1
|
Klijn A, Baylis C, Xiao Y, Li H, Cabon A, Antonie-Zijlstra S, De Benito A, Ellingsen AB, Wells-Bennik MHJ. Overview of endospore-forming bacteria in food: The road towards a harmonised method for the enumeration of their spores. Int J Food Microbiol 2025; 432:111046. [PMID: 39922036 DOI: 10.1016/j.ijfoodmicro.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 02/10/2025]
Abstract
Endospore-forming bacteria are an important challenge for the food industry due to their ubiquitous nature, widespread presence in the food chain and sophisticated survival mechanisms. An accurate method is needed that can provide insight into the quality of raw materials, predict spoilage potential and ensure food safety. A plethora of methods exist for the enumeration of spore-forming bacteria which vary among countries, industries and food producers. These methods describe a wide range of values in the key method parameters, such as heat treatment, growth medium, incubation time, and temperature. Consequently the results obtained can vary leading to misalignment and confusion. In addition, many of these methods are empirical and have not been validated. A harmonised international approach for the enumeration of spores is needed to provide consistent and reliable results on which to base food safety and quality decisions. A group of experts associated with the Internal Standardisation Organisation working group undertaking this task has identified the main endospore-forming bacterial species occurring in foods based on a wide selection of publications. Endospores are typically formed by bacteria belonging to twelve families originating from the Negativicutes, Bacilli and Clostridia classes, with the latter two being the most important for the food industry. This review will be used as a first step in method standardisation.
Collapse
Affiliation(s)
- Adrianne Klijn
- Nestlé Research, Route du Jorat 57, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland.
| | - Chris Baylis
- Mondelēz International, Bournville Lane, Birmingham B30 2LU, United Kingdom.
| | - Yinghua Xiao
- Arla Innovation Center, Arla Foods amba, Agro Food Park 19, 8200 Aarhus N, Denmark.
| | - Haiping Li
- USDA Agriculture Marketing Service Dairy Program, 1400 Independence Av, SW, Washington, DC, 25250, United States.
| | - Antoine Cabon
- Danone Analytical Excellence, 800 Rue des Vignes Rouges, 74500 Publier, France.
| | | | - Amparo De Benito
- AINIA, Parque Tecnológico de Valencia, Av. Benjamín Franklin, 5-11, 46980 Paterna, Valencia, Spain.
| | | | | |
Collapse
|
2
|
Prokofeva MI, Elcheninov AG, Klyukina AA, Novikov AA, Kachmazov GS, Toshchakov SV, Frolov EN, Podosokorskaya OA. Anaeroselena agilis gen. nov., sp. nov., a Novel Sulfite- and Arsenate-Respiring Bacterium Within the Family Acetonemataceae Isolated from a Thermal Spring of North Ossetia. Curr Microbiol 2025; 82:71. [PMID: 39757269 DOI: 10.1007/s00284-024-04046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-clT, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-clT grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.3%) and within pH range 4.0-8.7 (optimum pH 6.8-7.3). It was a strictly anaerobic microorganism capable of fermentation and respiration on organic acids and proteinaceous substrates. Sulfur, sulfite, polysulfide, and arsenate were used as electron acceptors. In addition to heterotrophic growth it grew autotrophically with H2/CO2. The major fatty acids were C16:1 ω8c and C16:0. The size of the genome and genomic DNA G+C content of strain 4137-clT were 4.5 Mb and 59.2%, respectively. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strain 4137-clT represented a distinct lineage of the family Acetonemataceae within the class Negativicutes. As inferred from the morphology, physiology, chemotaxonomical and phylogenomic analyses, strain 4137-clT ought to be recognized as a novel genus for which the name Anaeroselena agilis gen. nov., sp. nov., we propose. The type strain is 4137-clT(=KCTC 25383T = VKM B-3575T).
Collapse
Affiliation(s)
- Maria I Prokofeva
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexander G Elcheninov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Alexandra A Klyukina
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninsky Prospect 65/1, Moscow, Russia, 119991
| | - Gennady S Kachmazov
- Faculty of Chemistry, Biology and Biotechnology, North Ossetian State University Named After K.L.Khetagurov, Vatutina Str., 44-46, Vladikavkaz, Russia, 362025
| | - Stepan V Toshchakov
- National Research Centre "Kurchatov Institute", Akademika Kurchatova Sq., 1, Moscow, Russia, 123182
| | - Evgenii N Frolov
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312
| | - Olga A Podosokorskaya
- Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312.
| |
Collapse
|
3
|
Cheng S, Zheng H, Wei Y, Lin X, Gu Y, Guo X, Fan Z, Li H, Cheng S, Liu S. Gut Microbiome and Stroke: a Bidirectional Mendelian Randomisation Study in East Asian and European Populations. Stroke Vasc Neurol 2024; 9:623-630. [PMID: 38296585 PMCID: PMC11791640 DOI: 10.1136/svn-2023-002717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/03/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND AND AIMS Observational studies have implicated the involvement of gut microbiome in stroke development. Conversely, stroke may disrupt the gut microbiome balance, potentially causing systemic infections exacerbated brain infarction. However, the causal relationship remains controversial or unknown. To investigate bidirectional causality and potential ethnic differences, we conducted a bidirectional two-sample Mendelian randomisation (MR) study in both East Asian (EAS) and European (EU) populations. METHODS Leveraging the hitherto largest genome-wide association study (GWAS) summary data from the MiBioGen Consortium (n=18 340, EU) and BGI (n=2524, EAS) for the gut microbiome, stroke GWAS data from the GIGASTROKE Consortium(264 655 EAS and 1 308 460 EU), we conducted bidirectional MR and sensitivity analyses separately for the EAS and EU population. RESULTS We identified nominally significant associations between 85 gut microbiomes taxa in EAS and 64 gut microbiomes taxa in EU with stroke or its subtypes. Following multiple testing, we observed that genetically determined 1 SD increase in the relative abundance of species Bacteroides pectinophilus decreased the risk of cardioembolic stroke onset by 28% (OR 0.72 (95% CI 0.62 to 0.84); p=4.22e-5), and that genetically determined 1 SD increase in class Negativicutes resulted in a 0.76% risk increase in small vessel stroke in EAS. No significant causal association was identified in the EU population and the reverse MR analysis. CONCLUSION Our study revealed subtype-specific and population-specific causal associations between gut microbiome and stroke risk among EAS and EU populations. The identified causality holds promise for developing a new stroke prevention strategy, warrants further mechanistic validation and necessitates clinical trial studies.
