID: 34940350 PMCID: PMC8699016 DOI: 10.3390/bioengineering8120197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Anaerobic co-digestion (Co-AD) is used to increase the effectiveness of anaerobic digestion (AD) using local “wastes”, adding economic and environmental benefits. Since system stability is of existential importance for the operation of wastewater treatment plants, thorough testing of potential co-substrates and their effects on the respective community and system performance is crucial for understanding and utilizing Co-AD to its best capacity. Food waste (FW) and canola lecithin (CL) were tested in mesophilic, lab-scale, semi-continuous reactors over a duration of 120 days with stepwise increased substrate addition. Key performance indicators (biogas, total/volatile solids, fatty acids) were monitored and combined with 16S-rRNA amplicon sequencing to assess the impact of co-substrate addition on reactor performance and microbial community composition (MCC). Additionally, the latter was then compared with natural shifts occurring in the wastewater treatment plant (WWTP, source) at the same time. An almost linear increase in biogas production with both co-substrates at an approximate 1:1 ratio with the organic loading rate (OLR) was observed. The MCCs in both experiments were mostly stable, but also prone to drift over time. The FW experiment MCC more closely resembled the original WWTP community and the observed shifts indicated high levels of functional redundancy. Exclusive to the CL co-substrate, a clear selection for a few operational taxonomic units (OTUs) was observed. There was little evidence for a persistent invasion and establishment of microorganisms from typical primary substrates into the stable resident community of the reactors, which is in line with earlier findings that suggested that the inoculum and history mostly define the MCC. However, external factors may still tip the scales in favor of a few r-strategists (e.g., Prolixibacter) in an environment that otherwise favors K-strategists, which may in fact also be recruited from the primary substrate (Trichococcus). In our study, specialization and diversity loss were also observed in response to the addition of the highly specialized CL, which in turn, may have adverse effects on the system’s stability and reduced resilience and recovery.
Collapse
|
11
|
Iino T, Shono N, Ito K, Nakamura R, Sueoka K, Harayama S, Ohkuma M. Nitrite as a causal factor for nitrate-dependent anaerobic corrosion of metallic iron induced by Prolixibacter strains. Microbiologyopen 2021; 10:e1225. [PMID: 34459557 PMCID: PMC8368055 DOI: 10.1002/mbo3.1225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 11/12/2022] Open
Abstract
Microbially influenced corrosion (MIC) may contribute significantly to overall corrosion risks, especially in the gas and petroleum industries. In this study, we isolated four Prolixibacter strains, which belong to the phylum Bacteroidetes, and examined their nitrate respiration- and Fe0 -corroding activities, together with two previously isolated Prolixibacter strains. Four of the six Prolixibacter strains reduced nitrate under anaerobic conditions, while the other two strains did not. The anaerobic growth of the four nitrate-reducing strains was enhanced by nitrate, which was not observed in the two strains unable to reduce nitrate. When the nitrate-reducing strains were grown anaerobically in the presence of Fe0 or carbon steel, the corrosion of the materials was enhanced by more than 20-fold compared to that in aseptic controls. This enhancement was not observed in cultures of the strains unable to reduce nitrate. The oxidation of Fe0 in the anaerobic cultures of nitrate-reducing strains occurred concomitantly with the formation of nitrite. Since nitrite chemically oxidized Fe0 under anaerobic and aseptic conditions, the corrosion of Fe0 - and carbon steel by the nitrate-reducing Prolixibacter strains was deduced to be mainly enhanced via the biological reduction of nitrate to nitrite, followed by the chemical oxidation of Fe0 to Fe2+ and Fe3+ coupled to the reduction of nitrite.
