1
|
Bale NJ, Koenen M, Ding S, Sinninghe Damsté JS. N-glyceroyl alkylamine phosphoglycolipids dominate the lipidome of several Bacillota bacteria. Syst Appl Microbiol 2025; 48:126609. [PMID: 40339506 DOI: 10.1016/j.syapm.2025.126609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Elucidation of the membrane lipid composition of bacteria can help to better understand how bacterial cells interact with their surroundings, adapt to environmental stress, and resist antimicrobial agents. Here we describe for the first time the detection of a wide array of N-glyceroyl alkylamine phosphoglycolipids (NGAPs) in a range of Bacillota bacteria (formerly Firmicutes). Bacillota includes a diverse range of bacteria that are typically highly resistant to harsh conditions such as heat, radiation, and pH, allowing the bacteria to survive in unfavorable environments. In 9 out 18 investigated strains of Bacillota, spread across 5 orders (Thermoanaerobacterales, Thermosediminibacterales, Eubacteriales, Halanaerobiales, and Sulfobacillia) mild acid hydrolysis released N-glyceroyl alkylamines (NGAs), which were detectable by gas chromatography-mass spectrometry (GC-MS) during routine fatty acid analysis. One strain, Moorella thermoacetica was found to produce long-chain NGAs (C30-C32), which are postulated to have isodiabolic acid-like structures. A wide variety of intact polar NGAPs were identified using ultra-high pressure liquid chromatography high resolution multi-stage mass spectrometry (UHPLC-HRMSn). These include many previously undescribed lipids with a variety of sugar moieties and glycerol-bound core lipid moieties, including ether-bound components and alkyl 1,2-diols. The NGAPs constituted the majority of the intact polar lipid composition of these strains and presumably contribute to their tough cell membranes. The presence of NGAs in Bacillota appears to be associated with thermophilia. Both the hydrolysis-derived NGAs and intact polar NGAPs have potential to be biomarkers for extremophilic and, in particular, thermophilic bacteria.
Collapse
Affiliation(s)
- Nicole J Bale
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands.
| | - Michel Koenen
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands
| | - Su Ding
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Fang C, Yang Y, Zhang S, He Y, Pan S, Zhou L, Wang J, Yang H. Unveiling the impact of microplastics with distinct polymer types and concentrations on tidal sediment microbiome and nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134387. [PMID: 38723479 DOI: 10.1016/j.jhazmat.2024.134387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024]
Abstract
Microplastics (MPs) are distributed widely in the ocean surface waters and sediments. Increasing MPs contamination in intertidal zone profoundly impacts microbial ecosystem services and biogeochemical process. Little is known about the response of tidal sediment microbiome to MPs. We conducted a 30-day laboratory microcosm study using five polymers (PE, PBS, PC, PLA and PET) at three concentrations (1 %, 2 % and 5 %, w/w). High throughput sequencing of 16 S rRNA, qPCR and enzyme activity test were applied to demonstrate the response of microbial community and nitrogen cycling functional genes to MPs. MPs reduced the microbial alpha diversity and the microbial dissimilarity while the effects of PLA-MPs were concentration dependent. LEfSe analysis indicated that the Proteobacteria predominated for all MP treatments. Mantel's test, RDA and correlation analysis implied that pH may be the key environmental factor for causing microbial alterations. MPs enhanced nitrogen fixation in tidal sediment. PLA levels of 1 % but not 5 % produced the most significant effects in nitrogen cycling functional microbiota and genes. PLS-PM revealed that impacts of MPs on tidal sediment microbial communities and nitrogen cycling were dominated by indirect effects. Our study deepened understanding and filled the knowledge gap of MP contaminants affecting tidal sediment microbial nitrogen cycling.