Collapse
Affiliation(s)
- Shiyao Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Hao Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Yuandan Wei
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xingchen Lin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Yuqin Gu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Xinxin Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Zhe Fan
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Changping Laboratory, Beijing 100000, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Changping Laboratory, Beijing 100000, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing 100069, China
| | - Siyang Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
4
|
Choi JK, Poudel S, Yee N, Goff JL. Deeply branching Bacillota species exhibit atypical Gram-negative staining. Microbiol Spectr 2024; 12:e0073224. [PMID: 39162559 PMCID: PMC11448272 DOI: 10.1128/spectrum.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
The Gram staining method differentiates bacteria based on their cell envelope structure, with the monoderm and diderm cell envelope types traditionally being synonymous with Gram-positive and Gram-negative stain results, respectively. Monoderms have a single phospholipid membrane surrounded by a thick layer of peptidoglycan, while diderms have a lipopolysaccharide outer membrane exterior to a thin peptidoglycan layer. The Bacillota (formerly Firmicutes) phylum has members with both cell wall types, and recent phylogenetic analyses have shown that monoderm Bacillota evolved from diderm ancestors on multiple occasions. Here, we compiled Gram staining and ultrastructural data for Bacillota species with complete genomes to further investigate the evolution of Gram-positive and Gram-negative cell wall types. The results indicate that many deeply branching lineages at the root of Bacillota phylum stain Gram-negative but do not harbor genes for outer membrane protein or lipopolysaccharide biosynthesis. Phylogenetic reconstructions suggest that several deeply branching Bacillota species have retained a thin peptidoglycan layer in their cell walls, which was inherited from a diderm ancestor. Taxa with this atypical Gram-negative-staining cell wall structure include the thermophilic anaerobe Symbiobacterium thermophilum and members of the Desulfotomaculia, Syntrophamonadia, Desulfitobacteriia, Thermosediminibacteria, and Thermoanaerobacteria. Using Gram-staining results as a proxy for cell wall thickness, our analysis indicates that several independent peptidoglycan thickening events may have occurred in the evolution of the Gram-positive cell envelope. IMPORTANCE In this study, we examined the evolution of bacterial cell envelopes, specifically focusing on Gram-positive and Gram-negative cell wall types in the Bacillota phylum. Our results indicate that certain bacteria can stain Gram-negative despite having a monoderm cell wall structure, thus challenging the conventional interpretation of Gram-staining results. Our observations also question the assumption that Gram-negative staining is always indicative of a diderm structure. These findings have broader implications for understanding how and when cell walls thicken during the evolution of bacterial cell envelopes.
Collapse
Affiliation(s)
- Jessica K. Choi
- Ecology and Evolutionary Biology Department, University of Michigan, Ann Arbor, Michigan, USA
| | - Saroj Poudel
- Department of Marine and Coastal Sciences, Rutgers, New Brunswick, New Jersey, USA
| | - Nathan Yee
- Department of Earth and Planetary Sciences, Rutgers, New Brunswick, New Jersey, USA
- Department of Environmental Sciences, Rutgers, New Brunswick, New Jersey, USA
| | - Jennifer L. Goff
- Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| |
Collapse
|
5
|
Wang Y, Shen Y, Shen J, Fan Z, Zhang J, Zhou J, Lv H, Ma W, Liang H. Exploring causal effects and potential mediating mechanisms of genetically linked environmental senses with intracerebral hemorrhage. Cereb Cortex 2024; 34:bhae377. [PMID: 39278825 DOI: 10.1093/cercor/bhae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024] Open
Abstract
The occurrence mechanism of intracerebral hemorrhage remains unclear. Several recent studies have highlighted the close relationship between environmental senses and intracerebral hemorrhage, but the mechanisms of causal mediation are inconclusive. We aimed to investigate the causal relationships and potential mechanisms between environmental senses and intracerebral hemorrhage. Multiple Mendelian randomization methods were used to identify a causal relationship between environmental senses and intracerebral hemorrhage. Gut microbiota and brain imaging phenotypes were used to find possible mediators. Enrichment and molecular interaction analyses were used to identify potential mediators and molecular targets. No causal relationship between temperature and visual perception with intracerebral hemorrhage was found, whereas long-term noise was identified as a risk factor for intracerebral hemorrhage (OR 2.95, 95% CI: 1.25 to 6.93, PIVW = 0.01). The gut microbiota belonging to the class Negativicutes and the order Selenomonadales and the brain image-derived phenotypes ICA100 node 54, edge 803, edge 1149, and edge 1323 played mediating roles. "Regulation of signaling and function in synaptic organization" is the primary biological pathway of noise-induced intracerebral hemorrhage, and ARHGAP22 may be the critical gene. This study emphasized the importance of environmental noise in the prevention, disease management, and underlying biological mechanisms of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Yaolou Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
| | - Yingjie Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
| | - Jinru Shen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
| | - Zhaoxin Fan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
| | - Jiaxin Zhou
- School of Life Science, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, Heilongjiang 150030, PR China
| | - Hui Lv
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, P.R. China
- NHC Key Laboratory of Cell Transplantation, No. 23 Post Street, Nangang District, Harbin 150001, Heilongjiang, P.R. China
| |
Collapse
|
6
|
Cobo F, Aguilera-Franco M, Pérez-Carrasco V, García-Salcedo JA, Navarro-Marí JM. Bacteremia caused by Veillonella parvula: Two case reports and a review of the literature. Anaerobe 2024; 88:102879. [PMID: 38906317 DOI: 10.1016/j.anaerobe.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Veillonella parvula is a non-motile gram-negative coccus that forms part of the normal microbiota in several body sites and which has been rarely isolated as cause of infections in human population, particularly in bacteremias. Here we give the overview of characteristics of genus Veillonella and the summary of its role in infections, particularly in bacteremia. We additionally report two patients with bacteremia due to V. parvula. Two sets of blood cultures of each patient yielded a pure culture of an anaerobic microorganism identified as V. parvula by MALDI-TOF MS, and confirmed by 16S rRNA gene sequencing. The two patients were male and one of them had risk factors for anaerobic bacteremia. The isolates were susceptible to most antibiotics and the outcome was successful in both patients. Bacteremia due to V. parvula is still rare. MALDI-TOF MS appear to be an excellent tool for the correct identification of these species.
Collapse
Affiliation(s)
- Fernando Cobo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain.
| | - María Aguilera-Franco
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Virginia Pérez-Carrasco
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José A García-Salcedo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José María Navarro-Marí
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
7
|
Xie CJ, Yao L, Tang R, Han S, Yang S, Alwathnani H, Rensing C, Liu GH, Zhou SG. Azotosporobacter soli gen. nov., sp. nov., a novel nitrogen-fixing bacterium isolated from paddy soil. Antonie Van Leeuwenhoek 2024; 117:79. [PMID: 38755437 DOI: 10.1007/s10482-024-01978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 μmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).
Collapse
Affiliation(s)
- Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Ling Yao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou City, Guangdong Province, 510006, People's Republic of China
| | - Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Guo-Hong Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, 350003, People's Republic of China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China.
| |
Collapse
|
8
|
Pereira-Mora L, Guerrero LD, Erijman L, Fernández-Scavino A. Tartrate fermentation with H 2 production by a new member of Sporomusaceae enriched from rice paddy soil. Appl Environ Microbiol 2024; 90:e0235123. [PMID: 38517167 PMCID: PMC11026083 DOI: 10.1128/aem.02351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.
Collapse
Affiliation(s)
- Luciana Pereira-Mora
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Microbiología del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Leandro D. Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Fernández-Scavino
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Tremblay PL, Zhang T. Genetic tools for the electrotroph Sporomusa ovata and autotrophic biosynthesis. Appl Environ Microbiol 2024; 90:e0175723. [PMID: 38117058 PMCID: PMC10807461 DOI: 10.1128/aem.01757-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Sporomusa ovata is a Gram-negative acetogen of the Sporomusaceae family with a unique physiology. This anerobic bacterium is a core microbial catalyst for advanced CO2-based biotechnologies including gas fermentation, microbial electrosynthesis, and hybrid photosystem. Until now, no genetic tools exist for S. ovata, which is a critical obstacle to its optimization as an autotrophic chassis and the acquisition of knowledge about its metabolic capacities. Here, we developed an electroporation protocol for S. ovata. With this procedure, it became possible to introduce replicative plasmids such as pJIR751 and its derivatives into the acetogen. This system was then employed to demonstrate the feasibility of heterologous expression by introducing a functional β-glucuronidase enzyme under the promoters of different strengths in S. ovata. Next, a recombinant S. ovata strain producing the non-native product acetone both from an organic carbon substrate and from CO2 was constructed. Finally, a replicative plasmid capable of integrating itself on the chromosome of the acetogen was developed as a tool for genome editing, and gene deletion was demonstrated. These results indicate that S. ovata can be engineered and provides a first-generation genetic toolbox for the optimization of this biotechnological workhorse.IMPORTANCES. ovata harbors unique features that make it outperform most microbes for autotrophic biotechnologies such as a capacity to acquire electrons from different solid donors, a low H2 threshold, and efficient energy conservation mechanisms. The development of the first-generation genetic instruments described in this study is a key step toward understanding the molecular mechanisms involved in these outstanding metabolic and physiological characteristics. In addition, these tools enable the construction of recombinant S. ovata strains that can synthesize a wider range of products in an efficient manner.