Collapse
Affiliation(s)
- Takao Iino
- Japan Collection of Microorganisms (JCM)RIKEN BioResource Research Center (RIKEN‐BRC)TsukubaJapan
| | - Nobuaki Shono
- Biofunctional Catalyst Research TeamCenter for Sustainable Resource Science, RIKENWakoJapan
- Present address:
Chitose Laboratory Corp.Biotechnology Research CenterKawasakiJapan
| | - Kimio Ito
- Resource and Process Solution DivisionMineral Resources DepartmentNippon Steel Technology Co., Ltd.FuttsuJapan
| | - Ryuhei Nakamura
- Biofunctional Catalyst Research TeamCenter for Sustainable Resource Science, RIKENWakoJapan
- Earth‐Life Science Institute (ELSI)Tokyo Institute of TechnologyMeguro‐kuJapan
| | - Kazuo Sueoka
- Environment Research LaboratoryAdvanced Technology Research LaboratoriesNippon Steel Co., Ltd.FuttsuJapan
| | - Shigeaki Harayama
- Department of Biological SciencesFaculty of Science and EngineeringChuo UniversityBunkyo‐kuJapan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM)RIKEN BioResource Research Center (RIKEN‐BRC)TsukubaJapan
| |
Collapse
|
12
|
Navarrete-Euan H, Rodríguez-Escamilla Z, Pérez-Rueda E, Escalante-Herrera K, Martínez-Núñez MA. Comparing Sediment Microbiomes in Contaminated and Pristine Wetlands along the Coast of Yucatan. Microorganisms 2021; 9:877. [PMID: 33923859 PMCID: PMC8073884 DOI: 10.3390/microorganisms9040877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
Microbial communities are important players in coastal sediments for the functioning of the ecosystem and the regulation of biogeochemical cycles. They also have great potential as indicators of environmental perturbations. To assess how microbial communities can change their composition and abundance along coastal areas, we analyzed the composition of the microbiome of four locations of the Yucatan Peninsula using 16S rRNA gene amplicon sequencing. To this end, sediment from two conserved (El Palmar and Bocas de Dzilam) and two contaminated locations (Sisal and Progreso) from the coast northwest of the Yucatan Peninsula in three different years, 2017, 2018 and 2019, were sampled and sequenced. Microbial communities were found to be significantly different between the locations. The most noticeable difference was the greater relative abundance of Planctomycetes present at the conserved locations, versus FBP group found with greater abundance in contaminated locations. In addition to the difference in taxonomic groups composition, there is a variation in evenness, which results in the samples of Bocas de Dzilam and Progreso being grouped separately from those obtained in El Palmar and Sisal. We also carry out the functional prediction of the metabolic capacities of the microbial communities analyzed, identifying differences in their functional profiles. Our results indicate that landscape of the coastal microbiome of Yucatan sediment shows changes along the coastline, reflecting the constant dynamics of coastal environments and their impact on microbial diversity.
Collapse
Affiliation(s)
- Herón Navarrete-Euan
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Zuemy Rodríguez-Escamilla
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Unidad Académica Yucatán, Mérida, Yucatán 97302, Mexico;
| | - Karla Escalante-Herrera
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| | - Mario Alberto Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico y Tecnológico de Yucatán, Sierra Papacal-Chuburna Km 5, Mérida, Yucatán 97302, Mexico; (H.N.-E.); (Z.R.-E.); (K.E.-H.)
| |
Collapse
|
13
|
Kowal P, Ciesielski S, Godzieba M, Fitobór K, Gajewska M, Kołecka K. Assessment of diversity and composition of bacterial community in sludge treatment reed bed systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144060. [PMID: 33317898 DOI: 10.1016/j.scitotenv.2020.144060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/30/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Due to their low emission of odours and lack of the need to apply additional chemical agents, sludge treatment reed beds (STRBs) constitute an economically feasible and eco-friendly approach to sewage sludge management. Correctly designed and operated STRBs ensure effective reduction of the dry matter content coupled with the mineralisation of organic compounds. Successful operation of STRBs relies on complex interactions between the plants and microorganisms responsible for the decomposition of organic matter and nutrient cycling. While the biocenoses of wetland systems dedicated to wastewater treatment have been intensively investigated, in the case of sludge treatment applications, there is a deficit of available microbial data. The aim of this study was to explore the diversity and spatial distribution of the bacteria in three distinct STRBs which differ in maturation and feeding patterns. Analyses of the dry mass and organic matter content showed the general trend of the sludge stabilisation processes advancing through the bed depth, with the best performance in the Matured Continuous Feed (MCF) bed being noted. Samples from the MCF bed showed the statistically greatest biodiversity in relation to the other beds. Moreover, increased biodiversity of microorganisms was observed on the surface of the STRBs and the bottom zone of the MCF equipped with a passive aeration system, which proves the application of such solutions in order to enhance the performance of the process. The results of 16S rRNA gene sequencing revealed that Bacteroidetes, Proteobacteria and Firmicutes contributed approximately 80% of all identified sequences read. Network analysis revealed dominant role of Bacteroidetes in the formation of interspecies co-existence patterns. Nitrospira was the most abundant organism responsible for nitrogen metabolism in the STRBs.