Collapse
Affiliation(s)
- Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yuting Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Shuping Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Sentao Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
3
|
Draft genome sequence of Thermovorax subterraneus 70BT, a thermophile isolated from a geothermally active underground mine that produces hydrogen. Data Brief 2022; 45:108695. [DOI: 10.1016/j.dib.2022.108695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
|
4
|
Bell E, Rattray JE, Sloan K, Sherry A, Pilloni G, Hubert CRJ. Hyperthermophilic endospores germinate and metabolize organic carbon in sediments heated to 80°C. Environ Microbiol 2022; 24:5534-5545. [PMID: 36100999 PMCID: PMC9826295 DOI: 10.1111/1462-2920.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
Cold surface sediments host a seedbank of functionally diverse thermophilic bacteria. These thermophiles are present as endospores, which are widely dispersed in aquatic environments. Here, we investigated the functional potential of endospore populations in cold surface sediments heated to 80°C. Microbial production of acetate was observed at 80°C and could be enhanced by supplying additional organic carbon substrates. Comparison of 16S rRNA gene amplicon libraries from 80°C enrichments to sediments heated to lower temperatures (50-70°C) showed that temperature selects for distinct populations of endospore-forming bacteria. Whereas sulfate-reducing thermophiles were enriched in 50-70°C incubations, 80°C exceeds their thermal tolerance and selects for hyperthermophilic organotrophic bacteria that are similarly detected in amplicon libraries from sediments heated to 90°C. Genome-resolved metagenomics revealed novel carbon cycling members of Symbiobacteriales, Thermosediminibacteraceae, Thermanaeromonas and Calditerricola with the genomic potential for the degradation of carbohydrates, sugars, amino acids and nucleotides. Endospores of thermophilic bacteria are deposited on seabed sediments worldwide where they remain dormant as they are buried in the accumulating sediments. Our results suggest that endospore populations could be activated by temperature increases encountered during burial and show the potential for organotrophic metabolic activity contributing to acetate generation in deep hot sediments.
Collapse
Affiliation(s)
- Emma Bell
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada,School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Jayne E. Rattray
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Kathryn Sloan
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Giovanni Pilloni
- ExxonMobil Technology and Engineering CompanyAnnandaleNew JerseyUSA
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada,School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
5
|
Sakamoto S, Nobu MK, Mayumi D, Tamazawa S, Kusada H, Yonebayashi H, Iwama H, Ikarashi M, Wakayama T, Maeda H, Sakata S, Tamura T, Nomura N, Kamagata Y, Tamaki H. Koleobacter methoxysyntrophicus gen. nov., sp. nov., a novel anaerobic bacterium isolated from deep subsurface oil field and proposal of Koleobacteraceae fam. nov. and Koleobacterales ord. nov. within the class Clostridia of the phylum Firmicutes. Syst Appl Microbiol 2020; 44:126154. [PMID: 33227632 DOI: 10.1016/j.syapm.2020.126154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
An anaerobic thermophilic, rod-shaped bacterium possessing a unique non-lipid sheathed-like structure enveloping a single-membraned cell, designated strain NRmbB1T was isolated from at the deep subsurface oil field located in Yamagata Prefecture, Japan. Growth occurred with 40-60°C (optimum, 55°C), 0-2% (2%), NaCl and pH 6.0-8.5 (8.0). Fermentative growth with various sugars was observed. Glucose-grown cells generated acetate, hydrogen, pyruvate and lactate as the main end products. Syntrophic growth occurred with glucose, pyruvate and 3,4,5-trimethoxybenzoate in the presence of an H2-scavenging partner, and growth on 3,4,5-trimethoxybenzoate was only observed under syntrophic condition. The predominant cellular fatty acids were C16:0, iso-C16:0, anteiso-C15:0, and iso-C14:0. Respiratory quinone was not detected. The genomic G+C content was 40.8mol%. Based on 16S rRNA gene phylogeny, strain NRmbB1T belongs to a distinct order-level clade in the class Clostridia of the phylum Firmicutes, sharing low similarity with other isolated organisms (i.e., 87.5% for top hit Moorella thermoacetica DSM 2955T). In total, chemotaxonomic, phylogenetic and genomic characterization revealed that strain NRmbB1T (=KCTC 25035T, =JCM 39120T) represents a novel species of a new genus. In addition, we also propose the associated family and order as Koleobacteraceae fam. nov and Koleobacterales ord. nov., respectively.