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, China
- Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, China
| |
Collapse
|
10
|
Wang N, Su Z. Deciphering the Causality between Gut Microbiota Dysbiosis and Poisoning by Narcotics and Psychodysleptics: A Mendelian Randomization Analysis. Curr Neuropharmacol 2024; 23:187-195. [PMID: 39082168 PMCID: PMC11793043 DOI: 10.2174/1570159x22999240729092453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND This study investigates the connection between gut microbiota and poisoning caused by narcotics and psychodysleptics, using Mendelian randomization (MR) to explore possible causal relationships. METHODS The study employed the MR analysis, leveraging genetic variants as instrumental variables to facilitate robust causal inference. Data for gut microbiota was extracted from the MiBioGen study, integrating genome-wide genotyping data with 16S fecal microbiota profiles. Outcome metrics were based on the Finngen study. Genetic instruments were meticulously extracted based on stringent criteria, and harmonized with SNP outcomes associated with "Poisoning by narcotics and psychodysleptics (hallucinogens)". The inverse-variance weighted (IVW) method was utilized for MR analysis, supplemented by sensitivity analyses including MR-Egger Regression, Weighted Median Approach, and Leave-One-Out Cross-Validation. RESULTS Among various microbial groups, nine showed significant statistical links. Specifically, Class Negativicutes (OR 5.68, 95% CI 2.13-15.16, p = 0.0005) and Order Selenomonadales (OR 5.68, 95% CI 2.13-15.16, p = 0.0005) were notably associated. These findings were consistent across different sensitivity analyses. CONCLUSION The relationship between gut microbiota and the adverse effects of narcotics and psychodysleptics is an emerging area of research. Our MR study identifies certain microbes that might influence the body's response to these substances. These insights could help in predicting and treating the effects of narcotics and psychodysleptics in the future.
Collapse
Affiliation(s)
- Ning Wang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Anesthesiology, Shanghai Ruijin Hospital, Shanghai, China
| | - Zhenbo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Yeo S, Park H, Kim H, Ryu CB, Huh CS. Selenobaculum gbiensis gen. nov. sp. nov., a new bacterium isolated from the gut microbiota of a patient with Crohn's disease. Sci Rep 2023; 13:14835. [PMID: 37684335 PMCID: PMC10491768 DOI: 10.1038/s41598-023-42017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
The human gut microbiota is a complex ecology comprising approximately 10 to 100 trillion microbial cells. Most of the bacteria detected by 16s rRNA sequencing have yet to be cultured, but intensive attempts to isolate the novel bacteria have improved our knowledge of the gut microbiome composition and its roles within human host. In our culturomics study, a novel gram-negative, motile, obligately anaerobic, rod-shaped bacteria, designated as strain ICN-92133T, was isolated from a fecal sample of a 26-year-old patient with Crohn's disease. Based on the 16s rRNA sequence of strain ICN-92133T, the phylogeny analysis placed the strain into the family Selenomonadaceae, showing 93.91% similarity with the closely related Massilibacillus massiliensis strain DSM 102838T. Strain ICN-92133T exhibited a genome size of 2,679,003 bp with a GC content of 35.5% which was predicted to contain 26 potential virulence factors and five antimicrobial resistance genes. In comparative genomic analysis, strain ICN-92133T showed digital DNA-DNA Hybridization and OrthoANI values lower than 21.9% and 71.9% with the closest type strains, respectively. In addition, comparing phenotypic, biochemical, and cellular fatty acids with those of closely related strains revealed the distinctiveness of strain ICN-92133T. Based on the taxonogenomic results, strain ICN-92133T is proposed as a novel species belonging to a new genus. Therefore, we suggest the name of the new genus Selenobaculum gen. nov. within the family Selenomonadaceae and strain ICN-92133T (= KCTC 25622T = JCM 36070T) as a type strain of new species Selenobaculum gbiensis sp. nov.
Collapse
Affiliation(s)
- Soyoung Yeo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
| | - Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Chang Beom Ryu
- Department of Internal Medicine, Digestive Disease Center and Research Institute, Soon Chun Hyang University School of Medicine, Bucheon, 14584, South Korea
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, South Korea.
| |
Collapse
|
12
|
Gupta RS, Kanter-Eivin DA. AppIndels.com server: a web-based tool for the identification of known taxon-specific conserved signature indels in genome sequences. Validation of its usefulness by predicting the taxonomic affiliation of >700 unclassified strains of Bacillus species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159410 DOI: 10.1099/ijsem.0.005844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| | - David A Kanter-Eivin
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario CA L8N 3Z5, Canada
| |
Collapse
|
13
|
Remmal I, Bel Mokhtar N, Maurady A, Reda Britel M, El Fakhouri K, Asimakis E, Tsiamis G, Stathopoulou P. Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco. Microorganisms 2023; 11:microorganisms11030797. [PMID: 36985370 PMCID: PMC10051481 DOI: 10.3390/microorganisms11030797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.