Collapse
Affiliation(s)
- Przemysław Kowal
- Dept. of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Slawomir Ciesielski
- Dept. of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Michała Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - Martyna Godzieba
- Dept. of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Michała Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - Karolina Fitobór
- Dept. of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Magdalena Gajewska
- Dept. of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Kołecka
- Dept. of Water and Wastewater Technology, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
14
|
Watanabe M, Kojima H, Fukui M. Aquipluma nitroreducens gen. nov. sp. nov., a novel facultatively anaerobic bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 2020; 70:6408-6413. [PMID: 33156751 DOI: 10.1099/ijsem.0.004551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel facultatively anaerobic, nitrate-reducing bacterium, designated MeG22T, was isolated from a freshwater lake in Japan. Cells of the strain were straight rods (0.8×2.5-10 µm), motile, and Gram-stain-negative. For growth, the optimum NaCl concentration was 0 % and the optimum temperature was 30 °C. Under anoxic conditions, strain MeG22T reduced nitrate to nitrite. Major cellular fatty acids were C15 : 1 ω6c (13.6 %), C17 : 0 (11.9 %), anteiso-C15 : 0 (10.6 %) and iso-C15 : 0 (10.6 %). The major respiratory quinone was menaquinone-7. The genome sequence of strain MeG22T consists of 5 712 279 bp with a G+C content of 40.3 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the family Prolixibacteraceae within the phylum Bacteroidetes. The closest relative of strain MeG22T was Sunxiuqinia faeciviva strain JAM-BA0302T with a 16S rRNA gene sequence similarity of 90.9 %. On the basis of phylogenetic and phenotypic characterization, Aquipluma nitroreducens, gen. nov., sp. nov., belonging to the family Prolixibacteraceae is proposed with the type strain MeG22T (=NBRC 112896T=DSM 106262T).
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Biological Environment, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan.,Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan.,Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
15
|
Cabrol L, Thalasso F, Gandois L, Sepulveda-Jauregui A, Martinez-Cruz K, Teisserenc R, Tananaev N, Tveit A, Svenning MM, Barret M. Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139588. [PMID: 32497884 DOI: 10.1016/j.scitotenv.2020.139588] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 05/16/2023]
Abstract
Arctic lakes emit methane (CH4) to the atmosphere. The magnitude of this flux could increase with permafrost thaw but might also be mitigated by microbial CH4 oxidation. Methane oxidation in oxic water has been extensively studied, while the contribution of anaerobic oxidation of methane (AOM) to CH4 mitigation is not fully understood. We have investigated four Northern Siberian stratified lakes in an area of discontinuous permafrost nearby Igarka, Russia. Analyses of CH4 concentrations in the water column demonstrated that 60 to 100% of upward diffusing CH4 was oxidized in the anoxic layers of the four lakes. A combination of pmoA and mcrA gene qPCR and 16S rRNA gene metabarcoding showed that the same taxa, all within Methylomonadaceae and including the predominant genus Methylobacter as well as Crenothrix, could be the major methane-oxidizing bacteria (MOB) in the anoxic water of the four lakes. Correlation between Methylomonadaceae and OTUs within Methylotenera, Geothrix and Geobacter genera indicated that AOM might occur in an interaction between MOB, denitrifiers and iron-cycling partners. We conclude that MOB within Methylomonadaceae could have a crucial impact on CH4 cycling in these Siberian Arctic lakes by mitigating the majority of produced CH4 before it leaves the anoxic zone. This finding emphasizes the importance of AOM by Methylomonadaceae and extends our knowledge about CH4 cycle in lakes, a crucial component of the global CH4 cycle.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix-Marseille University, Univ Toulon, CNRS, IRD, M.I.O. UM 110, Mediterranean Institute of Oceanography, Marseille, France; Institute of Ecology and Biodiversity IEB, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Escuela de Ingeniería Bioquímica, Pontificia Universidad de Valparaiso, Av Brasil 2085, Valparaiso, Chile