Collapse
Affiliation(s)
- Sachiko Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Satoshi Tamazawa
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan; Northern Advancement Center for Science & Technology, H-RISE, 5-3 Sakae-machi, Horonobe-cho, Teshio-gun, BPRI, Hokkaido 098-3221, Japan
| | - Hiroyuki Kusada
- JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideharu Yonebayashi
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Hiroki Iwama
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Masayuki Ikarashi
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Tatsuki Wakayama
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Haruo Maeda
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan; Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Susumu Sakata
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideyuki Tamaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| |
Collapse
|
6
|
Description of Biomaibacter acetigenes gen. nov., sp. nov., and proposal of Thermosediminibacterales ord. nov. containing two novel families of Tepidanaerobacteraceae fam. nov. and Thermosediminibacteraceae fam. nov. Int J Syst Evol Microbiol 2019; 69:3891-3902. [DOI: 10.1099/ijsem.0.003701] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 2018; 562:140-144. [PMID: 30209391 PMCID: PMC6221200 DOI: 10.1038/s41586-018-0498-z] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/03/2018] [Indexed: 11/10/2022]
Abstract
Extracellular electron transfer (EET) describes microbial bioelectrochemical processes in which electrons are transferred from the cytosol to the exterior of the cell1. Mineral-respiring bacteria use elaborate haem-based electron transfer mechanisms2-4 but the existence and mechanistic basis of other EETs remain largely unknown. Here we show that the food-borne pathogen Listeria monocytogenes uses a distinctive flavin-based EET mechanism to deliver electrons to iron or an electrode. By performing a forward genetic screen to identify L. monocytogenes mutants with diminished extracellular ferric iron reductase activity, we identified an eight-gene locus that is responsible for EET. This locus encodes a specialized NADH dehydrogenase that segregates EET from aerobic respiration by channelling electrons to a discrete membrane-localized quinone pool. Other proteins facilitate the assembly of an abundant extracellular flavoprotein that, in conjunction with free-molecule flavin shuttles, mediates electron transfer to extracellular acceptors. This system thus establishes a simple electron conduit that is compatible with the single-membrane structure of the Gram-positive cell. Activation of EET supports growth on non-fermentable carbon sources, and an EET mutant exhibited a competitive defect within the mouse gastrointestinal tract. Orthologues of the genes responsible for EET are present in hundreds of species across the Firmicutes phylum, including multiple pathogens and commensal members of the intestinal microbiota, and correlate with EET activity in assayed strains. These findings suggest a greater prevalence of EET-based growth capabilities and establish a previously underappreciated relevance for electrogenic bacteria across diverse environments, including host-associated microbial communities and infectious disease.
Collapse
Affiliation(s)
- Samuel H Light
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lin Su
- Molecular Foundry, Molecular Biophysics and Integrated Bioimaging, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210018, China
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jose A Cornejo
- Molecular Foundry, Molecular Biophysics and Integrated Bioimaging, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alexander Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | - Caroline M Ajo-Franklin
- Molecular Foundry, Molecular Biophysics and Integrated Bioimaging, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Propionate metabolism and diversity of relevant functional genes by in silico analysis and detection in subsurface petroleum reservoirs. World J Microbiol Biotechnol 2017; 33:182. [PMID: 28942530 DOI: 10.1007/s11274-017-2350-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
Propionate is a common metabolic intermediate occurring in environmental samples including petroleum reservoirs. Available microbial genomes were obtained from the NCBI database and analyzed in silico by hmmscan to check three metabolic pathways of propionate production in petroleum reservoir systems. The succinate pathway was the dominant one while the other two (lactate and 1,2-propanediol pathways) contributed less to the formation of propionate according to the Hidden Markov Model calculation. The mmdA gene encoding methylmalonyl-CoA decarboxylase was used as a biomarker gene to detect the diversity of microbes involved in the propionate formation in Jiangsu oil reservoirs. The mmdA gene clone library showed that microbes affiliated within the genus of Archaeoglobus, Thermococcus, Anaerobaculum, as well as more than ten other genera were the potential microorganisms involved in the production of propionate. Meanwhile, as the biomarker genes involved in the other two propionate-producing pathways, the functional genes of lcdA and pduP were tested with PCR amplification, but no positive results were observed in Jiangsu oil reservoirs.