Collapse
Affiliation(s)
- Imane Remmal
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
14
|
Corona Ramírez A, Lee KS, Odriozola A, Kaminek M, Stocker R, Zuber B, Junier P. Multiple roads lead to Rome: unique morphology and chemistry of endospores, exospores, myxospores, cysts and akinetes in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36804869 DOI: 10.1099/mic.0.001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The production of specialized resting cells is a remarkable survival strategy developed by many organisms to withstand unfavourable environmental factors such as nutrient depletion or other changes in abiotic and/or biotic conditions. Five bacterial taxa are recognized to form specialized resting cells: Firmicutes, forming endospores; Actinobacteria, forming exospores; Cyanobacteria, forming akinetes; the δ-Proteobacterial order Myxococcales, forming myxospores; and Azotobacteraceae, forming cysts. All these specialized resting cells are characterized by low-to-absent metabolic activity and higher resistance to environmental stress (desiccation, heat, starvation, etc.) when compared to vegetative cells. Given their similarity in function, we tested the potential existence of a universal morpho-chemical marker for identifying these specialized resting cells. After the production of endospores, exospores, akinetes and cysts in model organisms, we performed the first cross-species morphological and chemical comparison of bacterial sporulation. Cryo-electron microscopy of vitreous sections (CEMOVIS) was used to describe near-native morphology of the resting cells in comparison to the morphology of their respective vegetative cells. Resting cells shared a thicker cell envelope as their only common morphological feature. The chemical composition of the different specialized resting cells at the single-cell level was investigated using confocal Raman microspectroscopy. Our results show that the different specialized cells do not share a common chemical signature, but rather each group has a unique signature with a variable conservation of the signature of the vegetative cells. Additionally, we present the validation of Raman signatures associated with calcium dipicolinic acid (CaDPA) and their variation across individual cells to develop specific sorting thresholds for the isolation of endospores. This provides a proof of concept of the feasibility of isolating bacterial spores using a Raman-activated cell-sorting platform. This cross-species comparison and the current knowledge of genetic pathways inducing the formation of the resting cells highlights the complexity of this convergent evolutionary strategy promoting bacterial survival.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Kang Soo Lee
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Marek Kaminek
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Roman Stocker
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
15
|
Dittoe DK, Olson EG, Ricke SC. IMPACT OF THE GASTROINTESTINAL MICROBIOME AND FERMENTATION METABOLITES ON BROILER PERFORMANCE. Poult Sci 2022; 101:101786. [PMID: 35346496 PMCID: PMC9079343 DOI: 10.1016/j.psj.2022.101786] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Dana K Dittoe
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Elena G Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Glascock AL, Jimenez NR, Boundy S, Koparde VN, Brooks JP, Edwards DJ, Strauss Iii JF, Jefferson KK, Serrano MG, Buck GA, Fettweis JM. Unique roles of vaginal Megasphaera phylotypes in reproductive health. Microb Genom 2021; 7. [PMID: 34898422 PMCID: PMC8767330 DOI: 10.1099/mgen.0.000526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The composition of the human vaginal microbiome has been extensively studied and is known to influence reproductive health. However, the functional roles of individual taxa and their contributions to negative health outcomes have yet to be well characterized. Here, we examine two vaginal bacterial taxa grouped within the genus Megasphaera that have been previously associated with bacterial vaginosis (BV) and pregnancy complications. Phylogenetic analyses support the classification of these taxa as two distinct species. These two phylotypes, Megasphaera phylotype 1 (MP1) and Megasphaera phylotype 2 (MP2), differ in genomic structure and metabolic potential, suggestive of differential roles within the vaginal environment. Further, these vaginal taxa show evidence of genome reduction and changes in DNA base composition, which may be common features of host dependence and/or adaptation to the vaginal environment. In a cohort of 3870 women, we observed that MP1 has a stronger positive association with bacterial vaginosis whereas MP2 was positively associated with trichomoniasis. MP1, in contrast to MP2 and other common BV-associated organisms, was not significantly excluded in pregnancy. In a cohort of 52 pregnant women, MP1 was both present and transcriptionally active in 75.4 % of vaginal samples. Conversely, MP2 was largely absent in the pregnant cohort. This study provides insight into the evolutionary history, genomic potential and predicted functional role of two clinically relevant vaginal microbial taxa.
Collapse
Affiliation(s)
| | - Nicole R Jimenez
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
| | - Sam Boundy
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Vishal N Koparde
- Life Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - J Paul Brooks
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA.,Department of Supply Chain Management and Analytics, Virginia Commonwealth University, Richmond, VA, USA
| | - David J Edwards
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA.,Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Jerome F Strauss Iii
- Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kimberly K Jefferson
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Myrna G Serrano
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA
| | - Gregory A Buck
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA.,Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer M Fettweis
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA, USA.,Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
Gräßle F, Plugge C, Franchini P, Schink B, Schleheck D, Müller N. Pelorhabdus rhamnosifermentans gen. nov., sp. nov., a strictly anaerobic rhamnose degrader from freshwater lake sediment. Syst Appl Microbiol 2021; 44:126225. [PMID: 34198168 DOI: 10.1016/j.syapm.2021.126225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
A rhamnose-degrading bacterium, strain BoRhaAT, was isolated from profundal sediment of Lake Constance in agar dilution series with l-rhamnose as substrate and with a background lawn of Methanospirillum hungatei. The isolated strain was a motile rod that stained Gram positive. Growth was observed within a pH range of 4.0-7.5 and a temperature range of 15-30°C. Fermentation products of rhamnose or glucose were acetate, propionate, ethanol, butyrate, and 1-propanol. The G+C content was 40.6% G+C. The dominant fatty acids are C16:1ω9c, i-C13:03OH, C16:0 and C17:1ω8c with 8-21% relative abundance. Polar lipids were glycolipids, phosphatidylethanolamine, phosphoaminolipid and other lipids, of which phosphatidylethanolamine was most abundant. The sequence of the 16S rRNA gene of the new isolate matches the sequence of its closest relative Anaerosporomusa subterranea to 92.4%. A comparison of the genome with this strain showed 60.2% genome-wide average amino acid identity (AAI), comparisons with other type strains showed a maximum of 62.7% AAI. Thus, the definition of a new genus is justified for which we propose the name Pelorhabdus. For strain BoRhaAT, we propose the name Pelorhabdus rhamnosifermentans gen. nov., sp. nov., with strain BoRhaAT (DSM 111565T = JCM 39158T) as the type strain.
Collapse
Affiliation(s)
- Fabian Gräßle
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany
| | - Caroline Plugge
- Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany; Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Bernhard Schink
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany
| | - Nicolai Müller
- Department of Biology, University of Konstanz, Konstanz, Germany; Research Training Group R3 - Resilience of Lake Ecosystems, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
18
|
Ewens SD, Gomberg AFS, Barnum TP, Borton MA, Carlson HK, Wrighton KC, Coates JD. The diversity and evolution of microbial dissimilatory phosphite oxidation. Proc Natl Acad Sci U S A 2021; 118:e2020024118. [PMID: 33688048 PMCID: PMC7980464 DOI: 10.1073/pnas.2020024118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphite is the most energetically favorable chemotrophic electron donor known, with a half-cell potential (Eo') of -650 mV for the PO43-/PO33- couple. Since the discovery of microbial dissimilatory phosphite oxidation (DPO) in 2000, the environmental distribution, evolution, and diversity of DPO microorganisms (DPOMs) have remained enigmatic, as only two species have been identified. Here, metagenomic sequencing of phosphite-enriched microbial communities enabled the genome reconstruction and metabolic characterization of 21 additional DPOMs. These DPOMs spanned six classes of bacteria, including the Negativicutes, Desulfotomaculia, Synergistia, Syntrophia, Desulfobacteria, and Desulfomonilia_A Comparing the DPO genes from the genomes of enriched organisms with over 17,000 publicly available metagenomes revealed the global existence of this metabolism in diverse anoxic environments, including wastewaters, sediments, and subsurface aquifers. Despite their newfound environmental and taxonomic diversity, metagenomic analyses suggested that the typical DPOM is a chemolithoautotroph that occupies low-oxygen environments and specializes in phosphite oxidation coupled to CO2 reduction. Phylogenetic analyses indicated that the DPO genes form a highly conserved cluster that likely has ancient origins predating the split of monoderm and diderm bacteria. By coupling microbial cultivation strategies with metagenomics, these studies highlighted the unsampled metabolic versatility latent in microbial communities. We have uncovered the unexpected prevalence, diversity, biochemical specialization, and ancient origins of a unique metabolism central to the redox cycling of phosphorus, a primary nutrient on Earth.
Collapse
Affiliation(s)
- Sophia D Ewens
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy & Biosciences Institute, University of California, Berkeley, CA 94720
| | - Alexa F S Gomberg
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Energy & Biosciences Institute, University of California, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
19
|
Megrian D, Taib N, Witwinowski J, Beloin C, Gribaldo S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol Microbiol 2020; 113:659-671. [PMID: 31975449 DOI: 10.1111/mmi.14469] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
How, when and why the transition between cell envelopes with one membrane (Gram-positives or monoderms) and two (Gram-negative or diderms) occurred in Bacteria is a key unanswered question in evolutionary biology. Different hypotheses have been put forward, suggesting that either the monoderm or the diderm phenotype is ancestral. The existence of diderm members in the classically monoderm Firmicutes challenges the Gram-positive/Gram-negative divide and provides a great opportunity to tackle the issue. In this review, we present current knowledge on the diversity of bacterial cell envelopes, including these atypical Firmicutes. We discuss how phylogenomic analysis supports the hypothesis that the diderm cell envelope architecture is an ancestral character in the Firmicutes, and that the monoderm phenotype in this phylum arose multiple times independently by loss of the outer membrane. Given the overwhelming distribution of diderm phenotypes with respect to monoderm ones, this scenario likely extends to the ancestor of all bacteria. Finally, we discuss the recent development of genetic tools for Veillonella parvula, a diderm Firmicute member of the human microbiome, which indicates it as an emerging new experimental model to investigate fundamental aspects of the diderm/monoderm transition.