| | - Frédéric Thalasso
- Biotechnology and Bioengineering Department, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Laure Gandois
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France
| | - Armando Sepulveda-Jauregui
- ENBEELAB, University of Magallanes, Punta Arenas, Chile; Center for Climate and Resilience Research (CR)2, Santiago, Chile
| | | | - Roman Teisserenc
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France
| | | | - Alexander Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratory of Functional Ecology and Environment, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
16
|
Zhang QF, Laanbroek HJ. Tannins from senescent Rhizophora mangle mangrove leaves have a distinctive effect on prokaryotic and eukaryotic communities in a Distichlis spicata salt marsh soil. FEMS Microbiol Ecol 2020; 96:5876345. [PMID: 32710789 DOI: 10.1093/femsec/fiaa148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Due to climate warming, tannin-rich Rhizophora mangle migrates into tannin-poor salt marshes, where the tannins interfere with the biogeochemistry in the soil. Changes in biogeochemistry are likely associated with changes in microbial communities. This was studied in microcosms filled with salt marsh soil and amended with leaf powder, crude condensed tannins, purified condensed tannins (PCT), all from senescent R. mangle leaves, or with tannic acid. Size and composition of the microbial communities were determined by denaturing gradient gel electrophoresis, high-throughput sequencing and real-time PCR based on the 16S and 18S rRNA genes. Compared with the control, the 16S rRNA gene abundance was lowered by PCT, while the 18S rRNA gene abundance was enhanced by all treatments. The treatments also affected the composition of the 16S rRNA and 18S rRNA gene assemblies, but the effects on the 18S rRNA gene were greater. The composition of the 18S rRNA gene, but not of the 16S rRNA gene, was significantly correlated with the mineralization of carbon, nitrogen and phosphorus. Distinctive microbial groups emerged during the different treatments. This study revealed that migration of mangroves may affect both the prokaryotic and the eukaryotic communities in salt marsh soils, but that the effects on the eukaryotes will likely be greater.
Collapse
Affiliation(s)
- Qiu-Fang Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, 398 Donghai Street, Quanzhou 362000, China.,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou 362100, China
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
Linyi C, Yujie Q, Buqing C, Chenglong W, Shaohong Z, Renglu C, Shaohua Y, Lan Y, Zhiju L. Enhancing degradation and biogas production during anaerobic digestion of food waste using alkali pretreatment. ENVIRONMENTAL RESEARCH 2020; 188:109743. [PMID: 32592938 DOI: 10.1016/j.envres.2020.109743] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Alkali pretreatment of anaerobic digestion (AD) was investigated as a strategy to degrade complex organic matter such as fats. AD of food waste (FW) with alkali pretreatment was conducted using batch assays and long-term experiments for 70 days in two reactors. The aim of this study was to compare the impact of alkali pretreatment on solubilization and biogas production and to evaluate the performance in reactors with that of the untreated FW. The alkali pretreatment enhanced the solubilization of organic matter. The best biogas yield (829 mL/g VS) and methane content (65.48%) were obtained by the pretreatment with 1% CaO with the highest Pi, n (66.06%) of biodegradable soluble materials. The long-term reactors with pretreatment performed more steadily with higher biogas production under organic loading rates (OLR) over 5 g VS/(L⋅d). The bacterial community structure was different under various conditions. Methanosaeta and Methanospirillum were the dominant archaea in this study, while Methanosaeta increased in R1 at OLR of 6 g VS/(L⋅d). The study concluded that alkali pretreatment with 1% CaO appeared as a potential strategy for AD of FW.