Collapse
|
9
|
Slobodkin AI, Slobodkina GB. Thermophilic prokaryotes from deep subterranean habitats. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ogg CD, Greene AC, Patel BKC. Thermovenabulum gondwanense sp. nov., a thermophilic anaerobic Fe(III)-reducing bacterium isolated from microbial mats thriving in a Great Artesian Basin bore runoff channel. Int J Syst Evol Microbiol 2010; 60:1079-1084. [DOI: 10.1099/ijs.0.009886-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, thermophilic bacterium, designated strain R270T, was isolated from microbial mats thriving in the thermal waters (66 °C) of a Great Artesian Basin bore (registered no. 17263) runoff channel. Cells of strain R270T were straight to slightly curved rods (3.50–6.00×0.75–1.00 μm) that stained Gram-positive, but possessed a Gram-negative cell-wall ultrastructure. Strain R270T grew optimally in tryptone-yeast extract-Casamino acids medium at 65 °C (growth temperature range between 50 and 70 °C) and at pH 7.0 (growth pH range between 6.0 and 9.0). In the presence of 0.02 and 0.10 % yeast extract, pyruvate and Casamino acids were the only substrates fermented from a wide spectrum of substrates tested. Fe(III), Mn(IV), thiosulfate and elemental sulfur were used as electron acceptors in the presence 0.2 % yeast extract, but not sulfate, sulfite, nitrate, nitrite or fumarate. Growth of strain R270T increased in the presence of Fe(III), which was reduced in the presence of peptone, tryptone, Casamino acids, amyl media, starch, pyruvate, H2 and CO2, but not in the presence of acetate, lactate, propionate, formate, benzoate, glycerol or ethanol. Growth and Fe(III) reduction were inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and 2 % NaCl (w/v). The DNA G+C content of strain R270T was 41±1 mol% (T
m) and phylogenetic analysis of the 16S rRNA gene indicated that this isolate was closely related to Thermovenabulum ferriorganovorum DSM 14006T (similarity value of 96.1 %) within the family ‘Thermoanaerobacteraceae’, class ‘Clostridia’, phylum ‘Firmicutes’. On the basis of the phylogenetic distance separating the two, together with differences in a number of key phenotypic characteristics, strain R270T represents a novel species of the genus Thermovenabulum, for which the name Thermovenabulum gondwanense sp. nov. is proposed; the type strain is R270T (=KCTC 5616T=DSM 21133T).
Collapse
Affiliation(s)
- Christopher D. Ogg
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Anthony C. Greene
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Bharat K. C. Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
11
|
Ogg CD, Patel BKC. Fervidicella metallireducens gen. nov., sp. nov., a thermophilic, anaerobic bacterium from geothermal waters. Int J Syst Evol Microbiol 2009; 60:1394-1400. [PMID: 19671710 DOI: 10.1099/ijs.0.014670-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, thermophilic bacterium, designated strain AeB(T), was isolated from microbial mats colonizing a run-off channel formed by free-flowing thermal water from a bore well (registered number 17263) of the Great Artesian Basin, Australia. Cells of strain AeB(T) were slightly curved rods (2.5-6.0x1.0 mum) that stained Gram-negative and formed spherical terminal to subterminal spores. The strain grew optimally in tryptone-yeast extract-Casamino acids medium at 50 degrees C (range 37-55 degrees C) and pH 7 (range pH 5-9). Strain AeB(T) grew poorly on yeast extract (0.2 %) and tryptone (0.2 %) as sole carbon sources, which were obligately required for growth on other energy sources. Growth of strain AeB(T) increased in the presence of various carbohydrates and amino acids, but not organic acids. End products detected from glucose fermentation were ethanol, acetate, CO2 and H2. In the presence of 0.2 % yeast extract, iron(III), manganese(IV), vanadium(V) and cobalt(III) were reduced, but not sulfate, thiosulfate, sulfite, elemental sulfur, nitrate or nitrite. Iron(III) was also reduced in the presence of tryptone, peptone, Casamino acids and amyl media (Research Achievement), but not starch, xylan, chitin, glycerol, ethanol, pyruvate, benzoate, lactate, acetate, propionate, succinate, glycine, serine, lysine, threonine, arginine, glutamate, valine, leucine, histidine, alanine, aspartate, isoleucine or methionine. Growth was inhibited by chloramphenicol, streptomycin, tetracycline, penicillin, ampicillin and NaCl concentrations >2 %. The DNA G+C content was 35.4+/-1 mol%, as determined by the thermal denaturation method. 16S rRNA gene sequence analysis indicated that strain AeB(T) is a member of the family Clostridiaceae, class Clostridia, phylum 'Firmicutes', and is positioned approximately equidistantly between the genera Sarcina, Anaerobacter, Caloramator and Clostridium (16S rRNA gene similarity values of 87.8-90.9 %). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain AeB(T) is considered to represent a novel species in a new genus, for which the name Fervidicella metallireducens gen. nov., sp. nov. is proposed; the type strain is AeB(T) (=JCM 15555(T)=KCTC 5667(T)).
Collapse
Affiliation(s)
- Christopher D Ogg
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Bharat K C Patel
- Microbial Gene Research and Resources Facility, School of Biomolecular and Physical Sciences, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
12
|
Ogg CD, Patel BKC. Sporolituus thermophilus gen. nov., sp. nov., a citrate-fermenting thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin of Australia. Int J Syst Evol Microbiol 2009; 59:2848-53. [DOI: 10.1099/ijs.0.010306-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|