Collapse
Affiliation(s)
- Daniela Megrian
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France.,Ecole Doctorale Complexité du vivant, Sorbonne University, Paris, France
| | - Najwa Taib
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France.,Hub Bioinformatics and Biostatistics, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jerzy Witwinowski
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| | - Christophe Beloin
- Department of Microbiology, Genetics of Biofilm Unit, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, Paris, France
| |
Collapse
|
20
|
Rodríguez-Saavedra M, González de Llano D, Beltran G, Torija MJ, Moreno-Arribas MV. Pectinatus spp. - Unpleasant and recurrent brewing spoilage bacteria. Int J Food Microbiol 2020; 336:108900. [PMID: 33129006 DOI: 10.1016/j.ijfoodmicro.2020.108900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
Traditionally, beer has been recognised as a beverage with high microbiological stability because of the hostile growth environment posed by beer and increasing attention being paid to brewery hygiene. However, the microbiological risk has increased in recent years because of technological advances toward reducing oxygen in beers, besides the increase in novel beer styles production, such as non-pasteurised, flash pasteurised, cold sterilised, mid-strength, and alcoholic-free beer, that are more prone to spoilage bacteria. Moreover, using innovative beer ingredients like fruits and vegetables is an added cause of microbial spoilage. To maintain quality and good brand image, beer spoilage microorganisms are a critical concern for breweries worldwide. Pectinatus and Megasphaera are Gram-negative bacteria mostly found in improper brewing environments, leading to consumer complaints and financial losses. Because of the lack of compiled scientific knowledge on Pectinatus spoilage ability, this review provides a comprehensive overview of the occurrence, survival mechanisms, and the factors affecting beer spoilage Pectinatus species in the brewing process.
Collapse
Affiliation(s)
- Magaly Rodríguez-Saavedra
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain
| | - Dolores González de Llano
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain
| | - Gemma Beltran
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - María-Jesús Torija
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/ Nicolás Cabrera, 29049 Madrid, Spain.
| |
Collapse
|
21
|
Wang TY, Zhang XQ, Chen AL, Zhang J, Lv BH, Ma MH, Lian J, Wu YX, Zhou YT, Ma CC, Dong RJ, Ge DY, Gao SH, Jiang GJ. A comparative study of microbial community and functions of type 2 diabetes mellitus patients with obesity and healthy people. Appl Microbiol Biotechnol 2020; 104:7143-7153. [PMID: 32623494 DOI: 10.1007/s00253-020-10689-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota is crucial in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the metabolism of T2DM patients is not well-understood. We aimed to identify the differences on composition and function of gut microbiota between T2DM patients with obesity and healthy people. In this study, 6 T2DM patients with obesity and 6 healthy volunteers were recruited, and metagenomic approach and bioinformatics analysis methods were used to understand the composition of the gut microbiota and the metabolic network. We found a decrease in the abundance of Firmicutes, Oribacterium, and Paenibacillus; this may be attributed to a possible mechanism and biological basis of T2DM; moreover, we identified three critical bacterial taxa, Bacteroides plebeius, Phascolarctobacterium sp. CAG207, and the order Acidaminococcales that can potentially be used for T2DM treatment. We also revealed the composition of the microbiota through functional annotation based on multiple databases and found that carbohydrate metabolism contributed greatly to the pathogenesis of T2DM. This study helps in elucidating the different metabolic roles of microbes in T2DM patients with obesity.
Collapse
Affiliation(s)
- Ting-Ye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Qing Zhang
- Chui Yang Liu Hospital affiliated to Tsinghua University, Beijing, 100022, China
| | - Ai-Ling Chen
- Chui Yang Liu Hospital affiliated to Tsinghua University, Beijing, 100022, China
| | - Jing Zhang
- Tangshan Gongren Hospital, Tangshan, 063000, China.,Tangshan People Hospital, Tangshan, 063001, China
| | - Bo-Han Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng-Hua Ma
- Tangshan Gongren Hospital, Tangshan, 063000, China
| | - Juan Lian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Xiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun-Tao Zhou
- Tangshan Gongren Hospital, Tangshan, 063000, China
| | - Cong-Cong Ma
- Chui Yang Liu Hospital affiliated to Tsinghua University, Beijing, 100022, China
| | - Rui-Juan Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dong-Yu Ge
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Hua Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guang-Jian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China. .,Diabetes Research Center, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
22
|
Arroyo-Herrera I, Rojas-Rojas FU, Lozano-Cervantes KD, Larios-Serrato V, Vásquez-Murrieta MS, Whtiman WB, Ibarra JA, Estrada-de Los Santos P. Draft genome of five Cupriavidus plantarum strains: agave, maize and sorghum plant-associated bacteria with resistance to metals. 3 Biotech 2020; 10:242. [PMID: 32405446 DOI: 10.1007/s13205-020-02210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022] Open
Abstract
Five strains of Cupriavidus plantarum, a metal-resistant, plant-associated bacterium, were selected for genome sequencing through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) Phase IV project at the Joint Genome Institute (JGI) of the U.S. Department of Energy (DOE). The genome of the strains was in the size range of 6.2-6.4 Mbp and encoded 5605-5834 proteins; 16.9-23.7% of these genes could not be assigned to a COG-associated functional category. The G + C content was 65.83-65.99%, and the genomes encoded 59-67 stable RNAs. The strains were resistant in vitro to arsenite, arsenate, cobalt, chromium, copper, nickel and zinc, and their genomes possessed the resistance genes for these metals. The genomes also encoded the biosynthesis of potential antimicrobial compounds, such as terpenes, phosphonates, bacteriocins, betalactones, nonribosomal peptides, phenazine and siderophores, as well as the biosynthesis of cellulose and enzymes such as chitinase and trehalase. The average nucleotide identity (ANI) and DNA-DNA in silico hybridization of the genomes confirmed that C. plantarum is a single species. Moreover, the strains cluster within a single group upon multilocus sequence analyses with eight genes and a phylogenomic analyses. Noteworthy, the ability of the species to tolerate high concentrations of different metals might prove useful for bioremediation of naturally contaminated environments.