Collapse
Affiliation(s)
- Chen Linyi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Qin Yujie
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Chen Buqing
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Wu Chenglong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Zheng Shaohong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Chen Renglu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yang Shaohua
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yang Lan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Liu Zhiju
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
18
|
Phan HC, Wade SA, Blackall LL. Microbial Communities of Orange Tubercles in Accelerated Low-Water Corrosion. Appl Environ Microbiol 2020; 86:e00610-20. [PMID: 32332140 PMCID: PMC7301844 DOI: 10.1128/aem.00610-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 11/20/2022] Open
Abstract
The rapid degradation of marine infrastructure at the low tide level due to accelerated low-water corrosion (ALWC) is a problem encountered worldwide. Despite this, there is limited understanding of the microbial communities involved in this process. We obtained samples of the orange-colored tubercles commonly associated with ALWC from two different types of steel sheet piling, located adjacent to each other but with different levels of localized corrosion, at a seaside harbor. The microbial communities from the outer and inner layers of the orange tubercles and from adjacent seawater were studied by pure culture isolation and metabarcoding of the 16S rRNA genes. A collection of 119 bacterial isolates was obtained from one orange tubercle sample, using a range of media in anaerobic and aerobic conditions. The metabarcoding results showed that sulfur and iron oxidizers were more abundant on the outer sections of the orange tubercles compared to the inner layers, where Deltaproteobacteria (which include many sulfate reducers) were more abundant. The microbial communities varied significantly between the inner and outer layers of the orange tubercles and also with the seawater but overall did not differ significantly between the two steel sheet types. Hence, we saw similar microbial communities in orange tubercles present, but different levels of localized corrosion, for two different types of colocated steel sheet piling. Metallurgical analysis found differences in composition, grain size, ferrite-pearlite ratio, and the extent of inclusions present between the two steel types investigated.IMPORTANCE The presence of orange tubercles on marine steel pilings is often used as an indication that accelerated low-water corrosion is taking place. We studied the microbial communities in attached orange tubercles on two closely located sheet pilings that were of different steel types. The attached orange tubercles were visually similar, but the extents of underlying corrosion on the different steel surfaces were substantially different. No clear difference was found between the microbial communities present on the two different types of sheet piling. However, there were clear differences in the microbial communities in the corrosion layers of tubercles, which were also different from the microbes present in adjacent seawater. The overall results suggest that the presence of orange tubercles, a single measurement of water quality, or the detection of certain general types of microbes (e.g., sulfate-reducing bacteria) should not be taken alone as definitive indications of accelerated corrosion.
Collapse
Affiliation(s)
- Hoang C Phan
- Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Scott A Wade
- Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Linda L Blackall
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Huang Z, Hu Y, Lai Q, Guo Y. Description of Maribellus sediminis sp. nov., a marine nitrogen-fixing bacterium isolated from sediment of cordgrass and mangrove. Syst Appl Microbiol 2020; 43:126099. [PMID: 32690193 DOI: 10.1016/j.syapm.2020.126099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
Abstract
Two marine bacterial strains designated Y2-1-60T and GM1-28 were isolated from sediments of cordgrass and mangrove along the Luoyang estuary in Quanzhou Bay, China, respectively. Both strains were Gram-staining-negative, straight rod-shaped, non-flagellum, facultatively anaerobic, nitrogen-fixing, and did not contain carotenoid pigment. Catalase activities were found to be weak positive and oxidase activities negative. The 16S rRNA gene sequences of the two strains were identical and had maximum similarity of 98.0% with Maribellus luteus XSD2T, and of <94.5% with other species. ANI value (96.9%) and DDH estimate (71.5%) between the two strains supported that they belonged to the same species. ANI value and DDH estimate between the two strains and M. luteus XSD2T was 74.3% and 19.4%, respectively, indicating that they represent a novel species. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis indicated that strains Y2-1-60T and GM1-28 formed a monophyletic branch within the genus Maribellus. The respiratory quinone was menaquinone MK-7. The major fatty acid (>10%) consisted of iso-C15:0, and iso-C17:0 3-OH. The polar lipids consisted of phosphatidylethanolamine and several unidentified lipids. The genomic G+C contents were 41.9-42.0mol%. Gene annotation revealed that strains Y2-1-60T and GM1-28 contained a set of nif gene cluster (nifHDKENB) responsible for nitrogen fixation. Based on the above characteristics, strains Y2-1-60T and GM1-28 represent a novel species within the genus Maribellus. Thus, Maribellus sediminis sp. nov. is proposed with type strain Y2-1-60T (=MCCC 1K04285T=KCTC 72884T), isolated from cordgrass sediment and strain GM1-28 (=MCCC 1K04384=KCTC 72880), isolated from mangrove sediment.