Collapse
Affiliation(s)
- Ivan Arroyo-Herrera
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - Fernando Uriel Rojas-Rojas
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
- 2Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, León, Guanajuato, Mexico
| | - Karla Daniela Lozano-Cervantes
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - Violeta Larios-Serrato
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - María Soledad Vásquez-Murrieta
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | | | - J Antonio Ibarra
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| | - Paulina Estrada-de Los Santos
- 1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prol. Carpio y Plan de Ayala S/N. Col. Santo Tomás, Del. Miguel Hidalgo, C.P. 11340 Cd. de México, Mexico
| |
Collapse
|
23
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020. [PMID: 31900730 DOI: 10.1007/s00709-019-01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
24
|
Cavalier-Smith T, Chao EEY. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). PROTOPLASMA 2020; 257:621-753. [PMID: 31900730 PMCID: PMC7203096 DOI: 10.1007/s00709-019-01442-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 05/02/2023]
Abstract
Palaeontologically, eubacteria are > 3× older than neomura (eukaryotes, archaebacteria). Cell biology contrasts ancestral eubacterial murein peptidoglycan walls and derived neomuran N-linked glycoprotein coats/walls. Misinterpreting long stems connecting clade neomura to eubacteria on ribosomal sequence trees (plus misinterpreted protein paralogue trees) obscured this historical pattern. Universal multiprotein ribosomal protein (RP) trees, more accurate than rRNA trees, are taxonomically undersampled. To reduce contradictions with genically richer eukaryote trees and improve eubacterial phylogeny, we constructed site-heterogeneous and maximum-likelihood universal three-domain, two-domain, and single-domain trees for 143 eukaryotes (branching now congruent with 187-protein trees), 60 archaebacteria, and 151 taxonomically representative eubacteria, using 51 and 26 RPs. Site-heterogeneous trees greatly improve eubacterial phylogeny and higher classification, e.g. showing gracilicute monophyly, that many 'rDNA-phyla' belong in Proteobacteria, and reveal robust new phyla Synthermota and Aquithermota. Monoderm Posibacteria and Mollicutes (two separate wall losses) are both polyphyletic: multiple outer membrane losses in Endobacteria occurred separately from Actinobacteria; neither phylum is related to Chloroflexi, the most divergent prokaryotes, which originated photosynthesis (new model proposed). RP trees support an eozoan root for eukaryotes and are consistent with archaebacteria being their sisters and rooted between Filarchaeota (=Proteoarchaeota, including 'Asgardia') and Euryarchaeota sensu-lato (including ultrasimplified 'DPANN' whose long branches often distort trees). Two-domain trees group eukaryotes within Planctobacteria, and archaebacteria with Planctobacteria/Sphingobacteria. Integrated molecular/palaeontological evidence favours negibacterial ancestors for neomura and all life. Unique presence of key pre-neomuran characters favours Planctobacteria only as ancestral to neomura, which apparently arose by coevolutionary repercussions (explained here in detail, including RP replacement) of simultaneous outer membrane and murein loss. Planctobacterial C-1 methanotrophic enzymes are likely ancestral to archaebacterial methanogenesis and β-propeller-α-solenoid proteins to eukaryotic vesicle coats, nuclear-pore-complexes, and intraciliary transport. Planctobacterial chaperone-independent 4/5-protofilament microtubules and MamK actin-ancestors prepared for eukaryote intracellular motility, mitosis, cytokinesis, and phagocytosis. We refute numerous wrong ideas about the universal tree.
Collapse
Affiliation(s)
| | - Ema E-Yung Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
25
|
Rands CM, Brüssow H, Zdobnov EM. Comparative genomics groups phages of Negativicutes and classical Firmicutes despite different Gram-staining properties. Environ Microbiol 2019; 21:3989-4001. [PMID: 31314945 DOI: 10.1111/1462-2920.14746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 01/05/2023]
Abstract
Negativicutes are gram-negative bacteria characterized by two cell membranes, but they are phylogenetically a side-branch of gram-positive Firmicutes that contain only a single membrane. We asked whether viruses (phages) infecting Negativicutes were horizontally acquired from gram-negative Proteobacteria, given the shared outer cell structure of their bacterial hosts, or if Negativicute phages co-evolved vertically with their hosts and thus resemble gram-positive Firmicute prophages. We predicted and characterized 485 prophages (mostly Caudovirales) from gram-negative Firmicute genomes plus 2977 prophages from other bacterial clades, and we used virome sequence data from 183 human stool samples to support our predictions. The majority of identified Negativicute prophages were lambdoids closer related to prophages from other Firmicutes than Proteobacteria by sequence relationship and genome organization (position of the lysis module). Only a single Mu-like candidate prophage and no clear P2-like prophages were identified in Negativicutes, both common in Proteobacteria. Given this collective evidence, it is unlikely that Negativicute phages were acquired from Proteobacteria. Sequence-related prophages, which occasionally harboured antibiotic resistance genes, were identified in two distinct Negativicute orders (Veillonellales and Acidaminococcales), possibly suggesting horizontal cross-order phage infection between human gut commensals. Our results reveal ancient genomic signatures of phage and bacteria co-evolution despite horizontal phage mobilization.
Collapse
Affiliation(s)
- Chris M Rands
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Harald Brüssow
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
26
|
Neubauer V, Humer E, Mann E, Kröger I, Reisinger N, Wagner M, Zebeli Q, Petri RM. Effects of clay mineral supplementation on particle-associated and epimural microbiota, and gene expression in the rumen of cows fed high-concentrate diet. Anaerobe 2019; 59:38-48. [PMID: 31102775 DOI: 10.1016/j.anaerobe.2019.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
The increased concentrate amounts in cow diets may initiate changes in both particle-associated (PaM) and epimural microbiota (EpM) with the potential for promoting the establishment of pathogens. Clay minerals have shown promising potentials in binding harmful microorganisms and metabolites due to their high adsorption capacity. This study evaluated the effects of a clay-mineral based product (CM) on PaM, EpM, fermentation parameters, and epithelial gene expression in cows fed a high-concentrate diet. Eight rumen-cannulated non-lactating Holstein cows received a concentrate mix supplemented with CM or not (CON) in a change-over design with an initial 100% roughage diet phase (RD, 1 week), followed by intermittent 65%-high-concentrate-diet phases (HC1, HC2; 1 and 2 week duration, respectively), interrupted by 1 week roughage only. Rumen samples for short-chain fatty acids, ammonia, and lactate quantification, as well as PaM, and epithelial biopsies for EpM examination and epithelial gene expression were collected via the cannula once during each feeding phase. Phylogenetic distance analysis of Illumina MiSeq sequencing of the 16S rRNA gene region V345 showed a clear clustering of RD microbiota compared to HC in PaM, showing the impact of the high-concentrate diet on the bacterial community. In the EpM this effect was less pronounced, due to higher variability in RD. In the PaM, a decrease (P < 0.01) of community diversity occurred with the onset of HC feeding, while in the EpM there was an increase in diversity (P < 0.05). In the PaM, CM increased the relative abundance of genus Butyrivibrio (P < 0.01), a commensal bacterium of the rumen, which was, with 6.4%, the second most abundant genus. There, the CM supplementation decreased the genera Lactobacillus, Fusobacterium, and Treponema (P = 0.05), which are potentially either lactate producing or opportunistic pathogens. In the EpM, CM decreased the relative abundance of Succiniclasticum genus (P < 0.01), a possible endotoxin producer, and increased bacteria that are associated with a normobiotic rumen, such as Campylobacter (P = 0.06). Barrier function genes were upregulated in HC2 and nutrient transport genes downregulated in HC1 (P < 0.05); however, there was little effect on pro-inflammatory genes at the epithelium. The CM showed a significant decreasing effect on the cellular metabolism genes HMGCS1 (P = 0.04). Our results suggest that CM supplementation can increase the relative abundance of commensal microbiota and decrease bacteria that could negatively impact the rumen milieu and health during high-concentrate feeding.
Collapse
Affiliation(s)
- Viktoria Neubauer
- Institute of Animal Nutrition and Functional Plant Compounds, Austria; Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210, Vienna, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 3430, Tulln, Austria
| | - Elke Humer
- Institute of Animal Nutrition and Functional Plant Compounds, Austria
| | - Evelyne Mann
- Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Iris Kröger
- Institute of Animal Nutrition and Functional Plant Compounds, Austria
| | - Nicole Reisinger
- BIOMIN Research Center, BIOMIN Holding GmbH, 3430, Tulln, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210, Vienna, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 3430, Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Austria
| | - Renee M Petri
- Institute of Animal Nutrition and Functional Plant Compounds, Austria.
| |
Collapse
|
27
|
Draft Genome Sequence of a Novel Lactate-Fermenting Bacterial Strain of the Family Sporomusaceae within the Class Negativicutes. Microbiol Resour Announc 2019; 8:MRA01735-18. [PMID: 30863832 PMCID: PMC6406122 DOI: 10.1128/mra.01735-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/05/2019] [Indexed: 12/04/2022] Open
Abstract
Here, we report a draft genome sequence of the Sporomusaceae bacterial strain FL31, a novel lactate-fermenting bacterium of the family Sporomusaceae within the class Negativicutes. This genome furthers our understanding of the physiological functions of this taxonomic group in natural environments. Here, we report a draft genome sequence of the Sporomusaceae bacterial strain FL31, a novel lactate-fermenting bacterium of the family Sporomusaceae within the class Negativicutes. This genome furthers our understanding of the physiological functions of this taxonomic group in natural environments.
Collapse
|
28
|
Polyphyly in 16S rRNA-based LVTree Versus Monophyly in Whole-genome-based CVTree. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:310-319. [PMID: 30550857 PMCID: PMC6364046 DOI: 10.1016/j.gpb.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
We report an important but long-overlooked manifestation of low-resolution power of 16S rRNA sequence analysis at the species level, namely, in 16S rRNA-based phylogenetic trees polyphyletic placements of closely-related species are abundant compared to those in genome-based phylogeny. This phenomenon makes the demarcation of genera within many families ambiguous in the 16S rRNA-based taxonomy. In this study, we reconstructed phylogenetic relationship for more than ten thousand prokaryote genomes using the CVTree method, which is based on whole-genome information. And many such genera, which are polyphyletic in 16S rRNA-based trees, are well resolved as monophyletic clusters by CVTree. We believe that with genome sequencing of prokaryotes becoming a commonplace, genome-based phylogeny is doomed to play a definitive role in the construction of a natural and objective taxonomy.
Collapse
|
29
|
Sánchez-Andrea I, Florentino AP, Semerel J, Strepis N, Sousa DZ, Stams AJM. Co-culture of a Novel Fermentative Bacterium, Lucifera butyrica gen. nov. sp. nov., With the Sulfur Reducer Desulfurella amilsii for Enhanced Sulfidogenesis. Front Microbiol 2018; 9:3108. [PMID: 30631314 PMCID: PMC6315149 DOI: 10.3389/fmicb.2018.03108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022] Open
Abstract
Biosulfidogenesis can be used to remediate low pH and high metal content waters such as acid mine drainage and recover the present metals. The selection of a cheap electron donor for the process is important for the economic viability. In this work we isolated a novel versatile acidotolerant fermentative bacterium (strain ALET) that is able to use a great variety of substrates including glycerol. Strain ALET is an obligate anaerobe, and cells are motile, rod-shaped, spore-forming, and stain Gram-positive. Growth occurred in a pH range from 3.5 to 7 (optimum 5.5), and temperature range from 25 to 40°C (optimum 37°C). It grows by fermentation of sugars, organic acids and glycerol. It has the ability to use thiosulfate, iron and DMSO as electron acceptors. Its genome is 4.7 Mb with 5122 protein-coding sequences, and a G+C content of 46.9 mol%. Based on 16S rRNA gene sequence analysis, the closest cultured species is Propionispora hippei (91.4% 16S rRNA gene identity) from the Sporomusaceae family (Selenomonadales order, Negativicutes class, Firmicutes phylum). Based on the distinctive physiological and phylogenetic characteristics of strain ALET, a new genus and species Lucifera butyrica gen. nov., sp. nov., is proposed. The type strain is ALET (=JCM 19373T = DSM 27520T). Strain ALET is an incomplete oxidizer and acetate, among other products, accumulates during glycerol conversion. Strain ALET was used to extend the substrate range for sulfur reduction by constructing co-cultures with the acetate oxidizer and sulfur reducer Desulfurella amilsii. The co-culture was tested with glycerol as substrate in batch and chemostat experiments. Acetate formed by fermentation of glycerol by strain ALET resulted in sulfur reduction by D. amilsii. The co-culture strategy offers good perspectives to use a wide range of cost-efficient substrates, including glycerol, to produce sulfide by specialized sulfur reducers. The recovery of heavy metals from metalliferous streams may become economically feasible by this approach. Note: The locus tag for the genes encoded in Lucifera butyrica is LUCI_∗. To avoid repetition of the prefix along the text, the locus tags are represented by the specific identifier.
Collapse
Affiliation(s)
| | | | - Jeltzlin Semerel
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nikolaos Strepis
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands.,Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
30
|
Rands CM, Starikova EV, Brüssow H, Kriventseva EV, Govorun VM, Zdobnov EM. ACI‐1 beta‐lactamase is widespread across human gut microbiomes in Negativicutes due to transposons harboured by tailed prophages. Environ Microbiol 2018; 20:2288-2300. [DOI: 10.1111/1462-2920.14276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Chris M. Rands
- Department of Genetic Medicine and DevelopmentUniversity of Geneva Medical School and Swiss Institute of Bioinformatics Geneva Switzerland
| | - Elizaveta V. Starikova
- Department of Molecular Biology and GeneticsFederal Research and Clinical Center of Physical‐Chemical Medicine Moscow, Russian Federation
| | - Harald Brüssow
- KU Leuven, Department of BiosystemsLaboratory of Gene Technology Leuven Belgium
| | - Evgenia V. Kriventseva
- Department of Genetic Medicine and DevelopmentUniversity of Geneva Medical School and Swiss Institute of Bioinformatics Geneva Switzerland
| | - Vadim M. Govorun
- Department of Molecular Biology and GeneticsFederal Research and Clinical Center of Physical‐Chemical Medicine Moscow, Russian Federation
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and DevelopmentUniversity of Geneva Medical School and Swiss Institute of Bioinformatics Geneva Switzerland
| |
Collapse
|
31
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chem Rev 2018; 118:3862-3886. [PMID: 29561602 DOI: 10.1021/acs.chemrev.7b00707] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔμH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔμH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| | - Rudolf K Thauer
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| |
Collapse
|
32
|
Gupta RS, Sawnani S, Adeolu M, Alnajar S, Oren A. Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie van Leeuwenhoek 2018; 111:1583-1630. [PMID: 29556819 DOI: 10.1007/s10482-018-1047-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