Collapse
Affiliation(s)
- Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China.
| | - Yuzhong Hu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China
| |
Collapse
|
20
|
Sun W, Fu T, Jia C, Fu L, Zhou S, Yao P, Gao X, Liu L, Yang Z, Shi X, Zhang XH. Puteibacter caeruleilacunae gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from Yongle Blue Hole in the South China Sea. Int J Syst Evol Microbiol 2020; 70:1623-1629. [DOI: 10.1099/ijsem.0.003948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blue holes are unique geomorphological units characterized by steep redox and biogeochemical gradients. Yongle Blue Hole is located on the largest atoll (Yongle Atoll) of the western Xisha Islands in the South China Sea. A Gram-stain-negative, facultatively anaerobic, non-motile, non-flagellated marine bacterium with creamy white colonies, designated JC036T, was isolated from Yongle Blue Hole. Cells were short-rod-shaped and catalase-negative. 16S rRNA gene sequence analysis showed that sequence similarities were lower than 91.6 % against all validly named species in the familyProlixibacteraceae; a reconstructed phylogenetic tree indicated that strain JC036Tformed a lineage with strains in the familyProlixibacteraceae. Growth occurred at 4–37 °C (optimum, 28 °C), at pH 5.0–9.0 (optimum, 7.0) and in the presence of 2–6 % (w/v) NaCl (optimum, 3 %). The prevalent isoprenoid quinone of strain JC036Twas menaquinone-7 (MK-7). Iso-C15 : 0and iso-C17 : 03-OH were the predominant fatty acids. The major polar lipids included a phospholipid, phosphatidylethanolamine, an aminophospholipid and four unidentified lipids. The genomic DNA G+C content of strain JC036Twas 37.8 mol%. Based on physiological and biochemical characteristics and whole genome comparisons, we propose a new genus and species,Puteibacter caeruleilacunaegen. nov., sp. nov., within the familyProlixibacteraceae. The type strain ofPuteibacter caeruleilacunaeis JC036T(=JCM 33128T=MCCC 1K03579T). From this study, a deeper understanding of the community of the microorganism and their roles in biogeochemical cycles, especially anaerobic bacteria, is provided.
Collapse
Affiliation(s)
- Wen Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Tianyu Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chao Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute, Sansha 573199, PR China
| | - Shun Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Peng Yao
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Xueyu Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Lijun Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zuosheng Yang
- College of Marine Geosciences, Ocean University of China, Qingdao 266100, PR China
| | - Xiaochong Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, PR China
| |
Collapse
|
21
|
Zhou LY, Yu ZL, Xu W, Mu DS, Du ZJ. Maribellus luteus gen. nov., sp. nov., a marine bacterium in the family Prolixibacteraceae isolated from coastal seawater. Int J Syst Evol Microbiol 2019; 69:2388-2394. [DOI: 10.1099/ijsem.0.003495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Liu-Yan Zhou
- 1Marine College, Shandong University, Weihai, 264209, PR China
| | - Zi-Liang Yu
- 1Marine College, Shandong University, Weihai, 264209, PR China
| | - Wei Xu
- 1Marine College, Shandong University, Weihai, 264209, PR China
| | - Da-Shuai Mu
- 1Marine College, Shandong University, Weihai, 264209, PR China
- 2State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Zong-Jun Du
- 2State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
- 1Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
22
|
Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge. ENERGIES 2019. [DOI: 10.3390/en12061034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study aims to provide insight into the cost-effective catalyst on power generation in a microbial fuel cell (MFC) for treatment of municipal sludge. Power production from MFCs with carbon, Fe2O3, and Pt electrodes were compared. The MFC with no coating on carbon generated the least power density (6.72 mW·m−2) while the MFC with Fe2O3-coating on carbon anodes and carbon cathodes generated a 78% higher power output (30.18 mW·m−2). The third MFC with Fe2O3-coated carbon anodes and Pt on carbon as the cathode catalyst generated the highest power density (73.16 mW·m−2) at room temperature. Although the power generated with a conventional Pt catalyst was more than two-fold higher than Fe2O3, this study suggests that Fe2O3 can be investigated further as an efficient, low-cost, and alternative catalyst of Pt, which can be optimized for improving performance of MFCs. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) results demonstrated reduced resistance of MFCs and better charge transfer between biofilm and electrodes containing coated anodes compared to non-coated anodes. Scanning electron microscopy (SEM) was used to analyze biofilm morphology and microbial community analysis was performed using 16S rRNA gene sequencing, which revealed the presence of known anaerobic fermenters and methanogens that may play a key role in energy generation in the MFCs.