The genus Mycoplasma, including species earlier classified in the genera Eperythrozoon and Haemobartonella, contains ~ 120 species and constitutes an extensively polyphyletic assemblage of bacteria within the phylum Tenericutes. Due to their small genome sizes and lack of unique characteristics, the relationships among the mycoplasmas/Tenericutes are not reliably discerned. Using genome sequences for 140 Tenericutes, their evolutionary relationships were examined using multiple independent approaches. Phylogenomic trees were constructed for 63 conserved proteins, 45 ribosomal proteins, three main subunits of RNA polymerase and 16S rRNA gene sequences. In all of these trees, Tenericutes species reliably grouped into four main clades designated as the "Acholeplasma", "Spiroplasma", "Pneumoniae" and "Hominis" clusters. These clades are also distinguished based on a similarity matrix constructed based on 16S rRNA gene sequences. Mycoplasma species were dispersed across 3 of these 4 clades highlighting their extensive polyphyly. In parallel, our comparative genomic analyses have identified > 100 conserved signature indels (CSIs) and 14 conserved signature proteins (CSPs), which are uniquely shared by the members of four identified clades, strongly supporting their monophyly and identifying them in molecular terms. Mycoplasma mycoides, the type species of the genus Mycoplasma, and a small number of other Mycoplasma species, formed a strongly supported clade within the "Spiroplasma" cluster. Nine CSIs and 14 CSPs reliably distinguish this clade from all other Mycoplasmatales species. The remainder of the Mycoplasmatales species are part of the "Pneumoniae" and "Hominis" clusters, which group together in phylogenetic trees. Here we are proposing that the order Mycoplasmatales should be emended to encompass only the Mycoplasma species within the "Spiroplasma" cluster and that a new order, Mycoplasmoidales ord. nov., should be created to encompass the other Mycoplasma species. The "Pneumoniae" and the "Hominis" clusters are proposed as two new families, Mycoplasmoidaceae fam. nov., which includes the genera Eperythrozoon, Ureaplasma, and the newly proposed genera Malacoplasma and Mycoplasmoides, and Metamycoplasmataceae fam. nov. to contain the newly proposed genera Metamycoplasma, Mycoplasmopsis, and Mesomycoplasma. The results presented here allow reliable discernment, both in phylogenetic and molecular terms, of the members of the two proposed families as well as different described genera within these families including members of the genus Eperythrozoon, which is comprised of uncultivable organisms. The taxonomic reclassifications proposed here, which more accurately portray the genetic diversity among the Tenericutes/Mycoplasma species, provide a new framework for understanding the biological and clinical aspects of these important microbes.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Sahil Sawnani
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Seema Alnajar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| |
Collapse
|
33
|
Seong CN, Kang JW, Lee JH, Seo SY, Woo JJ, Park C, Bae KS, Kim MS. Taxonomic hierarchy of the phylum Firmicutes and novel Firmicutes species originated from various environments in Korea. J Microbiol 2018; 56:1-10. [PMID: 29299839 DOI: 10.1007/s12275-018-7318-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/01/2022]
Abstract
This study assessed the taxonomic hierarchy of the phylum Firmicutes as well as elucidated the isolation and classification states of novel Firmicutes species isolated from Korean territory. The hierarchical classification system of the phylum Firmicutes has been developed since 1872 when the genus Bacillus was first reported and has been generally adopted since 2001. However, this taxonomic hierarchy is still being modified. Until Feb. 2017, the phylum Firmicutes consisted of seven classes (Bacilli, Clostridia, Erysipelotrichia, Limnochordia, Negativicutes, Thermolithobacteria, and Tissierellia), 13 orders, 45 families, and 421 genera. Firmicutes species isolated from various environments in Korea have been reported from 2000, and 187 species have been approved as of Feb. 2017. All Firmicutes species were affiliated with three classes (Bacilli, Clostridia, and Erysipelotrichia), four orders (Bacillales, Lactobacillales, Clostridiales, and Erysipelotrichales), 17 families, and 54 genera. A total of 173 species belong to the class Bacilli, of which 151 species were affiliated with the order Bacillales and the remaining 22 species with the order Lactobacillales. Twelve species belonging to the class Clostridia were affiliated within only one order, Clostridiales. The most abundant family was Bacillaceae (67 species), followed by the family Paenibacillaceae (56 species). Thirteen novel genera were created using isolates from the Korean environment. A number of Firmicutes species were isolated from natural environments in Korean territory. In addition, a considerable number of species were isolated from artificial resources such as fermented foods. Most Firmicutes species, belonging to the families Bacillaceae, Planococcaceae, and Staphylococcaceae, isolated from Korean fermented foods and solar salterns were halophilic or halotolerant. Firmicutes species were isolated from the whole territory of Korea, especially large numbers from Provinces Gyeonggi, Chungnam, and Daejeon.
Collapse
Affiliation(s)
- Chi Nam Seong
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea.
| | - Joo Won Kang
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Ji Hee Lee
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - So Yeon Seo
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jung Jae Woo
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Chul Park
- Department of Clinical Laboratory Science, Gwangyang Health Science University, Gwangyang, 57764, Republic of Korea
| | - Kyung Sook Bae
- Biological Resource Center, KRIBB, Jeongeup, 56212, Republic of Korea
| | - Mi Sun Kim
- Agricultural Sciences Institute, Sunchon National University, Suncheon, 57922, Republic of Korea
| |
Collapse
|
34
|
Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. INFECTION GENETICS AND EVOLUTION 2017; 54:108-127. [DOI: 10.1016/j.meegid.2017.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 01/02/2023]
|
35
|
Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575-5599. [DOI: 10.1099/ijsem.0.001485] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
36
|
Choi JK, Shah M, Yee N. Anaerosporomusa subterranea gen. nov., sp. nov., a spore-forming anaerobe belonging to the class Negativicutes isolated from saprolite. Int J Syst Evol Microbiol 2016; 66:3848-3854. [DOI: 10.1099/ijsem.0.001275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jessica K. Choi
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Madhavi Shah
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Nathan Yee
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
37
|
Gupta RS. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev 2016; 40:520-53. [PMID: 27279642 DOI: 10.1093/femsre/fuw011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/24/2022] Open
Abstract
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
38
|
Chowdhury NP, Klomann K, Seubert A, Buckel W. Reduction of Flavodoxin by Electron Bifurcation and Sodium Ion-dependent Reoxidation by NAD+ Catalyzed by Ferredoxin-NAD+ Reductase (Rnf). J Biol Chem 2016; 291:11993-2002. [PMID: 27048649 DOI: 10.1074/jbc.m116.726299] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
Electron-transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) from Acidaminococcus fermentans catalyze the endergonic reduction of ferredoxin by NADH, which is also driven by the concomitant reduction of crotonyl-CoA by NADH, a process called electron bifurcation. Here we show that recombinant flavodoxin from A. fermentans produced in Escherichia coli can replace ferredoxin with almost equal efficiency. After complete reduction of the yellow quinone to the blue semiquinone, a second 1.4 times faster electron transfer affords the colorless hydroquinone. Mediated by a hydrogenase, protons reoxidize the fully reduced flavodoxin or ferredoxin to the semi-reduced species. In this hydrogen-generating system, both electron carriers act catalytically with apparent Km = 0.26 μm ferredoxin or 0.42 μm flavodoxin. Membrane preparations of A. fermentans contain a highly active ferredoxin/flavodoxin-NAD(+) reductase (Rnf) that catalyzes the irreversible reduction of flavodoxin by NADH to the blue semiquinone. Using flavodoxin hydroquinone or reduced ferredoxin obtained by electron bifurcation, Rnf can be measured in the forward direction, whereby one NADH is recycled, resulting in the simple equation: crotonyl-CoA + NADH + H(+) = butyryl-CoA + NAD(+) with Km = 1.4 μm ferredoxin or 2.0 μm flavodoxin. This reaction requires Na(+) (Km = 0.12 mm) or Li(+) (Km = 0.25 mm) for activity, indicating that Rnf acts as a Na(+) pump. The redox potential of the quinone/semiquinone couple of flavodoxin (Fld) is much higher than that of the semiquinone/hydroquinone couple. With free riboflavin, the opposite is the case. Based on this behavior, we refine our previous mechanism of electron bifurcation.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro and the Max-Plank-Institut für terrestrische Mikrobiologie, 35043 Marburg, Germany
| | - Katharina Klomann
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro and
| | - Andreas Seubert
- the Fachbereich Chemie, Philipps-Universität, 35032 Marburg, and
| | - Wolfgang Buckel
- From the Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro and the Max-Plank-Institut für terrestrische Mikrobiologie, 35043 Marburg, Germany
| |
Collapse
|