Collapse
|
23
|
Wakai S. Biochemical and thermodynamic analyses of energy conversion in extremophiles. Biosci Biotechnol Biochem 2018; 83:49-64. [PMID: 30381012 DOI: 10.1080/09168451.2018.1538769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A variety of extreme environments, characterized by extreme values of various physicochemical parameters (temperature, pressure, salinity, pH, and so on), are found on Earth. Organisms that favorably live in such extreme environments are called extremophiles. All living organisms, including extremophiles, must acquire energy to maintain cellular homeostasis, including extremophiles. For energy conversion in harsh environments, thermodynamically useful reactions and stable biomolecules are essential. In this review, I briefly summarize recent studies of extreme environments and extremophiles living in these environments and describe energy conversion processes in various extremophiles based on my previous research. Furthermore, I discuss the correlation between the biological system of electrotrophy, a third biological energy acquisition system, and the mechanism underlying microbiologically influenced corrosion. These insights into energy conversion in extremophiles may improve our understanding of the "limits of life". Abbreviations: PPi: pyrophosphate; PPase: pyrophosphatase; ITC: isothermal titration microcalorimetry; SVNTase: Shewanella violacea 5'-nucleotidase; SANTase: Shewanella amazonensis 5'-nucleotidase.
Collapse
Affiliation(s)
- Satoshi Wakai
- a Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| |
Collapse
|
24
|
Iron-oxidizing bacteria in marine environments: recent progresses and future directions. World J Microbiol Biotechnol 2018; 34:110. [PMID: 29974320 DOI: 10.1007/s11274-018-2491-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Iron-oxidizing bacteria (FeOB) refers to a group of bacteria with the ability to exchange and accumulate divalent iron dissolved in water as trivalent iron inside and outside the bacterial cell. Most FeOB belong the largest bacterial phylum, Proteobacteria. Within this phylum, FeOB with varying physiology with regards to their response to oxygen (obligate aerobes, facultative and obligate anaerobes) and pH optimum for proliferation (neutrophiles, moderate and extreme acidophiles) can be found. Although FeOB have been reported from a wide variety of environments, most of them have not been isolated and their biochemical characteristics remain largely unknown. This is especially true for those living in the marine realm, where the properties of FeOB was not known until the isolation of the Zetaproteobacteria Mariprofundus ferrooxydans, first reported in 2007. Since the proposal of Zetaproteobacteria by Emerson et al., the detection and isolation of those microorganisms from the marine environment has greatly escalated. Furthermore, FeOB have also recently been reported from works on ocean drilling and metal corrosion. This review aims to summarize the current state of phylogenetic and physiological diversity in marine FeOB, the significance of their roles in their environments (on both global and local scales), as well as their growing importance and applications in the industry.
Collapse
|
25
|
Uniform and Pitting Corrosion of Carbon Steel by Shewanella oneidensis MR-1 under Nitrate-Reducing Conditions. Appl Environ Microbiol 2018; 84:AEM.00790-18. [PMID: 29654179 DOI: 10.1128/aem.00790-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Despite observations of steel corrosion in nitrate-reducing environments, processes of nitrate-dependent microbially influenced corrosion (MIC) remain poorly understood and difficult to identify. We evaluated carbon steel corrosion by Shewanella oneidensis MR-1 under nitrate-reducing conditions using a split-chamber/zero-resistance ammetry (ZRA) technique. This approach entails the deployment of two metal (carbon steel 1018 in this case) electrodes into separate chambers of an electrochemical split-chamber unit, where the microbiology or chemistry of the chambers can be manipulated. This approach mimics the conditions of heterogeneous metal coverage that can lead to uniform and pitting corrosion. The current between working electrode 1 (WE1) and WE2 can be used to determine rates, mechanisms, and, we now show, extents of corrosion. When S. oneidensis was incubated in the WE1 chamber with lactate under nitrate-reducing conditions, nitrite transiently accumulated, and electron transfer from WE2 to WE1 occurred as long as nitrite was present. Nitrite in the WE1 chamber (without S. oneidensis) induced electron transfer in the same direction, indicating that nitrite cathodically protected WE1 and accelerated the corrosion of WE2. When S. oneidensis was incubated in the WE1 chamber without an electron donor, nitrate reduction proceeded, and electron transfer from WE2 to WE1 also occurred, indicating that the microorganism could use the carbon steel electrode as an electron donor for nitrate reduction. Our results indicate that under nitrate-reducing conditions, uniform and pitting carbon steel corrosion can occur due to nitrite accumulation and the use of steel-Fe(0) as an electron donor, but conditions of sustained nitrite accumulation can lead to more-aggressive corrosive conditions.IMPORTANCE Microbially influenced corrosion (MIC) causes damage to metals and metal alloys that is estimated to cost over $100 million/year in the United States for prevention, mitigation, and repair. While MIC occurs in a variety of settings and by a variety of organisms, the mechanisms by which microorganisms cause this damage remain unclear. Steel pipe and equipment may be exposed to nitrate, especially in oil and gas production, where this compound is used for corrosion and "souring" control. In this paper, we show uniform and pitting MIC under nitrate-reducing conditions and that a major mechanism by which it occurs is via the heterogeneous cathodic protection of metal surfaces by nitrite as well as by the microbial oxidation of steel-Fe(0).
Collapse
|
26
|
Tremblay PL, Angenent LT, Zhang T. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces. Trends Biotechnol 2017; 35:360-371. [DOI: 10.1016/j.tibtech.2016.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 11/26/2022]
|
27
|
Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk HP, Fardeau ML, Spring S. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol 2017; 19:1134-1148. [PMID: 27943642 DOI: 10.1111/1462-2920.13639] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/26/2016] [Accepted: 12/01/2016] [Indexed: 01/26/2023]
Abstract
The anaerobic, mesophilic and moderately halophilic strain L21-Spi-D4T was recently isolated from the suboxic zone of a hypersaline cyanobacterial mat using protein-rich extracts of Arthrospira (formerly Spirulina) platensis as substrate. Phylogenetic analyses based on 16S rRNA genes indicated an affiliation of the novel strain with the Bacteroidetes clade MgMjR-022, which is widely distributed and abundant in hypersaline microbial mats and heretofore comprised only sequences of uncultured bacteria. Analyses of the complete genome sequence of strain L21-Spi-D4T revealed a possible specialization on the degradation of cyanobacterial biomass. Besides genes for enzymes degrading specific cyanobacterial proteins a conspicuous transport complex for the polypeptide cyanophycin could be identified that is homologous to typical polysaccharide utilization loci of Bacteroidetes. A distinct and reproducible co-occurrence pattern of environmental 16S rRNA gene sequences of the MgMjR-022 clade and cyanobacteria in the suboxic zone of hypersaline mats points to a specific dependence of members of this clade on decaying cyanobacteria. Based on a comparative analysis of phenotypic, genomic and ecological characteristics we propose to establish the novel taxa Salinivirga cyanobacteriivorans gen. nov., sp. nov., represented by the type strain L21-Spi-D4T , and Salinivirgaceae fam. nov., comprising sequences of the MgMjR-022 clade.
Collapse
Affiliation(s)
- Wajdi Ben Hania
- Laboratoire de Microbiologie IRD, MIO, Aix Marseille Université, Marseille, France
| | - Manon Joseph
- Laboratoire de Microbiologie IRD, MIO, Aix Marseille Université, Marseille, France
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Central Services, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans-Peter Klenk
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Marie-Laure Fardeau
- Laboratoire de Microbiologie IRD, MIO, Aix Marseille Université, Marseille, France
| | - Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|